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Abstract. This study presents advancements in the processing of satellite remote sensing data, focusing mainly on Aerosol

Optical Depth (AOD) retrievals from the Geostationary Environment Monitoring Spectrometer (GEMS). The transformation of

Level 2 (L2) data, which includes atmospheric state retrievals, into higher-quality Level 3 (L3) data is crucial in remote sensing.

Our contributions lie in two novel improvements to the processing algorithm. First, we improve the inverse distance weighting

algorithm by incorporating quality flag information into the weight calculation. By assigning weights inversely proportional5

to the number of unreliable grids, the method can provide more accurate L3 products. We validate this approach through

simulation studies and apply it to GEMS AOD data across various regions and wavelengths. The use of the quality flags in the

algorithm can provide a more accurate analysis in remote sensing. Second, we employ a spatio-temporal merging method to

address both spatial and temporal variability in AOD data, a departure from previous approaches that solely focused on spatial

variability. Our method considers temporal variations spanning previous time intervals. Furthermore, the computed mean fields10

show similar spatio-temporal patterns to the previous studies, confirming that they can capture real-world phenomena. Lastly,

utilizing this procedure, we compute the mean field estimates for GEMS AOD data, which can provide a deeper understanding

of the impact of aerosols on climate change and public health.

1 Introduction

In satellite remote sensing missions, observed data is processed at different levels. Using retrievals of the atmospheric state15

(Level 2; L2), L2 AOD products are regridded into Level 3 (L3) going through the process of filling gaps and filtering out noises

(Cressie, 2018). We first introduce the theoretical background of the mean fields algorithm for generating L3 data application

to aerosol optical depth (AOD) retrievals from the Geostationary Environment Monitoring Spectrometer (GEMS) instrument.

We consider an oversampling method for generating L3 AOD data, inverse distance weighting (IDW), and a modified mean

field algorithm with consideration to spatio-temporal variability of AOD data in the algorithm.20
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Aerosols play a critical role in radiative forcing, climate change, and air quality (Brauer et al., 2015; Charlson et al., 1992;

Stocker, 2014; Kaufman et al., 2002). Directly, they change the planetary albedo by reflecting solar radiation and absorbing

terrestrial radiation, affecting the radiation balance. Indirectly, as cloud condensation nuclei, aerosols modify cloud properties

and increase cloud droplet concentration, impacting solar radiation and cloud albedo (Alexander et al., 2013). Aerosol affects

human health and air quality, especially in the regions affected by long-range transport or the regions with heavy aerosol25

emissions due to rapid industrialization and high population density. Those are linked to cardiovascular, respiratory, and allergic

diseases, and even increased mortality rates (Pöschl, 2006; Tager, 2013).

Additionally, high aerosol concentrations can severely reduce visibility, leading to hazardous weather conditions like haze,

smog, and dust storms (Charlson, 1969; Chen and Tsai, 2001). Thus, understanding aerosols’ multifaceted impacts is crucial

for addressing climate change, public health, and environmental visibility issues. The distribution of aerosols is characterized30

by their complexity, leading to increased uncertainty in determining aerosol radiative forcing effects (Chen et al., 2022).

Analyzing aerosol’s spatio-temporal distribution remains crucial for developing air pollution control policies and understanding

the climate impacts of aerosols. Although accurate Aerosol Optical Properties (AOPs) and their vertical profiles can be obtained

from ground-based measurements at the high temporal resolution, their AOPs can represent local-scale variability of limited

spatial coverage. Unlike ground-based instruments, the regional and global monitoring of AOPs has been conducted by using35

satellite measurements.

A previous study of Park et al. (2023) focused on AOD retrievals by considering spatial variability. Specifically, Park et al.

(2023) used the IDW algorithm to regrid L2 products and estimated the mean field of L3 products by considering spatial vari-

ability. Compared to the previous work, we have the following contributions. First, we have integrated quality flag information

in the IDW algorithm so that we can rule out unreliable grid points. In this study, we employ the IDW algorithm to compute40

mean field estimates for AOD data. The IDW method is a widely used gap-filling algorithms that imputes missing observations

through a linear combination of neighboring observations. Integrating quality flags (QF) as weights on IDW algorithm allows

quantitative assessment of the influence of data itself from various quality levels on the final product. It can mitigate the impact

of low-quality data and lead to lower MSE when implementing the IDW algorithm, as proven in Section 4. By considering

variability in L2 AOD products, we can obtain more reliable L3 AOD products in this step. Second, we use the spatio-temporal45

merging method (Kikuchi et al., 2018) to obtain L3 AOD mean field estimates. Numerous studies have demonstrated that

aerosol optical depth (AOD) exhibits significant spatio-temporal variability due to natural and anthropogenic factors. This is

particularly evident in regions like northwestern China, where understanding the spatio-temporal dynamics is essential for

effective atmospheric pollution management and control, as aerosol concentrations are heavily influenced by seasonal and

graphical variations (Zhang, 2023). Moreover, the characteristics of the data collection device, the satellite, play a crucial role.50

The AOD data analyzed in this study is obtained from the Geostationary Environment Monitoring Spectrometer (GEMS).

