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Abstract.

Satellite observations of tropospheric trace gases and aerosols are evolving rapidly. Recently launched instruments provide

increasingly higher spatial resolutions with footprint diameters in the range of 2-8 km, with daily global coverage for polar

orbiting satellites or hourly observations from geostationary orbit. Often the modelling system has a lower spatial resolution

than the satellites used, with a model grid size in the range of 10-100 km. When the resolution mismatch is not properly bridged,5

the final analysis based on the satellite data may be degraded. Superobservations are averages of individual observations

matching the model’s resolution and are functional to reduce the data load on the assimilation system. In this paper, we discuss

the construction of superobservations, their kernels and uncertainty estimates. The methodology is applied to nitrogen dioxide

tropospheric column measurements of the TROPOspheric Monitoring Instrument (TROPOMI) instrument on the Sentinel-

5P satellite. In particular, the construction of realistic uncertainties for the superobservations is non-trivial and crucial to10

obtaining close to optimal data assimilation results. We present a detailed methodology to account for the representation

error when satellite observations are missing due to e.g. cloudiness. Furthermore, we account for systematic errors in the

retrievals leading to error correlations between nearby individual observations contributing to one superobservation. Correlation

information is typically missing in the retrieval products where an error estimate is provided for individual observations. The

various contributions to the uncertainty are analysed: from the spectral fitting, the estimate of the stratospheric contribution15

to the column and the air-mass factor, for which we find a typical correlation length of 32km. The method is applied to

TROPOMI data but can be generalised to other trace gases such as HCHO, CO, SO2 and other instruments such as the

Ozone Monitoring Instrument (OMI), the Geostationary Environment Monitoring Spectrometer (GEMS) and the Tropospheric

Emissions: Monitoring of POllution instrument (TEMPO). The superobservations and uncertainties are tested in the Multi-

mOdel Multi-cOnstituent Chemical data assimilation (MOMO-Chem) ensemble Kalman filter system. These are shown to20

improve forecasts compared to thinning or compared to assuming fully correlated or uncorrelated uncertainties within the
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superobservation. The use of realistic superobservations within model comparisons and data assimilation in this way aids the

quantification of air pollution distributions, emissions and their impact on climate.

1 Introduction

The capabilities of satellite instruments to measure trace gases in the atmosphere have increased greatly in recent years. In-25

struments measuring from the ultra-violet (UV) to infrared and microwave (https://earthobservations.org/, https://ceos.org/

ourwork/virtual-constellations/acc/), allow the retrieval of concentrations of a large number of gases including O3, NO2, SO2,

CO, CH4 and CO2. While a previous generation was providing measurements with footprint diameters of order 15-50 km,

instruments like the polar orbiting spectrometer TROPOMI (Veefkind et al., 2012) and the recently launched geostationary in-

struments GEMS (Kim et al., 2020) and TEMPO (Zoogman et al., 2017) provide observations with a spatial resolution around30

5 km, allowing the identification of plumes originating from individual major emitters and the estimation of their emissions

(Streets et al., 2013; Georgoulias et al., 2020). At the same time, these instruments provide daily global coverage (TROPOMI)

or regional hourly observations (GEMS, TEMPO) resulting in large data volumes (e.g. about half a Tb per day for TROPOMI).

Making good use of all this information is a major challenge.

In parallel, global atmospheric composition analysis systems have been developed which use data assimilation techniques to35

assimilate the available satellite data. In Europe, the Copernicus Atmosphere Monitoring System (CAMS)(Peuch et al., 2022) is

assimilating about 24 satellite datasets in real time to constrain concentrations of reactive gases, aerosols and greenhouse gases

(Inness et al., 2019b). Multi-decadal reanalyses have been generated by CAMS (Inness et al., 2019a) or by the MOMO-Chem

data assimilation system (Miyazaki et al., 2020a).

The recent advances in satellite instruments have led to a mismatch in resolution between models and observations. For40

example, the TROPOMI instrument has footprints of 5.5 by 3.5 kilometres at nadir (about 20 km2 ), whereas the CAMS

model grid-cells are roughly 0.4 by 0.4 degrees (about 2,000 km2). As a result, a single model grid-cell may be covered by

order 100 observations, which will lead to large differences between individual observations and interpolated model values

because trace gas concentrations vary strongly linked to the distribution of (point) air pollution sources. The large number

of satellite observations (about one million cloud-free NO2 observations per day) make the assimilation of all observations45

numerically very costly. Also regional data assimilation or inverse modelling applications, e.g. van der A et al. (2024), often

are implemented with a resolution of order 0.2 degree or coarser, with order 10-20 TROPOMI observations per grid-cell. This

mismatch is the main reason to introduce superobservations, averages of the individual observations which are representative

of the scales that are resolved by the model.

Crucial for a successful analysis is high-quality information on both the uncertainties in the model forecast (the error co-50

variance matrix) as well as in the observations. Too optimistic observation errors will lead to spurious impacts in the model

degrading the quality of the analyses, while an overestimate of the observation error implies that the observations are not used

to their full potential.
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The model to data mismatch, or departure d, in equation 1 is a key quantity in data assimilation (Kalnay, 2002). Here y is

the observation vector, and H is the observation operator converting the model state vector x to the observations.55

d= y−H[x] (1)

There are three sources of error contributing to non-zero d values: the error in the observation y, the forecast error in x and the

errors in the observation operator, which are often combined with the observation error. The error in H describes how accurately

the measurement can be reconstructed from the model state represented on a finite-resolution grid. This representation error,

although sometimes neglected, will often be the dominant error source. Various terms may contribute to this error, including60

horizontal spatial representation errors (Janjić et al., 2018; Schutgens et al., 2016; Miyazaki et al., 2012a), temporal errors

(Boersma et al., 2016), vertical interpolation errors, smoothing errors (when averaging kernels are not used, see Rodgers (2000))

and forward modelling errors (errors in the radiative transfer model included in H to describe the (satellite) observation).

In this paper, we focus on the horizontal spatial representation error (RE) because this is a major source of error in case of

large sub-grid variability and partial coverage. Also, this error is straightforward to simulate and quantify in the framework of65

superobservations.

In data assimilation applications the uncertainties of the observations are often assumed to be uncorrelated in space because

of its complexity. Satellite retrieval products generally contain detailed retrieval error estimates, but these are available for

individual observations and typically there is no information on how much errors in nearby observations may be correlated.

If such correlations are neglected the individual observations will too strongly impact the analysis. Thinning the observational70

dataset, using only a subset of the observations often improves the data assimilation results, and reduces correlated errors

through data density reduction, while reducing computational cost in data assimilation (Liu and Rabier, 2002, 2003). However,

thinning does not decrease the uncorrelated part of the uncertainty (H. Berger, 2003) and leads to a loss of information as well.

In the case of a short-lived tracer like NO2 with local sources the variability within a grid-cell of 40x40 km2 is large, and

is picked up by TROPOMI. Randomly selecting one observation in a grid-cell, or within a correlation length scale, implies75

throwing away most of the subgrid information and leads to very noisy comparisons because the model does not resolve the

fine-scale variability, especially around inhomogeneous point sources. A better approach is selecting the single observation

closest to the mean or median of the observations within the grid-cell (Plauchu et al., 2024), but note that this approach makes

use of the information of all these observations.

An alternative to thinning is ‘superobbing’. In this approach, multiple observations are clustered and averaged to a single80

superobservation. The superobservations then replace the original observations in data assimilation applications as illustrated

in figure 1. This makes for a more representative and less noisy comparison, while also reducing the correlation in uncertainties

between superobservations

Superobbing can also prevent biases. The uncertainty of individual observations often scales with the column amount. This

is the case for NO2 column retrievals, related to uncertainties in the air-mass factor. If all individual observations with their85

individual uncertainties are assimilated in a model with a coarser resolution than the satellite, this leads to low-biased analyses,
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because more weight is given to low observations with a small uncertainty. With the superobservation approach described in

this paper, such persistent low biases are largely avoided.

Satellite trace gas retrieval products often contain a significant number of negative values. This may result from small signal-

to-noise ratios (for instance for HCHO and SO2 column retrievals) or from a subtraction of two large numbers (the total and90

stratospheric columns in the case of tropospheric NO2). These negative values are, however, essential to maintain statistical

consistency and prevent biases when averaging the observations. Data assimilation systems for atmospheric chemistry are of-

ten unable to use negative values, instead discarding them. But this practice will result in positive biases, for instance over

remote regions in the case of NO2. The process of creating superobservations implies an averaging over individual positive

and negative values, which reduces the relative percentage of negative observations. This is another advantage of using super-95

observations.

Various methods of superobbing exist. The clustering of observations inside the optimal interpolation analysis is introduced

in Lorenc (1981), but Purser et al. (2000) points out two disadvantages with this method: Firstly the superobservations are

not independent from the assimilation system and secondly, creating superobservations requires a statistical description of

the forecast system, which is not always available. Another example is the 10s observations constructed for OCO-2 (Crowell100

et al., 2019). Superobbing methods generally consist of three components: A method to cluster the observations, to average the

observations and to average the uncertainties.

