Supplementary Information for Temperature effect on seawater fCO₂ revisited: theoretical basis, uncertainty analysis, and implications for parameterising carbonic acid equilibrium constants

Matthew P. Humphreys

5 Department of Ocean Sciences, NIOZ Royal Netherlands Institute for Sea Research, PO Box 59, 1790 AB Den Burg (Texel), the Netherlands

Correspondence to: Matthew P. Humphreys (matthew.humphreys@nioz.nl)

- Coefficient Value Unit 31318.4 J mol⁻¹ u_0 J mol⁻¹ °C⁻¹ 139.488 u_1 J mol⁻¹ -1.21088 u_2 -4.22484J mol⁻¹ µatm⁻¹ U3 J mol⁻¹ °C⁻² -0.652212 u_4 J mol⁻¹ -16.9522 u_5 J mol⁻¹ µatm⁻² -0.000547593 u_6 J mol⁻¹ °C⁻¹ -3.02072 u_7 J mol⁻¹ °C⁻¹ µatm⁻¹ 0.166973 u_8 J mol⁻¹ µatm⁻¹ 0.309654 U9
- 10 Supplementary Table 1: Best-fit coefficients for the parameterisation of b_h in Eq. (35).

Supplementary Table 2: The variance-covariance matrix for uncertainty propagation for the best-fit coefficients (Supp. Table 1) of the b_h parameterisation in Eq. (35). The main diagonal gives the variance for each coefficient while the off-diagonal values represent the covariances. The units are consistent with Supp. Table 1.

	u_0	u_1	u_2	<i>u</i> ₃	u_4	<i>u</i> ₅	u_6	u_7	u_8	U 9
u_0	28.8	2.13.10-1	5.77.10-4	$-8.22 \cdot 10^{-1}$	3.60.10-3	-9.96.10-2	6.24.10-5	-1.36.10-3	-5.29.10-4	1.87.10-3
u_1	2.13.10-1	1.21.10-2	1.51.10-5	-5.34.10-3	6.73.10-5	-1.15.10-3	1.35.10-6	-2.40.10-4	-1.21.10-5	1.09.10-5
u_2	5.77.10-4	1.51.10-5	3.79.10-7	-1.87.10-5	3.66.10-7	-2.77.10-6	3.95.10-9	$-2.73 \cdot 10^{-7}$	-4.71.10-8	1.29.10-8
<i>u</i> ₃	$-8.22 \cdot 10^{-1}$	-5.34.10-3	-1.87.10-5	4.05.10-2	-3.93.10-4	1.34.10-3	6.32.10-7	1.37.10-4	4.13.10-6	-5.46.10-5
<i>U</i> 4	3.60.10-3	6.73.10-5	3.66.10-7	-3.93.10-4	8.61.10-6	8.56.10-6	-3.99.10-9	-3.35.10-6	9.37.10-8	$-2.22 \cdot 10^{-7}$
<i>u</i> 5	-9.96.10-2	-1.15.10-3	-2.77.10-6	1.34.10-3	8.56.10-6	5.00.10-4	-4.88.10-7	3.40.10-6	3.17.10-6	-5.97.10-6
U 6	6.24.10-5	1.35.10-6	3.95.10-9	6.32.10-7	-3.99.10-9	-4.88.10-7	8.00.10-10	-2.01.10-9	-3.95.10-9	-5.58.10-10
u_7	-1.36.10-3	-2.40.10-4	-2.73.10-7	1.37.10-4	-3.35.10-6	3.40.10-6	-2.01.10-9	7.94.10-6	-6.71.10-8	-3.51.10-8
u_8	-5.29.10-4	-1.21.10-5	-4.71.10-8	4.13.10-6	9.37.10-8	3.17.10-6	-3.95.10-9	-6.71.10-8	4.47.10-8	-2.94.10-8
U9	1.87.10-3	1.09.10-5	1.29.10-8	-5.46.10-5	-2.22.10-7	-5.97.10-6	-5.58.10-10	-3.51.10-8	-2.94.10-8	2.03.10-7

Supplementary Figure 1: Comparisons between b_h fitted to the OceanSODA-ETZH dataset and the b_h values returned from the parameterisation in Eq. (35) with the coefficients from Supp. Table 1. (a) All monthly mean data, with the ideal 1:1 relationship shown as a solid black line. (b) Spatial distribution of residuals between the parameterisation and the fitted values of b_h , averaged across all months.

Supplementary Figure 2: Variation of fCO_2 with temperature according to the measurements of Takahashi et al. (1993) (Ta93; filled circles with vertical 1σ error bars) and the different theoretical values of v calculated from A_T and T_C for all of the carbonic acid parameterisations in PyCO2SYS, all normalised to the linear fit (v_l) and computed under the conditions of the Takahashi et al.

30 (1993) experiment (Sect. 2.1.2). The citations for the codes for the different carbonic acid parameterisations in the panel legends can be found in the caption of Fig. 6. With reference to Fig. 6, (a) here shows the "GEOSECS" options, (b) the "Mehrbach" options, (c) the "Synthetic" options, and (d) the others. The dark dashed line shows the best fit of Eq. (19) to the Takahashi et al. (1993) dataset (i.e., v_h), as in Fig. 1a.

35

Supplementary Figure 3: Variation of the RMSD of the residuals in the b_h fit (in terms of fCO_2 , as shown in Fig. 3a) with (a) the relative error in the T_x approximation (Eq. 13), and (b) the relative error in the A_x approximation (Eq. 12), both coloured by practical salinity.

Supplementary Figure 4. (a) 1σ uncertainty in v due to experimental uncertainties in t and fCO_2 in the Takahashi et al. (1993) dataset only and fitted with the linear (dotted line; Eq. 5) and quadratic (dashed line; Eq. 6) forms as well as the fitted van 't Hoff form (solid line; Eq. 19). The shaded area shows the range of t from the Takahashi et al. (1993) experiment, while the full t axis range matches OceanSODA-ETZH. (b) Equivalent for exp(Y) for $\Delta t = +1$ °C, i.e., identical to Fig. 4.