When collecting data using such devices, it is imperative to consider spatio-temporal variability to ensure the high-quality of

aerosol data. For instance, a study conducted in East Asia optimized the spatio-temporal ranges used for validating satellite

products, such as total ozone and NO2, by leveraging long-term data from both ground-based and satellite observations (Park

et al., 2020). Incorporating quality flag information can reduce the influence of low-quality data on the IDW algorithm, result-55
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ing in lower MSE, as we demonstrated in our simulation study. Nevertheless, it remains crucial to identify and exclude pixels

with unreliable AOD values, as they can introduce substantial uncertainties in mean field estimates. In our analysis, we apply

a filter to remove pixels with a cloud radiance fraction (CRF) exceeding 0.4, ensuring that the included AOD values are not

significantly impacted by cloud contamination. We observe that our method can provide more smoother AOD surfaces than

the simple averaging method without considering spatio-temporal variability.60

The outline of the remainder of this manuscript is as follows. In Section 2, we describe the GEMS data used in our analysis.

In Section 3, we describe our method to compute the mean field of L3 AOD products. In Section 4, we conduct simulation

studies to validate our method. We apply the proposed method to GEMS data in Section 5. We conclude with a discussion in

Section 6.

2 GEMS Data65

GEMS is the first UV-Vis hyperspectral satellite instrument onboard the Geostationary Korea Multi-Purpose Satellite-2B (GK-

2B), launched on February 19, 2020. Its mission is to monitor air quality across Asia (5°S–45°N, 75–145°E) with high temporal

(1-hour) and spatial resolution (3.5 × 7.7 km2 at Seoul, South Korea), using hyperspectral measurements in the 300–500 nm

range.

The GEMS aerosol retrieval (AERAOD) algorithm retrieves AOD, single scattering albedo (SSA), and aerosol layer height70

(ALH) using GEMS L1 data from six wavelengths (354, 388, 412, 443, 477, and 490 nm). This algorithm solves the limited

degree of freedom for signal problems in the GEMS wavelength range by using two-channel inversion to retrieve the initial

guesses of AOD and SSA and then inputting them into the optimal estimation method. This retrieval method was tested

with sensitivity in the UV-Vis region to aerosol absorption and with Ozone Monitoring Instrument (OMI) Level 1 data (Kim

et al., 2018; Go et al., 2020a, b). Initially developed from synthetic OMI data by Kim et al. (2018) and Go et al. (2020b),75

the operational version was later improved by Cho et al. (2023) based on real GEMS Level 1 data. An update to the aerosol

algorithm, Version 2.0, was released in November 2022, which included reprocessing earlier data.

In this study, the following variables are used for calculating L3 AOD mean fields (Table 1).

Table 1. Description of the variables for GEMS L2 AERAOD data.

Group Variable

Data Fields
AOD at wavelength of 354 nm, 443 nm, 550 nm

16-bit Quality Flag

Geolocation Fields

Longitude

Latitude

Solar Zenith Angle

Viewing Zenith Angle
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Additional to Solar Zenith Angle (SZA) and Viewing Zenith Angle (VZA), due to the unavailability of cloud fraction in the

GEMS AOD product, we utilize the GEMS L2 cloud product as masking criteria. The GEMS L2 cloud product is obtained80

from the GEMS cloud retrieval algorithm (Kim et al., 2024). With the same hyperspectral measurement range, temporal and

spatial resolution as the AERAOD algorithm, the GEMS cloud retrieval algorithm retrieves the effective cloud fraction (ECF)

and provides the cloud radiance fraction (CRF) via the CRF conversion process (Choi et al., 2020).

To filter out pixels biased with high cloud fraction, we leverage CRF with wavelength corresponding to AOD product.

3 Methodology85

We apply a three-stage procedure to calculate the mean field of the L3 AOD products. First, we regrid L2 AOD products using

the IDW method with neighboring spatial information to obtain the L3 AOD products. Then merge the L3 AOD products by

considering spatio-temporal variability in the products according to Kikuchi et al. (2018). Specifically, we merge the L3 AOD

products using the previous T time products from the target products of interest. Lastly, we produce the mean field of the L3

AOD products by taking a simple mean of the spatio-temporally merged L3 data. The outline of the method is illustrated in90

Figure 1.

Figure 1. Illustration of the proposed estimation of the mean field methods under the window size of T = 3.

3.1 Inverse Distance Weighting

In this section, we describe the inverse distance weighting (IDW) algorithm that can obtain L3 AOD products. Several methods,

including the nearest neighbor method (Lotrecchiano et al., 2021), the linear interpolation method (Abdullah et al., 2019;

Shepard, 1968) and the spline interpolation method (Kuhlmann et al., 2013), have been proposed to interpolate the air quality95

mass. The IDW algorithm (Zimmerman et al., 1999) is one of the most popular methods among the linear interpolation methods

due to its computational simplicity. Our goal is to obtain the L3 AOD products for each longitude-latitude location.
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Let (x0,y0) be the target longitude-latitude location for calculating the L3 AOD product. Suppose (x1,y1), · · · , (xn,yn)

represent the neighboring longitude-latitude locations to (x0,y0), each paired with its respective L2 AOD product denoted by