A simple way to cluster observations is by using a pre-determined grid, such as a model grid (Jeuken et al., 1999; Boersma

et al., 2016). This minimises the RE between the superobservations and the model. Another approach involves clustering

observations based on proximity to a model point in both space and time. Alternatively, clustering observations based on105

information density can be preferable depending on the desired properties (Duan et al., 2018; Purser, 2015). Detail is retained

where necessary, and more of the structures of the original observations are preserved. This method can retain more information

with fewer data points, especially for data with a heterogeneous information density, such as wind data. However, it yields an

irregular grid, which may be undesirable. The irregular grid increases the RE between the superobservations and the model.

Several methods exist for averaging the clustered observations. The simplest method is to take a mean of all observations part110

of a superobservation cluster. Crowell et al. (2019) use the uncertainty of the observation as weights. Miyazaki et al. (2012a)

and Boersma et al. (2016) average the observations with the overlap of the observation footprint with the superobservation grid

as weights.

Various methods to compute the superobservation uncertainty have been introduced in the past. Uncertainties may be av-

eraged in the same way as the observations (Inness et al., 2019b). On the other hand Crowell et al. (2019) calculate their115

uncertainty as the largest of the square root of the mean variance or the observations standard deviation. H. Berger (2003)

and Miyazaki et al. (2012a) introduce spatial error correlations between individual observations and combine the uncertainties

based on these correlations. Determining the correlation between the uncertainties is difficult and can be qualitative (Miyazaki

et al., 2012a).

The inflation of uncertainties is another method that is often employed to address the problem of correlated uncertainties.120

Chevallier (2007) demonstrated that inflating observational uncertainties gives good results. This method is often combined
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Figure 1. The superobservation approach implies that the direct assimilation of level-2 retrievals (top) is replaced by a pre-processing step

where a superobservation generator is applied to form an intermediate set of clustered observations with the spatial resolution of the data

assimilation system, which is subsequently assimilated or compared with model output (bottom).

with thinning to account for the fact that thinned observations are still correlated (Heilliette and Garand, 2015; Bédard and

Buehner, 2020). Inflation can also be used in conjunction with superobservations, as superobservation uncertainties are still

spatially correlated.

In this paper, we improve and formalize the superobservation method used by Miyazaki et al. (2012a) and Boersma et al.125

(2016) and apply it to TROPOMI tropospheric NO2 observations for data assimilation applications. The correlations between

the retrieval uncertainties are quantified to calculate the superobservation uncertainty more accurately. Also, we derive an equa-

tion for the representation error, which has only been parameterized until now. Furthermore, we apply a correction to take into

account systematic sampling. We study superobservations with NO2 because it is one of the trace gases most affected by cor-

related uncertainties and representation errors, due to its short residence time and large variation in both time and space. Also,130

the high signal-to-noise ratio of the retrieval makes systematic errors dominant over random errors, which makes correctly

handling the correlation between uncertainties more important. In particular, we discuss in detail the construction of the super-

observation uncertainty, explicitly treating correlations between nearby observations, and the horizontal representativity term.

The applications that we have in mind for the superobservations are the assimilation of high-resolution satellite observations

with global analysis systems, model validation of global chemistry-transport models or general circulation models including135

chemistry. These are applications that make use of the averaging kernels.

In section 2 we give background information on the TROPOMI NO2 product. Section 3 contains the method we use for

superobservation construction and explains the choices for the method. We add to the existing method in sections 4 and 5 by

quantifying the correlations between observational uncertainties and the horizontal representation error. In section 6 we test

different methods of constructing the superobservation uncertainty by assimilating the superobservations into the MOMO-140

Chem data assimilation system.

2 Sentinel-5P TROPOMI NO2 observations

The TROPOMI instrument (Veefkind et al., 2012) is a push-broom spectrometer and is the single payload on the Sentinel-

5P satellite, which is part of the fleet of Sentinel satellites of the EU Copernicus programme. Four aspects make TROPOMI
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unique: 1. The large swath width and resulting daily global coverage; 2. The large spectral range from the UV to the short-145

wave infrared, allowing the retrieval of a large number of trace gases like O3, NO2, SO2, HCHO, CO, CH4, as well as aerosol

properties; 3. The very high signal-to-noise ratio which allows the retrieval of these gases with a high precision; and 4. The

small pixels of down to 3.5 x 5.5 km2 at nadir.

The TROPOMI NO2 product data usage and details of the retrieval are provided in the Product Readme File (Eskes and

Eichmann, 2022), the Product User Manual (Eskes et al., 2022) and the Algorithm Theoretical Baseline Document (van Geffen150

et al., 2022a). The Sentinel-5P Validation Data Analysis Facility (https://s5p-mpc-vdaf.aeronomie.be/) is providing routine

validation results with quarterly validation updates.

Two versions of the product are used in this paper. Processor version 2.2.0 became operational in the Summer of 2021,

including a new implementation of the cloud retrieval, leading to a substantial increase of the tropospheric columns retrieved

(van Geffen et al., 2022b). In combination with high-resolution a-priori information (Douros et al., 2023) this improved the155

comparisons to ground-based remote sensing observations (Verhoelst et al., 2021). An intermediate consistent reprocessing

of the NO2 data became available on the S5P-PAL server (https://data-portal.s5p-pal.com/products/no2.html). In July 2022

TROPOMI v2.4.0 became operational, including a replacement of the OMI and the Global Ozone Monitoring Experiment 2

(GOME-2) derived Lambertian-equivalent Reflectivity (LER) albedos in the UV-visible and near-infrared spectral ranged by

the TROPOMI Directional Lambertian-Equivalent Reflectivity (DLER) database (Tilstra, 2023). An official reprocessing of160

the full mission dataset (30 April 2018 - present) has become available in March 2023. This most recent upgrade is relevant for

this paper because it allows us to study the sensitivity of the tropospheric columns and air-mass factors to uncertainties in the

input databases. At the start of this research, the v2.4 reprocessing was not yet publicly available. Instead, we make use of a

pre-release processing dataset used for final evaluation. This data is identical to the release data but limited in scope to the first

14 days of September in 2018, 2019, 2020, 2021 and 2022. Thus the analyses in this paper are limited to this timeframe.165

A crucial input for estimating the superobservation uncertainty is the error analysis of the individual tropospheric columns.

For NO2 the error budget is particularly complex since many aspects contribute significantly to the uncertainty σNt of the

retrieved tropospheric vertical column Nt. This follows the error propagation approach developed in Boersma et al. (2004).

σ2
Nt

=

(
∂Nt

∂Nslant

)2

σ2
Nslant

+

(
∂Nt

∂Nstrat

)2

σ2
Nstrat

+

(
∂Nt

∂Mt

)2

σ2
Mt

(2)

The equation distinguishes error contributions from the slant column Nslant (uncertainties in the Differential Optical Ab-170

sorption Spectroscopy (DOAS) spectral fit), the estimate of the stratospheric contribution Nstrat to the total column, and the

uncertainties in the tropospheric air-mass factor Mt. The partial derivatives are the error propagation terms or sensitivity of the

retrieval to the various sources of uncertainty.

Note that in this equation there is no distinction between random and systematic components of the errors. All terms have

quasi-systematic components, e.g. the input surface albedo is available as monthly datasets with a limited spatial resolution175

which introduces systematic errors, but the satellite sampling of the albedo introduces a random component. For the NO2
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slant column retrievals the random and systematic components have been discussed in Zara et al. (2018) and van Geffen et al.

(2020).

The tropospheric air-mass factor Mt depends itself on the a priori NO2 profile xa as well as several input parameters b,

Mt =Mt(xa,b) =Mt(xa,fc,zc,as), (3)180

where fc is the (effective) cloud fraction, zc is the (effective) cloud height, and as is the surface albedo. Note that aerosols are

not treated explicitly in the NO2 retrieval but are implicitly accounted for by the effective cloud fraction and height (Boersma

et al., 2004, 2011).

A basic assumption in the error estimation Eq. 2 is that all terms are uncorrelated. There is one exception: a correlation

term which is introduced between the cloud fraction and albedo. An error in the albedo has a direct impact on the air-mass185

factor, but also an indirect impact through the retrieved cloud fraction, partly compensating the direct error (Boersma et al.,

2004). Despite this extra correlation term, the uncertainties in the air-mass factor may be overestimated. In the v2 retrievals,

high biases in the albedo (or LER/DLER) are corrected by matching the observed and computed radiance levels for cloud-free

pixels, which further lowers the impact of the (D)LER input on the final result (van Geffen et al., 2022b). The reduction in

uncertainty due to the albedo adjustment is not accounted for in the v2 uncertainty analysis. The air-mass factor uncertainties190

will be further discussed below in section 4.3.

The air-mass factor also depends on the a priori NO2 profile. However, as shown in Eskes and Boersma (2003), relative

comparisons between a model and the NO2 satellite observations become independent of the prior when the averaging kernel

is used in the observation operator. Since the superobservations are constructed for model validation and data assimilation

applications, the kernels should always be applied. Therefore we omit errors related to the a-priori in the remainder of this195

study.

The NO2 data product includes averaging kernel vectors A linking model profiles to the retrieved (tropospheric) columns.

