Supplementary Figures

Distinct seasonal changes and precession forcing of surface and subsurface temperatures in the mid-latitudinal North Atlantic during the onset of the Late Pliocene

Xiaolei Pang1,2, Antje H. L. Voelker3,4, Sihua Lu5, Xuan Ding6

1Institute of Ocean Research, Peking University, Beijing, 100871, China
2School of Earth and Spaces Sciences, Peking University, Beijing, 100871, China
3Instituto Português do Mar e da Atmosfera, Divisão de Geologia e Georecursos Marinhos, Av. Doutor Alfredo Magalhães Ramalho 6, 1495-165 Alges, Portugal
4Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, Edf. 7, 8005-139 Faro, Portugal
5State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
6School of Ocean Sciences, China University of Geosciences (Beijing), Beijing, 100083, China

Correspondence to: Xiaolei Pang (xiaolei.pang@pku.edu.cn)
Figure S1. Site U1313 downcore Mg/Ca in comparison with Mn/Ca of species *G. ruber* white (a) and *G. hirsuta* (b). No corresponding anomalies were found.

Figure S2. Scatter plots of Mg/Ca versus Mn/Ca for species *G. ruber* white (a) and *G. hirsuta* (b). Black line indicates the best linear fit, respectively. No significant relationship between Mg/Ca and Mn/Ca is observed for either species.
Figure S3. The upper panel displays the comparison between original *G. ruber* Mg/Ca ratios (black) and the Mg/Ca ratios (red) corrected for the secular changes in the seawater of Mg/Ca (Mg/Ca$_{sw}$), dashed line indicate the core top *G. ruber* Mg/Ca ratios from nearby core SU90-03. The lower panel shows the corresponding Mg/Ca-based SST records derived from the both original and corrected Mg/Ca ratios. The dashed line represents the modern summer SST of 23 °C at Site U1313.