AOD(x1,y1), · · · , AOD(xn,yn). To calculate the L3 AOD product in our application, we use grid points within the fourth-100

order neighbor of (x0,y0). This means that, for the given (x0,y0), we use the locations that satisfy xi ∈ (x0 − r,x0 + r) and

yi ∈ (y0 − r,y0 + r). Specifically, we set the resolution at 0.1 ° for the East Asia region and 0.05° for the Korean Peninsula

region. Then, for the fixed observed time point t0, the IDW estimate is

AODIDW (x0,y0, t0) =

n∑
i

λiAOD(xi,yi, t0), (1)

where the weight of each location is defined as105

λi =
1/dpi∑n
i 1/d

p
i

. (2)

In Eq. (2), di is the Euclidean distance from (x0,y0) to (xi,yi) and p is the power parameter. Therefore, Eq. (1) is based on the

weighted average of the L2 AOD values from neighboring locations; the larger weight is assigned to grid points close to the

location of interest x0.

Depending on the choice of p, the IDW estimates yield different outcomes. As p goes to 0, Eq. (2) becomes equal weight110

and the IDW estimate gets close to a simple average from neighboring locations. On the other hand, as p goes to ∞, the

larger weight is concentrated on the locations near x0 and the IDW estimate converged to the estimate obtained through the

nearest neighbor. Although the optimal choice of p can be different depending on the study (Liu et al., 2006), p= 2 is the

most commonly used value since when p= 2, the weight for distance between grid points decays relatively faster to avoid the

discontinuity (Webster and Oliver, 2007). Following this convention (Isaaks and Srivastava, 1989), we also use p= 2 in our115

analysis.

3.1.1 An Enhanced Inverse Distance Weighting with Quality Flag Information

A quality flag is an indicator that contains data quality information for each grid points. Such an indicator is widely used for

data cleaning and selection. In our study, we have quality flag information in the L2 AOD products (coded as a 16-bit unsigned

integer value). The quality flag used in our study is described in Table 2.120

To incorporate quality flag information in the analysis, we convert a 16-bit integer to a binary value. For instance, the number

196 can be expressed as 000000011000100, which implies the features of bit 2, bit 6, and bit 7 are contained. According to

Table 2, pixels with an algorithmic quality flag of 196 are likely to have features of a smaller AOD value than -0.05 or a larger

value than 3.6. In addition, it may have a smaller SSA value than 0.82 or larger than 1.0 in the presence of clouds and solar

zenith angle being above the threshold or viewing zenith angle being above the threshold. Table 3 provides further details about125

the quality flags.

Then, we define an uncertainty metric ui corresponding to a weight λi used in the IDW method. The calculation of un-

certainty metric, denoted as ui, is based on a quality flag that is represented by a 16-bit unsigned integer. As mentioned, this
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Table 2. Quality flags information.

Bits Definition Note Description

0 Reliable Good

(0, Good; 1: have issue)

AOD >0.2 & ALH AK >0.2

1 Less Reliable Suspect AOD <0.2 or ALH AK >0.2

2 Out of bounds SSA or AOD at 443 nm. Bad AOD <-0.05 or AOD >3.6 or SSA <0.82 or SSA >1.0

3 OE fitting error Bad Fitting error during optimal estimation

4 Normalized radiance above threshold Bad High normalized radiance

5 Surface albedo above threshold Bad High surface albedo

6 Cloud masking Cloud Presence of clouds

7 Solar zenith angle above threshold (69°) or viewing zenith angle above threshold Bad SZA >69° or VZA >69°

8 Sun-glint angle below threshold over water Bad Sun glint angle <35°

9 Terrain height high Suspect Terrain height >35°

10 Previous L2 SFC (-5 day) are used Suspect Absence of L2 SFC information

11 OMI climatology used for surface albedo Suspect Absence of L2 SFC information

12 Previous irradiance used Suspect Absence of L1C irradiance

13 AMI cloud-masking used Cloud Cloud masking using AMI L2 Cloud product

14 Less reliable of surface albedo Suspect Less accurate AERAOD surface albedo

15 Interpolated radiance used Suspect LIC Radiance QF=2

Table 3. Process of converting algorithm quality flag 196 into 16-bit unsigned integers to binary. The first equation shows that the decimal

number 196 can be summed as 196 = 27 +26 +22, which indicates that it can be converted to the binary number 000000011000100 as

written in the second line. To show which bit has the issue based on the converted binary number, we enumerate the bit 0 to bit 16 on the

third line. The process shows that bit 2, bit 6, and bit 7 have an issue.

196 = 27 26 22

196 = 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0

bit = 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

integer is first converted into binary format. We then add all the problematic bits with a value of 1 to compute ui. With this

quality flag information, the IDW weight used for our method is130

λi =
1/dpi u

q
i∑

i 1/d
p
i u

q
i

, (3)

where ui =
∑

(bit values of the qualify flag)+1. Since the high values of ui imply the low quality of the data, we take the

inverse of ui in the weights of the IDW algorithm. In Eq. (3), q is a power parameter that controls the amount of quality flag

information. The larger the q value, the higher penalty will be assigned to the grid with a large ui value. In Section 4, we
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observe that incorporating quality flags in the weight can improve the accuracy of the IDW method. Furthermore, we validate135

the choice of quality flags from the simulation study.