According to optimal estimation theory, these kernels are part of the observation operator and are used to compute a model-

equivalent ym of the retrieval y by the following equation,

ym = xa +A(x−xa). (4)200

Here x is the tropospheric NO2 vertical profile from the model colocated in space and time to the footprint of the satellite and

xa is the vertical profile of layer contributions to the column. Because for the NO2 retrieval (which is to a good approximation

linear) we have (I−A)xa = 0, where I is a vector with elements 1 (Eskes and Boersma, 2003), this reduces to,

ym =Ax. (5)

Note that in this paper, A refers to the NO2 tropospheric column averaging kernel. These are computed from the total column205

averaging kernel by multiplying with the ratio of the total and tropospheric air mass factor (Eskes et al., 2022). Values above

the troposphere as calculated by the Tracer Model 5 Massive Parallel (TM5-MP) are set to 0.
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3 Constructing superobservations: the tiling approach

Superobservation construction consists of three components: clustering, averaging and uncertainty averaging. The TROPOMI

observations are clustered to the grid of the model the superobservations will be used with, which minimizes the representation210

error. Additionally, this removes the need for grid interpolation during assimilation. Clustering also significantly reduces the

number of TROPOMI observations.

3.1 Averaging approach

We average by using the overlap of the individual observations with the grid-cell as weights (eq. 6) (Miyazaki et al., 2012a;

Boersma et al., 2016).215

yS =

∑n
i wiyi∑n
i wi

(6)

In our formulation, the superobservation is the best possible estimate of the model grid box average NO2 column given n

satellite observations. The weights wi are obtained by covering (tiling) the grid box with the TROPOMI observations, as shown

in Fig. 2. They are equal to the area overlap between the footprint of the TROPOMI observation yi and the selected model grid

box. An example of this method is shown in figure 3. This method of averaging is similar to spatial binning using the HARP220

toolbox (http://stcorp.github.io/harp/doc/html/algorithms/regridding.html#spatial-binning). In the rest of this paper normalized

weights are used (eq. 7)

w̃i =
wi∑n
i wi

(7)

The tiling method has three main advantages over other averaging methods. Firstly, it takes into account that observations

which only partially overlap with the superobservation area should contribute less to the superobservation average. This is225

especially relevant for smaller superobservations where the difference in overlap becomes more pronounced. Secondly, the

tiling method is not sensitive to creating biases. Lastly, the tiling method has a clear physical interpretation, with a closed mass

balance. The total amount of tropospheric NO2 in a superobservation is the sum of the tropospheric NO2 of the observations

comprising the superobservation. The main alternative of using precision weights assumes every observation within a super-

observation is an independent measurement of the superobservation (Taylor, 1997). This is not the case here as different pixels230

are independent measurements looking at different air masses.

To compare a superobservation against a model we also need a corresponding averaging kernel, which is averaged in the

same way as the observations. Multiplying Eq. 1 with wi and summing over the satellite observations we get:
n∑
i

w̃idi =

n∑
i

w̃iyi −
n∑
i

w̃iAiHv,interpol,i[x] = dS (8)

Here x is the vector of modelled NO2 partial columns in the vertical layers of the model for the chosen horizontal model grid235

box, Ai is the averaging kernel of observation yi and Hv,interpol,i is the vertical interpolation between the satellite averaging

kernel pressure levels and the model pressure levels.
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Figure 2. The tiling approach: a model grid-cell mean NO2 tropospheric column amount is constructed as an overlap area-weighted average

of the satellite footprints covering the model grid-cell. The colours indicate the weights wi, which are the area overlap (km2) between the

superobservation grid-cell and satellite observation footprint. The grid-cell boundary is indicated in blue.

A horizontal interpolation operator is missing because yS is compared with the model using a single profile of model values

for the selected horizontal model grid-cell. This is in contrast to an assimilation of individual observations where typically a

bi-linear interpolation operator is introduced involving neighbouring horizontal model grid-cells.240

dS = yS −ASHv,interpolx ; AS =

n∑
i

w̃iAi. (9)

Thus, the averaging kernel of the superobservation (the "superkernel" AS) is constructed in the same way as the superobser-

vation, using the weights wi. Note that, because all individual observations are by construction compared with the same model

value, we do not have to worry about correlations between Ai and x (von Clarmann and Glatthor, 2019).

Note that each TROPOMI observation comes with a unique surface pressure, which may differ substantially between neigh-245

bouring pixels over mountain terrain. To conserve the total column in the model-satellite comparison, we will follow the

TROPOMI NO2 product user manual and align the surface pressures by replacing the retrieval surface pressure with the

surface pressure of the model grid-cell before comparing. In this way, the kernels of all observations contributing to the super-

observation will have the same pressure levels and can be averaged as in equation 9. Note that the shape of the kernel is only

weakly dependent on changes in the surface pressure.250
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Figure 3. An example orbit of TROPOMI on 2018-09-08 NO2 over Europe (top) and the corresponding superobservations (bottom) for

a model grid of 0.5x0.5 degrees constructed with the tiling approach. Cloud-covered observations have been filtered out by using only

observations with a qa-value > 0.75. Locations without data are coloured grey.

3.2 Uncertainty averaging

A realistic superobservation uncertainty estimate is essential to guide the data assimilation and to find the right balance between

the model forecast and the observations in the analysis. The total uncertainty of the superobservation σS is the combination of

the measurement error and representation error terms, assuming these are uncorrelated (eq. 10).
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σS =
√
σ2
obs +σ2

RE . (10)255

The observational uncertainty of the superobservation depends on the uncertainty of the individual observations as well as

their correlation. To calculate the former, we apply the method from Sekiya et al. (2022) who calculate the retrieval contribution

to the superobservation uncertainty using equation 11. This assumes a representative uniform correlation factor c, which is

applied to all uncertainties within a superobservation. Here the observational uncertainty is a combination of an uncorrelated

part and a correlated part. The uncorrelated part tends towards zero as the number of observations increases because the square260

of the standardized weights w̃2
i decreases. On the other hand, the correlated part does not change much when adding more

observations. As a result, the correlated part puts a lower limit on the uncertainty, which is roughly σ
√
c.

σ2
obs = (1− c)

N∑
i=1

w̃2
i σ

2
i + c

(
N∑
i=1

w̃iσi

)2

(11)

4 Uncertainty estimate for TROPOMI NO2

As mentioned in section 3.2, the superobservation uncertainty depends on the observational uncertainties and their correlation265

c (Eq.11). As shown in equation 2 the tropospheric column uncertainty consists of 3 separate sources of uncertainty: The

stratospheric uncertainty, the slant column uncertainty and the air mass factor uncertainty. The superobservation uncertainty of

these components is calculated separately because they have different correlations, which means their uncertainty propagates

differently. Every component and its correlation is discussed individually in the sections below. Note that these components

are not provided separately in the retrieval, but using the methods from the algorithm theoretical basis document (ATBD) (van270

Geffen et al., 2022a) they can be reconstructed using the available information.

4.1 Stratospheric uncertainty

The tropospheric NO2 column is obtained by subtracting an estimated stratospheric column from the total observed column.

The stratospheric column is obtained by TM5-MP model simulations while assimilating TROPOMI NO2 column observations

(Huijnen et al., 2010; Dirksen et al., 2011). With the method, the stratospheric column is constrained by the TROPOMI275

observations, with strong forcings in the assimilation over unpolluted areas, such as the oceans, and small adjustments over

polluted regions. Subtracting the modelled stratospheric slant column from the total slant column and dividing the tropospheric

air mass factor gives tropospheric NO2 (eq 12).

Ntrop =
Nslant −Ns,strat

Mtrop
(12)
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The resolution of the (TM5-MP) model is 1x1 degree, and the horizontal correlation length scale used in the assimilation is280

about 500km, both coarser than the superobservations sizes considered in this paper. Therefore, the stratospheric uncertainty

is assumed to be fully correlated (c=1) between observations that are part of one superobservation.

Because fully correlated terms will influence the final superobservation error stronger than uncorrelated or partially cor-

related terms, the stratospheric estimate will become relatively more important compared to other sources of uncertainty.

Therefore it is relevant to investigate this term in more detail.285

There is seasonal and latitudinal variation in the stratospheric uncertainty. However, the TROPOMI NO2 retrieval approx-

imates the stratospheric uncertainty using a constant mean value. To improve on this, we analyse the observation - forecast

(OmF) departure between the TROPOMI and model column, using a geometric air-mass factor for both (eq. 13 using solar

zenith angle Θ0 and viewing zenith angle Θ). The Root Mean Square Error (RMSE) is calculated daily over 5-degree latitudi-

nal bands, highlighting latitudinal and temporal uncertainties. Only areas with an average model-estimated tropospheric NO2290

column lower than 30 µmolm−2 are included to minimize the effect of the troposphere. Figure 4 shows clear latitudinal and

seasonal variations of the TROPOMI and TM5 differences. To reduce noise in the data a block function convolution is applied

to smooth the data over 15 degrees and two weeks. The smoothed data is oversampled into bins of two degrees by one day.

To calculate the geometric stratospheric uncertainty σStratgeo for an observation this data is linearly interpolated to its day

and latitude. If an observation occurs outside of the bounds of the data it is set to the maximum of the data. These gaps result295

from the lack of observations during polar nights. Equation 14 converts the geometric stratospheric RMSE to the stratospheric

uncertainty (van Geffen et al., 2022a).

Mgeo =
1

cosΘ0
+

1

cosΘ
(13)

σstrat =
σStratgeo ×Mgeo

Mtrop
(14)

Compared to the constant σStratgeo of 3.32 µmolm−2 of the data product, the new uncertainty is generally lower, especially300

at the equator. Areas closer to the poles can have a higher RMSE, depending on the season. This is more pronounced in the

northern hemisphere because the higher NO2 concentrations in the northern hemisphere increase the absolute errors. In winter

the polar region is not observed, and model biases will build up, affecting concentration estimates in late winter. Also, there is

seasonal variation in the high latitudes which relates to the formation and breaking of the polar vortex during winter, leading

to larger errors. Gradients around the Antarctic vortex are also challenging to predict, particularly during souther-hemisphere305

spring. Because the Antarctic vortex is more stable, these errors are less pronounced and occur during the southern hemisphere

spring. High latitude summer NO2 levels are also difficult to predict. This relates to Arctic fire emissions from Siberia and

Alaska. In TM5-MP these are based on climatological fire intensities from the Global Fire Emissions Database (GFED)(van der

Werf et al., 2017), meaning the model is not capable of accurately predicting individual fire events and the corresponding total

and stratospheric column. In contrast, in the tropics, the RMS results are better than the mean value because of the relatively310

small natural variability there.
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Figure 4. Zonal average of the observation - forecast root mean square error of the TROPOMI total column - TM5 total column, averaged

over multiple years (2018-2022). Data is smoothed over 15 degrees and two weeks and averaged into bins of one degree by one day. This

result is used as the geometric stratospheric uncertainty σStratgeo instead of the constant in the retrieval.

4.2 Slant column

Measurement noise is contributing to the slant column uncertainty. van Geffen et al. (2020) finds an average random slant

column uncertainty of 10.23 µmolm−2 for cloud-free scenes. Apart from a random component to the slant column uncertainty,

there will also be a (regionally) systematic component. The systematic component consists of gaps in knowledge, such as315

missing cross sections, inaccurate Ring coefficients in the DOAS fit or the lack of an intensity offset and a correction for

vibrational Raman scattering. (Richter et al., 2011). These systematic effects are most pronounced over the sea in clear-sky

conditions. In such circumstances, the systematic uncertainty can be larger than the random uncertainty. But because these are

low NO2 environments the impact on the retrieval is limited.

Any systematic error on the slant column also influences the quantification of the stratospheric error discussed in the pre-320

vious section because the slant column is assimilated for the quantification of the stratosphere. Moreover, the transport of the

systematic error within the model results in a further increase in the (OmF) RMSE. Considering that the effect of the system-

atic error is already (partially) included in the stratospheric (OmF) RMS discussed above, we do not separately quantify the

effect of the systematic retrieval error. Instead, only the random part of the slant column uncertainty from the level two data is

converted to a tropospheric column uncertainty through the tropospheric air-mass factor (AMF) and averaged as uncorrelated325

using equation 11.
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Figure 5. Diagram showing the dependencies (arrows) in the calculation of the air-mass factor (AMF) as part of the TROPOMI NO2

tropospheric column retrieval. Shown in blue are the input data (TROPOMI radiances, albedo climatology and static data), in orange are the

processing blocks (cloud properties and box AMF lookup table evaluation, TM5 CTM) and in green are the (intermediate) products.

4.3 Air mass factor uncertainty

To calculate the superobservation uncertainty resulting from the air mass factor uncertainty we use the uncertainty from the

retrieval, together with a correlation c. Note that the AMF uncertainty is not part of the level 2 product, but can be calculated

using the available information (van Geffen et al., 2022a). Calculating the associated spatial correlation between observations330

is not trivial because the tropospheric air-mass factor Mt is calculated through several inputs, algorithms, dependencies and

feedbacks, as shown in figure 5. One of these complicating factors is the use that is made of the top-of-atmosphere (TOA)

radiance to correct the albedo climatology for dark scenes. Uncertainties in the algorithms and input variables induce uncer-

tainty in the AMF. Of these uncertainties, the a priori NO2 profile is a large contribution, typically ranging from 5-20% in

polluted regions. These are most affected because the low resolution of the a-priori profile may result in the underestimation335

of hotspots (Douros et al., 2023). However, as shown in Eskes and Boersma (2003), relative comparisons between a model

and the NO2 satellite observations become independent of the a priori profile shape when the averaging kernel is used in the

observation operator. Since the superobservations are constructed for model validation and data assimilation applications, the

kernels should always be applied. Therefore we omit errors related to the a priori in the discussion below.
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Figure 6. Difference between the tropospheric column of the v2.3.1 and v2.4 products on 14-09-2018. Data is filtered for QA > 0.75 (grey

areas indicate cloud cover). White colours range from -8 to 8. µmol m−2

Other large sources of uncertainty are the effective cloud cover, the effective cloud height and the surface albedo (or the340

Lambertian Equivalent Reflectivity, LER). Aerosols are treated implicitly through the effective cloud fractions and cloud height,

which introduces a minor uncertainty (Boersma et al., 2004, 2011). All three of these variables depend on a climatological

surface albedo dataset. For S5P-PAL NO2 processor version 2.3.1 these are derived from OMI (440nm) and GOME-2 (758nm)

while for v2.4.0 it is derived from TROPOMI spectra. A typical RMS difference between these two albedo datasets at 440nm is

0.015, or about 25% for a typical albedo of 0.06. Furthermore, the uncertainties are spatially correlated, first of all, because of345

the relatively low resolution of the LER database, but also because surface modifying conditions are often spatially extensive.

For example, droughts impact the surface albedo in a large area. Luckily the retrieval algorithm can partially compensate for

errors in the climatological surface albedo. If the TOA radiance is lower than expected based on the albedo, the albedo is

adjusted downwards. On the other hand, if the TOA radiance is higher than expected it is attributed to "effective" clouds. If

these clouds are placed at the correct heights (e.g. at the surface for a high albedo anomaly), this yields approximately the same350

AMF as with a perfect surface albedo (Riess et al., 2022).

To estimate the spatial correlation required to estimate the superobservation uncertainty we compare versions 2.3.1 and

2.4 of the retrieval. We use the data of the first two weeks of September for 2018-2022 because these were processed as

validation before the product was made publically available. The difference between the datasets should be representative of

the uncertainty resulting from the climatological surface albedo, as both datasets are valid inputs. Albedo is also a key input355

for the cloud retrieval, so this replacement also generates differences in cloud fraction and cloud pressure. One may argue that

the comparison is not a good estimate of the uncertainty in v2.4, because the new TROPOMI surface albedo is likely superior.
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Thus the uncertainties obtained here are overestimated. However, both maps are still climatological. This absence of temporally

explicit data is probably a major source of uncertainty, making both maps uncertain.

Figure 6 shows the difference in NO2 on 14-09-2018. These differences, caused by the replacement of the albedo climatol-360

ogy, are spatially correlated. A correlation length is calculated as outlined in appendix A. This correlation length is then used

to calculate the average correlation of a superobservation for use with equation 11. Using a correlation length is preferable

over using an average correlation because it takes into account that high-latitude superobservations have a smaller surface area

than low-latitude ones and thus should have a higher average correlation if other factors are equal. Also, a correlation length is

resolution agnostic, which allows for an easy change of the superobservation resolution and a properly behaved limit towards365

smaller superobservations. The correlation C between two points at a distance d for a correlation length l is calculated using

the exponential form, C = exp(−d/l)

We calculate the correlation for every distance within a superobservation and multiply this with the probability density

function of points within a box (Philip, 1991). Integrating this yields the average correlation within a superobservation. Note

that strictly speaking the PDF from Philip (1991) is for a cartesian plane, not for a sphere, but grid-cells are rectangular to a370

good approximation except very close to the pole.

The difference between the versions is compared to the uncertainty due to the AMF, as estimated by the retrieval. The

RMSE is calculated per swath in a 1-by-1-degree grid and then averaged. The uncertainty is averaged to the same grid. Figure

7 shows the relationship between these variables. There is a relationship between them with an R-value of 0.724. On average

the uncertainty estimated by the retrieval is higher than the RMSE, with a slope of 0.747 of the Theil-sen estimator. Note375

that factors other than the surface albedo contribute to the uncertainty, such as the choice of radiative transfer model, the

wavelength at which the AMF is calculated, sphericity corrections and systematic aspects in the cloud retrieval (Lorente et al.,

2017). Based on this information the difference between v2.4 and v2.3 is consistent with the retrieval uncertainty. Thus, the

obtained correlation length is likely representative of AMF uncertainty.

5 Representation error380

When making superobservations the data are clustered within a pre-defined grid. Ideally we would always have complete

coverage, and thus complete information, of the grid-cell. However, this is not the case as satellite observations are often

flagged due to quality concerns, for instance, linked to the presence of clouds obscuring pollution close to the surface.