3.2 Spatio-temporal Merging Algorithm

In this section, we describe a merging algorithm (Kikuchi et al., 2018) that can account for spatio-temporal variability in L3

AOD products. By using spatio-temporal information, we can adjust the weights to produce a more robust and accurate L3

AOD mean field output.140

3.2.1 Spatio-temporal Variability of AODIDW

It is crucial to consider the spatio-temporal variability of the IDW estimates when we compute the mean field of L3 AOD

products (Kikuchi et al., 2018). However, we only have a single IDW estimate, AODIDW (x,y, t) at a specific location and

time. Since we do not have repeated measures of AODIDW (x,y, t), the spatio-temporal variability should be computed using

neighboring information. Let (x0,y0, t0) be the location and time of interest and (xi,yi, ti) be its neighboring location i. Then145

spatio-temporal variability is defined as a root-mean-square difference (RMSD) of AODIDW estimates as

σIDW (x0,y0, t0) =

√√√√ 1

N

N∑
i

(AODIDW (xi,yi, ti)−AODIDW (x0,y0, t0))2 (4)

where N is the number of neighboring pixels within r, the distance between the point of interest and its neighboring set and

previous T time from (x0,y0, t0). In this work, we consider the fourth-order neighboring grids and window size of T = 3 so

that r = 0.1°,0.2°,0.3°,0.4° and t= 0,1,2,3.150

3.2.2 Hourly Merged AOD Estimates

Using the spatio-temporal variability in Section 3.2.1, we computed hourly combined AOD products. The procedure is sum-

marized as follows. First, we obtain AODpure by filtering out unreliable grid points. Then, we compute AODmerged at the

location of interest by interpolating AODpure. From this, we can retrieve reliable AOD products.

Computing AODest155

We first introduce AODest(x0,y0, t0), which is a weighted average of the IDW estimates obtained in Section 3.1. The AOD

estimate at a target grid (x0,y0, t0) is

AODest(x0,y0, t0) =

n∑
i

wiAODIDW (xi,yi, t0), (5)

where

wi =

1
σ2
IDW (xi,yi,t0)

1
σ2
est(xi,yi,t0)

and
1

σ2
est(x0,y0, t0)

=

n∑
i

1

σ2
IDW (xi,yi, t0)

. (6)160
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Here, n denotes the number of effective pixels within the r and past T time from (x0,y0, t0), whose AODIDW values are

greater than equal to 0. In Eq. (5), AODest is the weighted average of AODIDW and weights are defined by the inverse of the

spatio-temporal variability in Section 3.2.1. Note that the inverse of the variability quantifies the accuracy and reliability of the

IDW estimate at each grid; wi implies the sum of accuracies over the neighboring region of the target point.

Estimating the Error Variance165

Our goal is to filter out grid points with high variability. Note that the spatio-temporal variability in Eq. (4) patio-temporal

variability increases as the distance between grids increases. Utilizing this relationship, we estimate spatial and temporal

variability separately through a regression model. The combined variability, denoted as σ0, at the currently considered grid

point (x0,y0, t0) is then calculated as the mean of the spatial and temporal variabilities.

Before estimating the variability, we categorize the value of AODIDW with different classes. This is because the pattern of170

spatio-temporal variability varies depending on the magnitude of AOD values (Kikuchi et al., 2018). Specifically, we categorize

AODIDW values into 6 bins of 0.1, 0.25, 0.5, 0.75, 0.9, and 1.0. Note that the previous work (Kikuchi et al., 2018) used 12

number of classes. On the other hand, we use 6 classes because certain classes are rarely observed; using 12 classes can lead

to unreliable computation.

Let σdist(x0,y0, t0) be the spatial variability and σtime(x0,y0, t0) be the temporal variability of the IDW estimate at175

(x0,y0, t0). We first compute the average of spatio-temporal variability σIDW (xi,yi, ti) by r and class. Then we regress

the averaged values obtained for each component of the vector r = (0.1°,0.2°,0.3°,0.4°) on a design matrix [1, r,r2], which

is a second-order design matrix of r for each class. Lastly, we obtain a spatial variability σdist(x0,y0, t0) from the intercept

estimate of the quadratic regression model fitting. We can obtain a temporal variability σtime(x0,y0, t0) in the similar manner.

We first compute the average of spatio-temporal variability σIDW (xi,yi, ti) by time point and class. We regress them on a180

design matrix [1, t, t2] for each class and obtain σtime(x0,y0, t0) from the intercept estimate of the quadratic regression model

fitting.

Finally, we compute the error variance by taking the average of σdist and σtime as

σ0(x0,y0, t0) =
σdist(x0,y0, t0)+σtime(x0,y0, t0)

2
. (7)

The calculated error variance contains measurement error caused by sensor noise that varies over time and space shift.185

Computing AODpure

Here, we obtain AODpure by filtering out uncertain AODIDW values. For this, we introduce the estimated error of AODpure,

which is defined as

σpure(x0,y0, t0) =


√
σ2
0(x0,y0, t0)+σ2

est(x0,y0, t0), if AODIDW (x0,y0, t0) is observed,

missing, otherwise.
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Here, σ2
est is the error variance of AODest from Eq. (6) and σ2

0 is the combined error variance from Eq. (7). To filter out190

uncertain AODIDW values, we consider an upper threshold of AODIDW as

AODpure(x0,y0, t0) =

AODIDW (x0,y0, t0), if AODIDW (x0,y0, t0)≤ AODest(x0,y0, t0)+ 2.58σpure(x0,y0, t0),

missing, otherwise.
(8)

Assuming Gaussian distribution, if AODIDW (x0,y0, t0) exceeds the upper threshold of the 99% confidence interval, we con-

sider the value is not reliable and exclude it from the mean field calculation.