In the case of incomplete information, the grid-cell mean concentration can still be estimated using the available sample of

observations, but the area-weighted average will be an estimate of the true average. The difference between the (population)385

average of the entire grid-cell and the estimate using an incomplete (sample) average is the (horizontal) representation error,

which we quantify in this section.
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Figure 7. Binned scatter plot between the retrieved average tropospheric uncertainty resulting from the AMF and the average RMSE of the

difference between the retrieval versions. Calculated using available data globally. Trendline fit using a Theil-sen estimator.

5.1 Representation error due to a random removal of observations

By comparing the mean of a completely covered grid-cell to a random sample mean we can calculate the representation error

(RE) for the situation, which is given by:390

RE = |µ− x̄n| (15)

With the true mean µ and an estimate of the mean x̄n, which depends on the number of sample observations n. To quantify

the error we perform experiments by taking a fully covered grid-cell and removing random observations to calculate the RE for

n observations. Because the order in which we remove observations results in different estimates, we repeat the experiment for

I number of iterations. Figure 8a shows the results of this experiment as grey lines, with every line representing one iteration.395

The uncertainty σRE,n associated with this error is the standard deviation of the estimated mean x̄n around the true mean µ:

σRE,n =

√√√√1

I

i=I∑
i=1

(µ− x̄i
n)

2 (16)

This standard deviation is plotted as the green line in figure 8a. Increasing n improves our estimate of µ, decreasing σRE,n.

When n equals the total number of observations N in the grid-cell, the estimate x̄i
n equals µ and the uncertainty becomes 0.
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Notice that σRE,n is the standard deviation of the sample mean to the true mean, also known as the standard error (SE). To400

calculate σRE we can use the formula for the standard error, with a correction factor because the population of observations

within a superobservation (N ) is finite (Bondy and Zlot, 1976; Isserlis, 1918). With this correction factor σRE becomes:

σRE,n = SE =
σ√
n

√
N −n

N − 1
(17)

The results from the equation are shown in figure 8a as the blue line. The theoretical blue line is on top of the experimental

green line, which means equation 8a describes σRE very well.405

Equation 17 indicates that σRE,n is proportional to the standard deviation σ of the observations within the grid-cell. In figure

8 the results are divided by this grid-cell dependent standard deviation such that different TROPOMI superobservations can be

compared. For calculating the absolute value of σRE estimating the standard deviation σ is crucial, as discussed in section 5.3.

Equation 17 also shows that the uncertainty resulting from random thinning (n= 1) is equal to the standard deviation of the

area the thinned observation represents.410

There are some difficulties in applying equation 17 to the superobservation RE because it applies to the standard error to the

mean, not a weighted average. This is also the reason why the blue and green lines in figure 8a do not match perfectly. For an

unweighted average they would converge with enough iterations. Generally this only results in minor differences between the

predictions and the experiments, but these errors become more pronounced if the difference in weights between observations

increases. This error is most present in smaller superobservations because they have relatively more partially overlapping415

observations.

In appendix B we derive a formulation of the representation error that works with observations with different weights by

introducing fractional observations. This results in equation 18:

σRE,n =
σ√

Nffz,n +1− fz,n

√
Nf − (Nfz,n +1− fz,n)

Nf − 1
(18)

Here fz,n is the coverage fraction of the superobservation grid from 0-1 and Nf is the fractional population size. Note that420

n in equation 17 is replaced by Nffz,n

5.2 Representation error due to a systematic removal of observations

A major complicating factor is that the coverage of the superobservation is not random. A cloud field could cover the northern

half of the superobservation. The valid observations then only cover the southern half of the superobservation making it less

representative of the grid-cell as a whole than a random sample. We repeat the experiment from section 5.1 but instead, sample425

systematically. The systematic sampling of a grid-cell starts by picking a random observation from the grid-cell. Then the

nearest observation is added to the sample, which is repeated until the grid-cell is filled. This is done for multiple iterations,

resulting in figure 8, bottom panel, with the iterations in grey and the experimental σRE in red. As expected, the systematic

experiment produces a higher representation error.
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(a) experiment random sampling (b) random sample 30% coverage

(c) experiment systematic sampling (d) systematic sample 30% coverage

Figure 8. Results of repeatedly sampling a single grid-cell to calculate σRE . (a) random sampling of a single superobservation. The thin grey

lines represent individual random experiments for the superobservation. The green line is the mean of the samples, and the blue line is the

theoretical result from equation 17 (b) example of a random sample at 30% coverage (c) Systematic sampling of a single superobservation.

The red line is the mean of the samples, and the blue line is the theoretical result for the random case. The purple line shows the fit to the

systematic mean by fitting Neff . In this case the fitted Neff is 5.5 compared to 536 observations. (d) Example of a systematic sample for

30% coverage.
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(a) RE unpolluted (b) RE polluted

Figure 9. Result of systematically sampling multiple cells. The thin grey lines are the fit of a single cell using the number of effective

observations, similar to the purple line from figure 8. The purple lines show the average fit for unpolluted cells(a) and polluted cells(b).

The blue lines are the predicted averages over multiple superobservations using equation 17. The black lines are the averages over multiple

superobservations when sampling systematically, for unpolluted cells in a and polluted cells in b.

This increase in RE is parameterized by fitting the total population size N in the first term of equation 18. By lowering430

the population size σRE increases for the same coverage, which allows us to match the curve obtained in the systematic

sampling experiment. We call this fitted population size the effective population size Neff . It is not necessary to modify

the finite population correction term (second term) because this term accounts for having more complete information of the

superobservation as the number of observations approaches the population size. This effect remains unchanged with systematic

sampling.435

σRE,n =
σ√

Nefffz,n +1− fz,n

√
N − (Nfz,n +1− fz,n)

N − 1
(19)

Fitting the number of observations using equation 19 results in the purple line in figure 8c. The line fits well but not perfect.

The effective population size of a superobservation has a physical interpretation. Imagine a superobservation containing two

distinct regions: a city with high tropospheric NO2 levels and a rural area outside the city with low tropospheric NO2. If we

were to sample the entire city (including the pollution plume from the city), the estimate of the superobservation average is not440

much better than with a single sample over the city. Effectively, there are only two independent observations, the city and the

rural area. As the example illustrates, the effective population size of observations in a superobservation depends on its spatial

structure. If the effective population size is the same as the regular population size there is no effect of systematic sampling on

the superobservation. This occurs over areas such as the oceans and the Sahara, where observed tropospheric NO2 is similar

and noise-dominated. If the values within the superobservation are random, systematic sampling has no effect. On the other445

hand, source regions are sensitive to systematic sampling and applying it gives very different results. Major population centres,
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such as China, the Middle East and Europe, all have a significantly lower effective population size than the actual population

size. Regions with fire emissions, such as the savannahs in Africa, are also sensitive to systematic sampling. The effective

population is a property of a location and can be quantified for that location.

To calculate a representative effective population size for a location, σRE,n/σ on that location is calculated and averaged450

over the dataset. The average is used to fit an effective population Neff for that location, which we compare to the average

population size for the location. The ratio Reff between the time-averaged population size ⟨N⟩ and the effective population

size Neff captures how sensitive that location is to systematic sampling (Reff = ⟨N⟩/Neff ).

While it is possible to calculate Reff for every superobservation, this quantification would be grid-dependent, which would

make the method inflexible. Instead, we calculate an average ratio Reff for polluted superobservations and unpolluted super-455

observations at multiple resolutions. Superobservations over 30 µmol m−2 are classified as polluted and are expected to be

sensitive to systematic sampling. First, we calculate Reff for every 1-degree superobservation for both the polluted and unpol-

luted case. The resulting fits are shown as the thin lines in Fig. 9. Note there are fewer fits for the polluted case because many

locations are never polluted. Then we average Reff , which gives an Reff of 21 and 3 for polluted and unpolluted 1-degree su-

perobservation respectively. The purple line in Fig. 9 shows the average result of the fits, which matches well with the average460

experimental value in black for both the unpolluted and polluted case. These figures also show the average effect of systematic

sampling. At 50% coverage, the increase in RE when sampling systematically instead of random is 54% for unpolluted areas

and 263% for polluted areas.

Figure 10 shows the Reff as a function of the superobservation area, which increases as the area increases for both polluted

and unpolluted superobservations. Increasing the area of a superobservation increases the distance between observations. As a465

result they become more sensitive to systematic sampling. Within our software, we use the trendlines in Fig. 10 in combination

with the distinction between polluted and unpolluted superobservations to quantify the Reff of a superobservation. This allows

us to calculate Reff for different grids and to take into account latitudinal variations in grid-cell size.

5.3 Sample standard deviation

Thus far, the RE has been expressed in terms of the standard deviation of the observations (tropospheric NO2) within each470

grid-cell. This standard deviation is estimated using the measurement variability for each superobservation individually. In

practice this procedure works well for coverages up to 30% for 0.5 degree superobservations. This coverage corresponds to

the point where on average the sample standard deviation would be more accurate than a climatological standard deviation.

With this coverage, it is still possible that there are not enough available data points to calculate a reliable standard deviation,

in particular for smaller superobservations. For smaller superobservations a minimum coverage of 50% or even 70% may be475

appropriate. The optimal coverage may also vary between assimilation systems, applications and instruments. It is a tradeoff

between data quantity and quality. When fewer than 5 data points are available it is inpossible to calculate a reliable standard

deviation. Instead we set the standard deviation to 0.4 times the tropospheric column + 2.5 µmolm−2. This is based on the

relation between the standard deviation and tropospheric column as shown in figure C1 in appendix C.
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Figure 10. Resolution dependency of the correction for systematic sampling, as a function of the area of the superobservation up to a

resolution of two degrees. The plot distinguishes between polluted ( >30 µmolm−2; orange curve) and unpolluted (blue curve) grid boxes.

Figure 11. The division of the superobservation error variance into its components: stratosphere (blue), slant column (orange), air mass

factor (green) and representivity (red). Computed from TROPOMI NO2 at a 0.5 degree resolution. Note that the figure depicts the error

variance uncertainty instead of the uncertainty because the variance is a direct sum of its contributions. The black line shows the number of

observations within each column bin.
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(a) TROPOMI NO2 superobservation (b) TROPOMI NO2

(c) TROPOMI NO2 superob uncertainty weighted (d) TROPOMI NO2 random observation

Figure 12. Panel showing various methods of pre-processing observations for data assimilation on 2018-09-08 for qa > 0.75. (a) superob-

servations constructed for this research (b) regular TROPOMI observations (c) uncertainty-weighted superobservations, instead of the area

weights used by this research (d) Random sample from the observations within the model grid.
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(a) TROPOMI NO2 superob uncertainty (b) TROPOMI NO2 fully correlated uncertainty

(c) TROPOMI NO2 RE (d) TROPOMI NO2 uncorrelated uncertainty

Figure 13. Panel showing various methods of pre-processing uncertainties for data assimilation and the RE on 2018-09-08 for qa > 0.75. (a)

superobservation uncertainty constructed for this research (b) fully correlated uncertainty (c) representation error (d) uncorrelated uncertainty.
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6 Combined uncertainty of the superobservations480

Figure 11 shows the contributions to the superobservation uncertainty (σ2
sob) as a function of the tropospheric NO2 column. For

low tropospheric columns the uncertainty is dominated by the stratospheric uncertainty, while for high tropospheric columns,

it is impacted most by the air mass factor with still a major contribution from the stratospheric uncertainty. The RE is only a

minor contribution to the average uncertainty, but it varies significantly by location depending on the coverage and standard

deviation (as illustrated in Fig. 13c below) and becomes important at the edges of cloud fields. The slant column uncertainty485

has almost no impact on the average uncertainty, even though it is a major source of uncertainty for individual observations

over clean areas. Because the slant column uncertainty is treated as dominantly uncorrelated it is reduced significantly by the

averaging process. Note that the systematic slant column uncertainty is (partly) included in the stratospheric uncertainty.

We constructed and created superobservations by combining all sources of uncertainty, as described in sections 3.2 and

5. Figure 12a shows the constructed tropospheric NO2 superobservations on a grid of 0.5x0.5 degree2 for the overpass on490

8 September 2018. Additionally, Fig. 12 shows superobservations created using weights determined from the uncertainty of

the individual observations (wi = 1/σ2
i ) (Fig. 12c) and by using random observations (analogous to thinning), Fig. 12d. For

comparison, the satellite observations have also been included (Fig. 12b). The regular superobservations and the uncertainty

superobservations are similar. Both give a realistic low-resolution representation of the original satellite data. But, as expected,

the uncertainty-weighted superobservations have systematically lower values because the weights favour the smaller columns,495

though the difference remains subtle. The difference is most clearly observed above Paris and North Africa. On average

the uncertainty weighted superobservation in Figure 12 have a tropospheric column of 22.4 µmolm−2, compared to 23.0

µmolm−2 of the normal superobservations, which is a reduction of 2.7%. Over polluted areas with a tropospheric NO2 column

over 30 µmolm−2 this reduction is 5%. With the tiling approach, we avoid such a systematic low bias. The randomly sampled

observations provide a noisy picture of the data, making it much less reliable than the other methods, demonstrating the large500

sub-grid variability.

The spatial structure of the superobservation uncertainty is illustrated in Fig. 13a, and is compared to two simplified methods

of calculating the superobservation uncertainty. The associated RE is shown separately in Fig. 13c. Note how the RE is mainly

present at the edges of cloud fields due to the low coverage there. Also, note how the RE is higher in high NO2 areas due to

the higher variation in measurement in these areas. This is particularly visible over Tunis and the Ruhr area.505

The assumption that the observational uncertainty is fully correlated in space results in the uncertainties shown in Fig. 13b.

Uncertainties using this approach are much higher than Fig. 13a and are likely overestimated. Assuming the uncertainty is

fully uncorrelated results in a much lower uncertainty, as shown in Fig. 13d. In this case, the total uncertainty is dominated by

the number of observations in the grid-cell, somewhat reflecting the RE. This is a strong underestimation as compared to the

uncertainty shown in panel 13a.510
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6.1 Data assimilation experiments

The impact of superobservations and their uncertainties on NO2 analysis from NOx emission optimization is evaluated in a

state-of-the-art chemical data assimilation framework. The data assimilation system used is described in Sekiya et al. (2022)

and (Miyazaki et al., 2020b), which use the CHASER 4.0 chemical transport model (Sudo et al., 2002; Sekiya et al., 2018) at

1.125x1.125 degree resolution as the forecast model and the local ensemble transform Kalman filter (LETKF) data assimilation515

technique (Hunt et al., 2007). The assimilation was performed with 32 ensemble members and a two-hour assimilation window.

Covariance localization was applied based on species-dependent localization scales, that were derived from sensitive tests in

Miyazaki et al. (2012b). Covariance inflation was also applied by inflating emission factor uncertainties(ie. ensemble spread),

to a minimum predefined value. Additionally, a multiplicative covariance inflation of 7% was applied to the concentrations.

In addition to NO2, the assimilated measurements included total columns from the thermal-infrared (TIR)/near-infrared (NIR)520

band of the Measurement of Pollution in the Troposphere instrument (MOPITT) (Deeter et al., 2017), OMI SO2 planetary

boundary layer vertical columns(Li et al., 2020), and Aura Microwave Limb Sounder (MLS) O3 and HNO3 profiles(Livesey

et al., 2022).

To demonstrate the impact of different superobservation settings the following 4 sensitivity runs were done for July 2019,

only varying the NO2 observations:525

1. The superobservations and their uncertainties as described by this paper (figures 12a, 13a).

2. The superobservations with uncorrelated errors: The standard superobservations, with modified uncertainty assuming

that the observations are fully uncorrelated in space (fig. 13d).

3. The superobservations with correlated errors: The standard superobservations with modified uncertainty assuming that

the individual observations are fully correlated in space (fig. 13b). This is analogous to the variance-averaged uncertainty.530

4. Thinning: Thinned observations for which the values of one superobservation were taken randomly as one of the available

observations within a model grid-cel, similar to figure 12d. The uncertainty is the corresponding retrieval uncertainty of

this observation.

Note that the RE for thinned observations is expected to be higher than the standard superobservations. Nevertheless, the RE

was set to be the same among experiments to assess the impacts of the superobservation uncertainty itself.535

The effectiveness of the assimilation for these four experiments was evaluated with the observation-minus-forecast RMSE,

RMSEx,y =

√√√√1

t

t∑
1

(Ot,x,y −Ft,x,y)2 (20)

and the results are shown in fig. 14. The relative adjustments made by data assimilation is evaluated by comparing the analysis

(At) and forecasts (Ft) as follows:

Impact[%] =
1

t

t∑
1

|At −Ft|
Ft

∗ 100 (21)540
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(a) RMSE superobservations (b) difference thinning - superobservations

(c) difference uncorrelated - superobservations (d) difference fully correlated - superobservations

Figure 14. Panel showing the RMSE of the observation - forecast for the superobservations and how it compares to the other experiments.

The RMSE is calculated over the time dimension, using only grid-cells for which the tropospheric column is over 17 µmolm−2 (eq. 20 (a))

RMSE of the superobservations. (b) difference RMSE thinning - superobservations. (c) difference RMSE uncorrelated - superobservations

(d) difference RMSE fully correlated - superobservations.

The results are shown in fig 15. Additionally, the mean absolute difference (MAD),

MAD =
1

n

n∑
1

∣∣∣∣∣1t
t∑
1

Ot,x,y −Ft,x,y

∣∣∣∣∣ (22)

RMSE and χ2 metrics were evaluated for the different experiments, see table 1. The χ2 value is the ratio between the

observation-forecast errors (actual errors) and the model plus observational uncertainties (estimated uncertainty). A χ2 of

one means the residuals and uncertainties are balanced, while a higher chi-square value indicates uncertainties are underesti-545

mated and vice versa. It is calculated as in Sekiya et al. (2022); Zupanski and Zupanski (2006). χ2 was estimated only over

highly polluted areas with observation concentrations higher than 17 µmolm−2. The impact calculation uses data between 11

and 17 hours local time, which is the time window when TROPOMI observations are available.