Computing AODmerged195

Based on section 3.2.1, we calculate the total variability within the neighbor grids of the target grid. Then, we use the ratio of

the inverse of this total variability as weights to calculate a weighted average for AODpure, resulting in AODmerged as follows:

AODmerged(x0,y0, t0) =


n∑
i

wiAODpure(xi,yi, t0), if AODIDW (x0,y0, t0) is observed,

missing, otherwise,

(9)

where200

wi =

1
σ2
pure(xi,yi,t0)

1
σ2
merged(x0,y0,t0)

and
1

σ2
merged(x0,y0, t0)

=

n∑
i

1

σ2
pure(xi,yi, t0)

.

This merging process not only utilizes the reliable value AODpure but also incorporates the reliability σpure as a weight,

resulting in a more trustworthy gap-filling outcome. In fact, in the study by Kikuchi et al. (2018), the root mean squared error

(RMSE) of AODmerged was notably lower at 0.11 compared to the RMSE of 0.20 for AODIDW .

4 Simulation205

In this section, we conduct a simulation study to validate the choice of quality flags. The data generation procedure is summa-

rized as follows.

4.1 Generating Simulation Data

1. For our simulation study, we constructed a 70× 70 lattice over a 1× 1 square domain, with a grid spacing of 0.1°. Each

grid within this lattice represents a location in our simulated dataset. In total, the lattice comprises 4,900 grid cells,210

covering an area of 7°× 7°. Consequently, each unit grid on the lattice represents an area of 0.1°× 0.1°. We generate

each element of X ∈ R4900×2 from Unif(0,1) (i.e. the uniform distribution with support [0,1]). This means that we have

4900 locations, each containing two pieces of coordinates information: longitude and latitude. We use β1×2 = (1,1) as

a true coefficient vector.
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2. For each location, we simulate zero-mean Gaussian process W from N(0,(τM
′
QM)−1) where M is obtained by taking215

the first k eigenvectors of the Moran operator (Hughes and Haran, 2013) with smoothness parameter τ . Here, Q =

diag(A1) - A is a precision matrix calculated from the adjacency matrix, A. Note that 1 is all-ones vector.

3. We simulate AOD datasets from Y =Xβ+W ∈ R4900×2. In our simulation, Xβ represents the fixed effect, while

W ∈ R4900 account for spatial correlation in AOD products.

4. To generate missing data for the simulated Y that resemble the GEMS L2 product, we apply the observed missing pattern220

from the GEMS AOD data to the simulated Y from Step 3. Specifically, we apply the missing data pattern observed in

the GEMS AOD data for the 7° × 7° region in East Asia, with a grid spacing of 0.1°, collected on April 1st at 04:45.

This selected dataset aligns with a 70×70 lattice in our simulation and contains approximately 20% missing values,

effectively replicating the realistic missing data characteristics found in the actual GEMS AOD observations.

5. For a realistic simulation that incorporates the physical implications of quality flags, we adapt the observed quality flags225

from the GEMS AOD data to the simulated Y from Step 3. Similar to Step 4, we use the quality flag of the same data

(i.e., 7° × 7° (with a unit 0.1°) in East Asia, observed on April 1st at 04:45) for the simulated Y .

We repeat Steps 1 - 3 for 100 times to generate different realizations of Y . Then, for each simulated Y , we apply the identical

missing patterns (Step 4) and quality flags (Step 5) obtained from the real dataset. Figure 2 illustrates an example of a simulated

dataset.230
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AOD

(a) Simulated AOD values

Longitude
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ud
e NA

FALSE

TRUE

(b) Missing patterns

Figure 2. The left figure illustrates the simulated AOD dataset and the right figure shows the missing pattern (white color).

4.2 Sensitivity Analysis of q

Here, we investigate the performance of the IDW method on GEMS data by varying q in Eq. (3). Specifically, we consider

q = 0.5,1, and 1.5 in our experiment. We first examine whether there is a significant difference in IDW estimates with difference
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Figure 3. Comparison of the IDW estimates on April 1, 2023, at 7:00 am. Each figure illustrates AODIDW with q = 0.5 (left), q = 1 (middle),

and q = 2 (right).

choices of q. Figure 3 indicates that the IDW estimates are comparable with different q values. Table 4 also shows that the

summary statistics of AODIDW are quantitatively similar with different q choices. Therefore, we conclude that the IDW235

algorithm is robust to the choice of q. To simplify the calculation, we set q = 1 in our analysis.

4.3 Quality Flag Simulation

As explained in section 4.2 and Eq. (3), quality flag indicators weigh the uncertainty of the IDW algorithm. To improve the

accuracy of the IDW algorithm, it is necessary to find the optimal bit combination of the quality flag by performing simulation

studies. Therefore, we first discover bits that show substantially lower mean squared error (MSE), then combine such particular

bits into groups. Here, MSE is calculated between the simulated AOD dataset and IDW results, which is given as

1

n

n∑
i=1

(AODi − IDWi)
2

where AODi is the simulated AOD values on location i and IDWi is the IDW result on location i. Note that we refer to these

bit combinations of the quality flags as a "case." For example, we may discover bit 0,1,2 has a significantly low MSE. Then we

can create various combinations that include 0,1,2 such as 0 · 1, 0 · 2, or even 0 · 1 · 2, and each can be denoted as a particular240

"case".

Table 4. Summary statistics of AODIDW values with different q values on April 1, 2023, at 7:00 am.

Exponent (q) Mean Standard deviation Min 25% quantile Median 75% quantile Max

q = 0.5 0.6139 0.5534 0.0 0.2003 0.4895 0.8654 3.5928

q = 1 0.6121 0.5539 0.0 0.1966 0.4876 0.8642 3.5928

q = 2 0.6173 0.5524 0.0 0.2081 0.4935 0.8673 3.5928

Before finding an optimal case of the quality flag through a simulation study, we examine whether the result differs depending

on the value of r in the IDW algorithm. Note that this simulation study defines the unit of r as one unit grid, not the distance

based on coordinates as described in 3.1. After careful consideration and analysis, we have chosen to set the neighboring
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Figure 4. The left figure shows the simulated AOD values while the middle figure shows the simulated data incorporated with the missing

pattern, which can be distinguished by the gray color. The right figure illustrates the result of applying the IDW algorithm to simulated data

with r = 3.

order to 3 for our study because varying the order of neighbor did not yield any significant differences in the mean squared245

error (MSE). However, to provide a comprehensive understanding of the impact of order on the interpolation process, we

have included additional IDW results with increasing order sizes in Appendix A. These supplementary results demonstrate

that larger order sizes can potentially lead to oversmoothing. Figure 4 shows the generated AOD simulation data, where the

center figure is the data applying the missing value pattern, and the right figure is the visualization result showing the result of

applying the IDW algorithm to the data.250

We then follow the following procedure. After selecting particular bits with lower MSE than others fixed with order of 3,

we repeat the experiment to reflect diverse uncertainty term calculations by considering various cases in the IDW algorithm.

We then find the optimal case that obtains the highest accuracy after comparing the accuracies between the cases. Here, MSE

values are evaluated between the simulation and the imputed data after regarding the simulated data as real data.

To select the quality flag bit for making the combination case, we first calculate the MSE for every quality flag bit. Figure 5255

expresses the MSE value as a boxplot for every bit. Although each consecutive boxplot indicates the result of bit 0 to 15, bit 2

and bit 6 have significantly lower MSEs than others. The medians for each bit are 0.122 and 0.123, respectively. Bit 2 defines

whether SSA or AOD is out of a specific value range, while bit 6 shows the presence of clouds. We then compose six various

candidate cases, including bit 2 and bit 6. Table 5 summarized six various candidate cases.

To find the optimal quality control case that yields the lowest MSE among six candidate cases, we calculate the MSE for260

each case with two different τ , τ = 1 and τ = 6, and draw boxplots in 6. From Figure 6(a) and Figure 6(b), each case shows a

different MSE, while Case 5, which contains bit 0, 2, and 6, shows the lowest median of 0.387 in Figure 6(a). Therefore, in our

real application, we use the quality flag to Case 5 (bit 0, 2, and 6) when calculating the uncertainty term for the IDW algorithm.

We check whether the optimal case for IDW algorithm changes depending on the smoothing parameter τ of simulation data.

Figure 6(a) and Figure 6(b) show the average MSE, which is represented as a box plot as above, with different smoothing265
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Figure 5. Boxplot with interquartile range describing the IDW algorithm results on 100 repetitive simulation datasets, including bit 0 to bit

15 respectively in uncertainty metric σ(i). The boxes represent the interquartile range since they are drawn from Q1 to Q3, with a horizontal

line drawn inside to denote the median of the repeated simulations. The boundary of the lower whisker is the minimum value of the MSE. In

contrast, the boundary of the upper whisker is the maximum value of the MSE among repeated simulations. We discover that bit 2 and bit 6

have lower MSE compared to other bits.

Table 5. Six candidate cases for selecting quality flag with the combinations of bit 0, 2, and 6.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Bits All 0 2 6 0,2,6 Nothing

parameters. We discover that the overall magnitude of the MSE value remains different, but the hierarchy of the MSEs across

the cases is unchanged. It implies that the algorithm’s performance is robust regardless of the smoothing parameter.
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Figure 6. The left figure shows the simulation results with τ = 1 while the right figure shows the results with τ = 6. Despite the value of

smoothing parameter τ , we discover that the hierarchy of the MSE values between the cases are identical.

5 GEMS Data Application

5.1 Spatial Resolution of Output Product

A geostationary satellite instrument such as GEMS observes a fixed position. Therefore, if we use grids that are too small, the270

output will have many missing values; an appropriate grid size should be selected in terms of the coverage of the mean fields.