The χ2 value of the standard superobservations (Obs-1) is 1.8, which means either the model or observational uncertainties

(or both) are somewhat underestimated. χ2 value can be sensitive to the choice of covariance inflation factor through its impacts550

on background error covariance (i.e. model errors), as indicated by Sekiya et al. (2022). We have conducted several sensitivity

calculations by perturbing the covariance inflation factor and found that the impact on χ2 is limited because the increase in
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(a) Impact superobservations (b) difference thinning - superobservations

(c) difference uncorrelated - superobservations (d) difference fully correlated - superobservations

Figure 15. Panel showing the relative impact of the superobservations on the data assimilation system, and how this compares to the other

experiments (a) relative impact of the superobservations. (b) difference relative impact thinning - superobservations. (c) uncorrelated -

superobservations. (d) fully correlated - superobservations.

Experiment RMSE [µmolm−2] χ2[−] MAD [µmolm−2]

Superobs 8.7 1.8 5.2

Thinning 15.7 1.7 9.5

Uncorrelated 12.1 111.0 4.8

Correlated 9.0 0.7 5.4

Table 1. Metrics of the data assimilation experiments

background error covariance is compensated by an increase in the observation-forecast error. The increase in spread from the

covariance inflation results in a poorer forecast. The reason why χ2 is higher than 1 can be due to a variety of model forecast

or observation errors that are not accounted for in the covariances, such as transport errors and error correlations between555

superobservations.

Both the MAD and RMSE are largest in the thinning case (Table 1). The decreased RMSE when using the superobservations

indicates that averaging satellite observations leads to values which are closer to the scale that is represented by the model. The

larger MAD in the thinning case reflects the fact that randomly selecting observations often results in negative tropospheric
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NO2 columns, which are rejected by the assimilation system, resulting in a positive sampling bias. This effect is particularly560

obvious over remote areas with some negative values due to the retrieval uncertainties. In the case of superobservations, the

proportion of observations with negative tropospheric columns and their value are both significantly reduced.

The standard superobservation case had the smallest RMSE compared to both the fully correlated and the uncorrelated cases.

Given the common tropospheric NO2 fields, the difference is attributed to the differences in the superobservation uncertainty.

In the uncorrelated case, corresponding to the smaller uncertainties, the data assimilation adjustments become larger than565

the standard superobservation case (fig. 15c), with larger RMSEs in highly polluted areas, probably due to overcorrections

(Fig. 14c). In remote areas, the RMSE improves with smaller uncertainties, suggesting that the standard superobservations

overestimate its uncertainty in remote areas. The smaller MAD in the uncorrelated case reflects the reduced RMSEs in remote

areas.

On the other hand, in the correlated case, the uncertainty is large, which reduced the data assimilation impact and somewhat570

increased the RMSE and MAD. This shows that assuming the uncertainties are fully correlated is not so unrealistic, but it does

lead to a reduction in performance almost everywhere. One exception to this is Central Africa, where the lower uncertainty

significantly improves the RMSE. Note that there is only a small decrease in the relative impact in this area going from the

superobservations to the correlated experiment. Despite the fact there is almost no uncertainty reduction from the superob-

servations the uncertainty is still too low. It is likely that further increasing the uncertainty yields even better results than the575

correlated experiment. Because this effect is so strong and local we believe it is not related to the superobservation method,

but instead results from fire-related errors in the observation uncertainty or model. The high absolute errors in the area make

for a large impact on the RMSE and MAD, despite a small difference in the relative impact. As a result the superobservations

probably do not compare as well to the uncorrelated experiment in Table 1 as they should

The uncertainty is similar between the thinning and fully correlated cases because the retrieval uncertainty is not as noisy580

as the retrieval concentrations. Correspondingly, the effect of the observations on the assimilation should be similar between

the thinning and correlated cases. This is mostly true, except for some high-emission areas, such as central Africa, the Middle

East and eastern China. Here the larger OmF and RMSE between the model and observations increases the impact of the

observations on the assimilation. Also, note that thinning results in a similar χ2 value to the superobservations. The larger

OmF and uncertainty maintain the ratio between the two.585

7 Discussion

In this paper we presented a detailed methodology to construct superobservations and their errors and averaging kernels,

improving upon the superobservations used previously by Miyazaki et al. (2012a); Boersma et al. (2016); Sekiya et al. (2022);

van der A et al. (2024). These superobservations are constructed in particular for data assimilation, inverse modelling and model

evaluation applications. The first aspect of this is an improved estimation of the superobservation uncertainties stemming from590

the observational uncertainties for individual TROPOMI NO2 observations. This is achieved by quantifying the correlation

between observations, allowing for a more accurate propagation of the observational uncertainties and the spatial distribution
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of these uncertainties. The spatial correlations for the slant column, stratosphere and air-mass factor contributions are estimated

and treated separately. Uncertainties relating to the prior are not discussed because it is assumed the kernels will be used

during assimilation or model evaluation. As shown by the data assimilation experiments, realistic uncertainties are of key595

importance for the optimal performance of the assimilation system. The correlated experiment leads to an overestimation

of the uncertainty. This is similar to the method of Inness et al. (2019b) and the Data harmonization toolset for scientific

earth observation data (HARP) spatial binning method for total uncertainty variables (http://stcorp.github.io/harp/doc/html/

algorithms/regridding.html#spatial-binning). On the other hand, the uncorrelated experiment underestimates the uncertainty.

It is similar to the HARP spatial binning method for random uncertainty variables. Both an over- and underestimation of the600

uncertainty degrade the short-term forecast in the MOMO-Chem data assimilation system, as demonstrated above.

The quantification of the spatial error correlation is complicated and remains uncertain. Correlations between retrieval uncer-

tainties of nearby satellite pixels may be caused by spatially correlated biases in the characterisation of the surface reflectance

or LER, aerosol and cloud properties and may depend on the weather. For instance, rainfall or drought may locally impact the

albedo, which is not described by the albedo climatology used in the retrieval. Estimating a correlation for the AMF uncertainty605

is particularly difficult because it results from complex interactions between algorithms and variables such as surface albedo,

cloud albedo and cloud height, and unspecified systematic retrieval errors. The way these variables are spatially correlated

propagates to the correlation of the AMF uncertainty.

The stratospheric uncertainty treatment was updated. For individual observations, the stratosphere does not contribute much

to the uncertainty, but for the clustered superobservations the stratosphere is a prime source of error. We quantified a longitude610

and seasonal dependent stratospheric uncertainty, replacing the default constant uncertainty present in the TROPOMI data

product. As a result, lower latitudes have significantly lower stratospheric uncertainties. Uncertainties for the higher latitudes

are generally lower than the default uncertainty but can also be higher depending on the season.

We also improved the existing method of calculating the (horizontal) RE. A simple constant parameterization was used

before by Miyazaki et al. (2012a); Boersma et al. (2016). We presented a mathematical derivation for the RE in the case of615

random missing observation. This allows for easier and more accurate computation of the RE. Additionally, we have quantified

a systematic sampling correction for the case when the missing observations are clustered, as would be the case when clouds

cover part of the superobservation area. This leads to higher uncertainties and a lower impact of low-coverage superobserva-

tions. The RE derivation also shows that a thinning approach (keeping just one observation per grid-cell) would add a large

uncertainty to the observation equal to the standard deviation of the observations within a model grid-cell.620

Compared to Miyazaki et al. (2012a), who postulated a fixed correlation of 0.15, our superobservations are somewhat more

uncertain. However, due to the separation of the different components, the uncertainty correlation in our superobservations

is spatially heterogeneous and has a different behaviour over the ocean than over polluted regions. In a further development

(Sekiya et al., 2022) already separated the stratospheric error, treating it as fully correlated. However, Sekiya et al. (2022)

still uses the postulated correlation of 0.15 for the remaining observational uncertainties. This means that the slant column625

uncertainties presented here are lower than theirs, but our AMF uncertainty is higher (except for very large superobservations).
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Compared to Sekiya et al. (2022) our superobservations are somewhat more impactful over clean areas, and somewhat less

over polluted areas.

When compared to thinning the superobservations are a much less noisy representation of the satellite data, and thereby

improve the performance of the data assimilation. The uncertainty-weighted superobservations also provide a realistic average630

of the data, but they favour the small column retrievals and are therefore low-biased, which is a feature we avoid using the

tiling approach.

The superobservations resolve the correlations between observations within the superobservation grid-cell. However, it does

not describe a remaining correlation between adjacent superobservations. Inflating the superobservation uncertainty could

improve the results of the assimilation depending on the size of the superobservations.635

We have focused on constructing superobservations of the same size as the grid-cell of the model they will be compared

against. However, it is not obvious that this would be the most optimal configuration. According to Nyquist (Shannon, 1949),

in order to capture all the variability at the size of the superobservations we would need to oversample by introducing extra

superobservations shifted in space. One may argue that for a species like NO2 with a very inhomogeneous fine-scale distri-

bution, interpolation in model space is not useful without knowledge of the subgrid distribution of the emission sources. Data640

assimilation implementations typically introduce spatial correlation lengths covering multiple grid-cells in the modelling of the

background (forecast) covariance matrix B. These correlations act as low-pass filters and the fine-scale variability for smaller

length scales is not constrained in the analysis. In that case, constructing superobservations larger than a single model grid-

cell could be explored, as long as the horizontal correlation lengths of the assimilation system are appropriately oversampled.