Furthermore, we need to consider effective range, accuracy, and computation time to obtain mean fields when we choose a grid

size. If we use too fine spatial resolution, computational cost will be exponentially increased. On the other hand, grid sizes that

are too large can lead to inaccurate output results. Accordingly, in our study, we set the mean field spatial resolution as 0.1° ×

0.1° and 0.05° × 0.05° longitude-latitude grid for the East Asia and Korean Peninsula region, respectively.275

5.2 Level 2 Aerosol Optical Depth Data

As evidenced by various studies (Kaufman et al., 2005; Loeb and Manalo-Smith, 2005; Matheson et al., 2005), AOD exhibits

a positive correlation with Cloud Fraction (CF), implying that proximity to clouds can result in a statistical increase in AOD

measurements. Additionally, a dependency of AOD on solar and viewing zenith angles was observed (de Miguel et al., 2011),

highlighting the complexities involved in accurate AOD estimation under varied atmospheric conditions. To address these com-280

plexities, this study involved masking data based on three variables given below. Cloud radiance fraction is incorporated within

GEMS L2 cloud product, and the others are incorporated within GEMS AOD L2 product. These variables are meticulously

designed to account for variability and uncertainties in satellite data (Choi et al., 2020), addressing factors such as solar and
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viewing zenith angles, and cloud radiance fraction. This methodology ensures a more precise and reliable estimation of AOD,

which is crucial in understanding atmospheric dynamics and environmental monitoring. The unreliable values are treated as285

missing values when we apply the IDW algorithm.

– cloud radiance fraction ≥ 0.4,

– solar zenith angle ≥ 70 degrees, and

– viewing zenith angle ≥ 70 degrees

In our study, we set two spatial domains of the mean field outputs, one with latitude (30° N-43° N) and longitude (123°290

E-131° E) corresponding to the vicinity of the Korean Peninsula and the other with latitude (32° N-43° N) and longitude (115°

E-131° E) including the vicinity of the Shandong Peninsula in China.

5.3 Mean Field Estimates of GEMS AOD L3 Product

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure 7. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 354 nm. Missing ratio : (a) 0.5031,

(b) 0.5733.

Figures 7 and 8 compare the spatio-temporal merged products with the simply averaged products. For spatio-temporal

merged AOD L3 products, we apply the procedure described in Section 3. On the other hand, we take a mean of the IDW295

estimates for simply averaged AOD L3 products. As mentioned in Kikuchi et al. (2018), grid points with AOD values exceeding

1.0 are extremely rare. Therefore, to focus on the majority of values for detailed characterization, we set the threshold at 1.0. In

Figure 7, we observe that more missing values occur in the area of latitude (20° N-30° N) and longitude (130° E-140° E) for the

spatio-temporally merged products compared to the simply averaged products. It can also be checked by the ratio of missing
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(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure 8. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 354 nm. Missing ratio : (a) 0.1485,

(b) 0.1489.

values for each product given in each figure. This is due to the fact that a spatio-temporal merging procedure only considers300

reliable AOD estimates, while a simple averaging method does not. Therefore, the simply averaged products can be regarded

as more unreliable, though they have less number of missing values. In Figure 7, we also observe that the spatio-temporal

merging method can provide smoother mean field outputs; for example, there is a significant difference in the area of latitude

(35° N-45° N) and longitude (125° E-135° E). Similar trends are also observed in Figure 8. Mean field estimates at all three

wavelengths for East Asia and Korea are provided in Appendix B and C, respectively.305

As we described in Section 3, we obtain AODpure from AODest by considering both the spatio-temporal variability σ0 and the

estimation uncertainty σest. This procedure allows us to obtain more reliable AOD estimates. Furthermore, we can use more

robust AOD estimates when we compute the mean field, resulting in smoother output.

5.4 Qualitative Evaluation for the Mean Field Products

Direct evaluation of the accuracy of the AOD L3 mean field products is challenging because there are no true values for the310

products. Therefore, we compare our results with previous studies with qualitative aspects.

In Figure 9 (a), we observe that our mean field products at 550 nm wavelength on April 1 are similar to the springtime global

distribution of AOD at the same wavelength. Furthermore, high values are observed near the Taklamakan Desert due to dust

and also observed in Southeast Asia during spring due to biomass burning. This indicates that the computed mean fields can

effectively capture real-world phenomena. In addition, we observe that overall trends of AOD values are similar to that from315

Moderate Resolution Imaging Spectroradiometer (MODIS) data (Tian et al., 2023), though there are some discrepancies in the

vicinity of the Taklamakan Desert and certain areas in Southeast Asia.
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(a) Daily Mean Field Output on April 1, 2023. (b) Monthly Mean Field Output on April 1, 2023.

Figure 9. Mean-field estimates of GEMS AOD L3 product on April 1, 2023 at the wavelength of 550 nm.

5.5 Quantitative Evaluation for the Mean Field Products

To measure the smoothness of mean field products, we compute the second-order gradients of the AOD estimates from longi-

tude and latitude. Specifically, we compute gradients at each pixel point from its neighboring AOD values following previous320

studies (Fornberg, 1988; Quarteroni et al., 2007; Durran, 1999). Then, we compare the absolute mean of the gradients from the

simple and spatio-temporal averaging methods. Table 6 indicates that gradients from both directions are smaller in the spatio-

temporally merging method. Considering that AOD exhibits significant spatio-temporal variability, our method can provide

more realistic mean field products than the simple averaging method.

Table 6. Comparison of gradients between merging algorithms

Axis Simply Averaged Mean Field Spatio-temporal Merged Mean field

Longitude 0.00481 0.00416

Latitude 0.00488 0.00424

Both 0.00783 0.00685

6 Conclusions325

In remote sensing, data have been processed to different levels. For example, the L2 dataset, which contains atmospheric state

retrievals, is converted to the L3 dataset. Specifically, we focus on AOD retrievals from the GEMS instrument through gap
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filling and noise filtering. We improve the quality of L3 AOD mean field products by considering quality flag information and

spatio-temporal variability (Kikuchi et al., 2018). Specifically, the contribution of our work is summarized as follows.

First, we improve the performance of the IDW algorithm by including quality flag information in the weight calculation.330

We assign weights inversely proportional to the number of poor quality indicators. To validate the choice of different quality

flags, we conduct simulation studies. We observe that including bits 0, 2, and 6 from the quality flags significantly improves the

accuracy of the IDW algorithm. We apply this novel approach to GEMS AOD data covering various regions and wavelengths.

Second, we apply spatio-temporal merging method (Kikuchi et al., 2018) to GEMS AOD data. Compared to the previous

work (Park et al., 2023) that only considers spatial variability, our method can also account for temporal variability from the335

previous time points. We observe that our mean field products show a similar trend to the previous studies, indicating that the

products are reliable.

Although our current study has made notable progress in enhancing the accuracy of AOD mean field estimation, several

avenues for future research remain open. One potential direction involves integrating additional data, such as cloud information

and the distinction between oceanic and terrestrial regions, which could further refine our results by considering the impact340

of cloud cover on aerosol retrievals. Our method can account for variability due to cloud contamination by utilizing quality

flag information in the IDW estimates. Note that we cannot use physical mechanisms (e.g., aerosols produced from a wildfire)

in the interpolation step due to the limited data sources. Developing extensions of our approach by incorporating physical

mechanisms may provide interesting future research avenues. Additionally, with the available information on quality flags,

one direction for future work is to develop methodologies for adaptively weighting or selecting quality flag bits by employing345

statistical variable selection methodologies. Validating our AOD mean field products against ground-based measurements or

other satellite datasets could also offer valuable insights into their reliability and consistency, thereby helping to identify any

potential biases or uncertainties. Lastly, sensitivity analysis for the choice of hyperparameters (e.g., order of neighboring grids,

time windows) would be useful to improve the performance of the method.

Data availability. The GEMS Level 2 products are available at https://nesc.nier.go.kr/ko/html/index.do (last access: 28 February 2024)350

Appendix A: Sensitivity Analysis for the Raidus of the IDW Algorithm

We compare the IDW algorithm application result varying the order of neighboring grids used for weighted average. We

find a remarkable difference in the imputed area viewed in the visualization as fewer missing values remain when the order

9 compared to the order 3. However, each MSE value is 0.255 and 0.25, respectively, showing no significant difference in

numbers. Even with a negligible difference between the two window sizes, we determined that the window size should be 3355

since order of 9 could cause oversmoothing.
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Figure A1. The left figure shows the simulated AOD values while the middle figure shows the simulated data incorporated with the missing

pattern, which can be distinguished by the gray color. The right figure illustrates the result of applying the IDW algorithm to simulated data

with order 9.

Appendix B: Mean Field Estimates of GEMS AOD L3 Product for East Asia

In this section, we include daily and monthly mean-field estimates of GEMS AOD L3 products at all three wavelengths for

East Asia.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure B1. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 354 nm. Missing ratio : (a) 0.5031,

(b) 0.5733.
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(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure B2. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 443 nm. Missing ratio : (a) 0.5000,

(b) 0.5710.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure B3. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 550 nm. Missing ratio : (a) 0.4908,

(b) 0.5619.
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(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure B4. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 354 nm. Missing ratio : (a) 0.1485,

(b) 0.1489.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure B5. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 443 nm. Missing ratio : (a) 0.1490,

(b) 0.1494.
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(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure B6. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 550 nm. Missing ratio : (a) 0.1483,

(b) 0.1487.
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Appendix C: Mean Field Estimates of GEMS AOD L3 Product for Korea360

In this section, we include daily and monthly mean-field estimates of GEMS AOD L3 products for three wavelengths for Korea.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure C1. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 354 nm. Missing ratio : (a) 0.0263,

(b) 0.0386.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure C2. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 443 nm. Missing ratio : (a) 0.0255,

(b) 0.0406.

23



(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure C3. Daily mean-field estimates of GEMS AOD L3 product on April 1, 2023, at the wavelength of 550 nm. Missing ratio : (a) 0.0194,

(b) 0.0309.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure C4. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 354 nm. Missing ratio : (a) 0.0,

(b) 0.0.
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(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure C5. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 443 nm. Missing ratio : (a) 0.0,

(b) 0.0.

(a) Simply averaged output. (b) Spatio-temporally merged output.

Figure C6. Monthly mean-field estimates of GEMS AOD L3 product in April, 2023, at the wavelength of 550 nm. Missing ratio : (a) 0.0,

(b) 0.0.
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