These coarser superobservations could be useful for satellite data with a high relative noise level (e.g. HCHO and SO2 column645

observations) or to reduce correlated uncertainties between observations while at the same time lowering computational costs.”

8 Conclusion

In conclusion, this research has improved and formalized existing methods of creating superobservations. Superobservation

uncertainties have been quantified by analysing the various aspects leading to systematic and random uncertainties in the

satellite retrieval, and by mathematically deriving a realistic representation error. Data assimilation experiments show that650

the uncertainties derived in this way lead to better forecast results than postulating either fully correlated or uncorrelated

uncertainties. A thinning of the observations results in very noisy patterns of NO2 and degraded assimilation results compared

to the superobservations. Thus we recommend the use of superobservations with quantitative uncertainties for the assimilation

of atmospheric NO2 and other trace gases.

The superobservation methodology is generic, and will be applied in the future to other species, like HCHO, SO2, CO, O3,655

CH4 and CO2 and to other satellite instruments like OMI, GEMS or TEMPO. All of the concepts and mathematics described

in this paper are broadly applicable. This includes the method of clustering, averaging and uncertainty averaging. The latter

does require the quantification of correlations. Calculating the RE is also species-agnostic, with only the systematic correction

requiring extra quantification.
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Another possible application for superobservations is the creation of level-3 data. These methods provide satellite informa-660

tion on regular grids. Our superobservation approach provides realistic error estimates of the grid box mean value in case the

level-3 gridboxes contain multiple satellite footprints, and have a lower resolution than the satellite. This is a first step towards

a consistent averaging of the satellite data into monthly, seasonal and yearly averages and specifying meaningful uncertainties

for such averages. Additional considerations are needed to quantify the temporal representation and temporal correlations.

Also, in our work, targeting model comparisons and data assimilation, we did not consider the a-priori uncertainties which665

may need to be quantified for level-3 data, depending on the application.

Code and data availability. The code used in this paper to generate the superobservation data is available on Zenodo doi.org/10.5281/

zenodo.10726644. The TROPOMI NO2 L2 datasets used in this paper are made available operationally through the ESA Sentinel-5P data

hub (https://s5phub.copernicus.eu, last access: 25 Jan 2023). The S5P-PAL NO2 dataset is available from the S5P-PAL website (https://data-

portal.s5p-pal.com/products/no2.html, last access: 25 January 2023), and was generated with version 2.3 of the TROPOMI processor. Note670

that this dataset will be replaced by the latest reprocessing based on processor version 2.4.
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Appendix A: Correlation calculation

A1 Calculation of the gridbox-mean correlation from the correlation length

The mean correlation C between pairs of observations within a superobservation is calculated as an average of the correlation

between all pairs of points in a superobservation. This is obtained by multiplying the probability density function (PDF) of the675

distance between all points in a square with the correlation as a function of the distance and integrating the result. The PDF

of all points in a rectangle is taken from Philip (1991) and the correlations are calculated for a distance d and a correlation

length l assuming an exponential decay, C = e−d/l. The correlation length l is computed using the TROPOMI v2.4 - v2.3.1

differences.

For example, a 1-degree superobservation at 29 degrees latitude is a 113 by 99 kilometre rectangle resulting in a PDF as680

shown in Fig. A1a. A correlation length of 32 kilometres yields Fig. A1b. Multiplying the two functions creates figure A1c,

and integrating this results in a correlation of 0.24 (Fig. A1d).

A2 Calculation of the correlation length

The correlation length is calculated using the inverse of the method for calculating the correlation, where a correlation is

converted to a correlation length based on the PDF of distances. This requires a representative correlation of the dataset,685

with a representative grid-cell. The autocorrelation of the v2.4 - v2.3.1 tropospheric column differences within a 1-degree

superobservation is calculated using equation A1, for n number of tropospheric columns x in a superobservation indexed by i

and j. This is a special case of the Pearson correlation where we assume the mean of the v2.4-v.2.3.1 retrieval difference is 0.

Cx,x =

∑n
i

∑n
j xixj∑n

i x
2
i

(A1)

Correlations are computed within single superobservations. Figure A2b shows the difference and the correlation on a single690

day. Averaging the correlation over the available data gives figure A2c. Because the AMF is most important for polluted

observations we filter this result for areas with an average tropospheric NO2 concentration over 30 µmolm−2, figure A2d. The

average correlation of the remaining data is 0.244 at an average grid-box size of 113x99 km2. Applying the inverse method of

section A1 gives a correlation length of 32 kilometres.

Appendix B: Fractional representation error695

To use the formula of the representation error (eq. 17) with observations with different weights we reformulate the equation

using fractional observations (nf ). Here partially overlapping observations are counted based on the fraction of overlap (o).

The overlap of an observation is the ratio between the area inside the superobservation grid (ain,i) to the total area (atot,i)

oi =
ain,i
atot,i

(B1)
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(a) Probability density function (b) Correlation function

(c) PDF multiplied with correlation function (d) PDF × Integrated Correlation

Figure A1. Panels showing the computation of the superobservation correlation from a correlation length and latitude. (a) The probability

density function for the distance between two points in a 1-degree superobservation at 29 degrees latitude. (b) Correlation function for a

correlation length of 32 kilometres. (c) Multiplication of the PDF in panel a and the correlation function in panel b. (d) Integration of the

curve from panel c. The area under the curve gives the correlation of the superobservation.
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(a) Difference in troposhperic NO2 v2.4-v2.3 ,2018-09-14. (b) Correlation 1-degree superobserations 2018-09-14.

(c) Mean correlation 1-degree superobserations. (d) Polluted areas mean corelation.

Figure A2. Panels showing the calculation of a representative correlation for the purpose of calculating a representative correlation length.

(a) difference between the v2.4 and v2.3 observations. (b) Correlations within 1-degree superobservations relative to dataset. (c) Average

correlation in the month of September for 2018-2022. (d) Average correlation of polluted areas.

An observation with a 20% overlap only counts as 0.2 observations. To take into account the size differences between700

satellite observations we also normalize the overlap by the average area of the observations (including the parts outside of the

superobservation).

The number of fractional observations (nf,n) of within a superobservation is the sum of the observation area divided by the

average area and multiplied by the observation overlaps:

nf,n =

n∑
i

oi
ãi
ãavg

(B2)705

In this formulation an average sized observation that completely overlaps the superobservation will count as one observation,

while smaller or partially overlapping observations count for less. The total population size of fractional observations (Nf ) is

the sum over all observations within the superobservation:
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Nf =

N∑
i

oi
ãi
ãavg

(B3)

To facilitate the comparison between superobservations with different population sizes N , the RE can be expressed in terms710

of a fractional coverage f ranging from 0 to 1:

fn =
nf,n

Nf
(B4)

Replacing n by nf,n and substituting nf,n by nf,n =Nfn, σRE becomes:

σRE,n =
σ√
Nffn

√
Nf −Nfn
Nf − 1

(B5)

However expressing the RE in terms of fractional observations or coverage has two problems:715

1. Because different configurations of observations have a different number of fractional observations, it is not possible to

experimentally calculate σRE,n using equation 16 because the values on the x-axis are different. Interpolating the values

solves this except for the case where n= 1 because there are no values for 0 observations.

2. There are situations where nf,1 < 1, which results in σRE,1 > σ. This should not happen because it is not possible to

have less than one observation. In figure 8a we also see that σRE,1 (green line) does not exceed 1 standard deviation.720

Both of these problems require that for one observation nf,1 or Nf1 is equal to one, irrespective of the actual nf . More

formally there is a constraint where

Nf1 = 1 (B6)

First we redifine the fractional coverage to 0 for n= 1 using the following formula:

fz,n = (f − f1) ∗
1

1− f1
(B7)725

We call this new fractional coverage fz,n. Essentially this stretches the σRE,n to always range from 0 to 1 fractional coverage.

Because fz,1 = 0 the following equation satisfies the constraint:

Nfn =Nfz,n +1− fz,n (B8)

Subsituting Eq. B8 into Equation B5 yields the final equation for the random representation error:

σRE,n =
σ√

Nffz,n +1− fz,n

√
Nf − (Nffz,n +1− fz,n)

Nf − 1
(B9)730
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Figure C1. Relationship between the superobservation tropospheric column and standard deviation for a 0.3 degree superobservation.

Appendix C: Fallback standard deviation

For the case when there are insufficient observations to calculate a meaningful standard deviation for a grid-cell we imple-

mented a fallback option where the superobservation standard deviation is estimated as 0.4 times the tropospheric column +

2.5 µmolm−2, based on the trendline in figure C1. This relationship has a Pearson correlation of 0.9. We calculated the fallback

using 0.3 degree superobservations, which contain on average 25 TROPOMI observations at the equator.735
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