- 1 Supplemental Information for
- 2 Using observed urban NO_x sinks to constrain VOC reactivity and the ozone and radical
- 3 budget in the Seoul Metropolitan Area
- 4 Benjamin A. Nault^{1,2,*}, Katherine R. Travis³, James H. Crawford³, Donald R. Blake⁴, Pedro
- 5 Campuzano-Jost⁵, Ronald C. Cohen⁶, Joshua P. DiGangi³, Glenn S. Diskin³, Samuel R. Hall⁷, L.
- 6 Gregory Huey⁸, Jose L. Jimenez⁵, Kyung-Eun Kim⁹, Youngro Lee^{8,a}, Isobel J. Simpson⁴, Kirk
- 7 Ullmann⁷, Armin Wisthaler^{10,11}
- 8 ¹CACC, Aerodyne Research, Inc., Billerica, MA, USA
- 9 ²Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore,
- 10 MD, USA
- ³NASA Langley Research Center, Hampton, VA, USA
- ⁴Department of Chemistry, University of California, Irvine, CA, USA
- 13 ⁵CIRES and Department of Chemistry, University of Colorado, Boulder, CO, USA
- ⁶Department of Chemistry, University of California, Berkeley, CA, USA
- ⁷Atmospheric Chemistry Observations & Modeling Laboratory, NCAR, Boulder, CO, USA
- 16 ⁸School of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- 17 ⁹School of Environmental Sciences and Environmental Engineering, Gwangju Institute of Science
- and Technology, Gwangju, South Korea
- 19 ¹⁰University of Oslo, Oslo, Norway
- 20 ¹¹University of Innsbruck, Innsbruck, Austria
- ^aNow at Division of Geological and Planetary Sciences, California Institute of Technology,
- 23 Pasadena, CA, USA
- 25 *Corresponding author:
- 27 Email: bnault@aerodyne.com or bnault1@jh.edu
- 29 For ACP

24

S1. Analytical Equation for $P(O_x)$

- The analytical description of $P(O_x)$ and impacts from ΣANs chemistry has been described elsewhere (Farmer et al., 2011 and references therein). Briefly, $P(O_x)$ can be described by combining the following equations (Eq. S1 S8). These equations are assumed to describe $P(O_x)$ for a single time during the day and is derived from the assumption that the HO_x radicals (HO_x = $OH + HO_2 + RO_2$) are in photostationary steady-state. The steady-state assumption for HO_x means production and loss are equal.
- 37 $P(HO_x) = L(HO_x) = k_{OH+NO_2}[OH][NO_2] + \alpha k_{NO+RO_2}[NO][RO_2] +$

$$38 2k_{HO_2+HO_2}[HO_2][HO_2] + 2k_{RO_2+HO_2}[HO_2][RO_2] + 2k_{RO_2+RO_2}[RO_2][RO_2] (Eq. S1)$$

- As described elsewhere, under the assumption of rapid $P(O_x)$ and thus radical chain propagation
- dominates, every RO₂ that is produced by the photooxidation of a VOC by OH will react with an
- NO molecule (R2, Sect. 1), and some fraction of the time (e.g., 1α , the effective branching ratio),
- 42 produce HO₂ following the reaction of the alkoxy radical (RO) with O₂. Therefore, it is assumed
- 43 that,

30

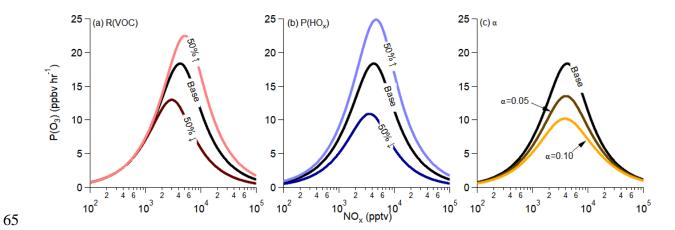
44
$$[HO_2] \approx [RO_2] \approx \frac{k_{OH+VOC}[VOC][OH]}{(1-\alpha)k_{NO+RO_2}[NO]}$$
 (Eq. S2)

- 45 Combining Eq. S1 and S2 together with an assumed P(HO_x), [OH] can be calculated using the
- 46 quadratic formula:

$$[OH_{calc}] = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 (Eq. S3)

48 where

49
$$a = (2k_{HO_2 + HO_2} + 2k_{RO_2 + HO_2} + 2k_{RO_2 + RO_2})(\frac{k_{OH + VOC}[VOC]}{(1 - \alpha)k_{NO + RO_2}[NO]})^2$$
 (Eq. S4)


50
$$b = k_{OH+NO_2}[NO_2] + \frac{\alpha k_{NO+RO_2}}{(1-\alpha)k_{NO+RO_2}}$$
 (Eq. S5)

$$c = -P(HO_x)$$
 (Eq. S6)

- In the above equations, k is the rate constant for the described reaction in the subtext (e.g., HO₂ +
- HO₂), the term k_{OH+VOC}[VOC] can be simplified to the VOC reactivity (R(VOC), s⁻¹) for the
- ambient mixture of VOCs, α is the effective branching ratio for the ambient mixture of VOCs, and
- P(HO_x) is the HO_x production rate for the ambient mixture of gases. The rate constants for the two
- HO_x self-reactions, HO₂ $(k_{HO_2+HO_2})$ and RO₂ $(k_{RO_2+RO_2})$, and the HO₂-RO₂ reaction $(k_{HO_2+RO_2})$
- were taken from Sander et al. (2011) for temperatures at 298 K and are 1.4×10^{-12} , 6.8×10^{-14} , and
- 8×10^{-12} cm³ molec.⁻¹ s⁻¹, respectively. The OH and NO₂ rate constant is also from Sander et al.
- 59 (2011) for temperatures at 298 K and is 1.2×10⁻¹¹ cm³ molec. -1 s⁻¹. For the base case used here,
- P(HO_x) is assumed to be 1×10^7 molec. cm⁻³ s⁻¹, α is 0, and R(VOC) (k_{OH+VOC}[VOC]) is 5.00 s⁻¹.
- Finally, the instantaneous $P(O_x)$ can be approximated as

62
$$P(O_x) = k_{HO_2+NO}[HO_2][NO] + (1 - \alpha)k_{RO_2+NO}[RO_2][NO]$$
 (Eq. S7)

63
$$P(O_x) = 2(1 - \alpha)k_{OH+VOC}[VOC][OH_{Calc}]$$
 (Eq. S8)

Figure S1. Example analytical solutions to instantaneous $P(O_x)$, assuming different scenarios with changes in total VOC reactivity (R(VOC)) (a), changes in HO_x radical production (P(HO_x)) (b), or changes in the alkyl and multi-functional nitrate effective branching ratio (α) (c). See Sect. S1 and Eq. S1 – S8 for the analytical equations.

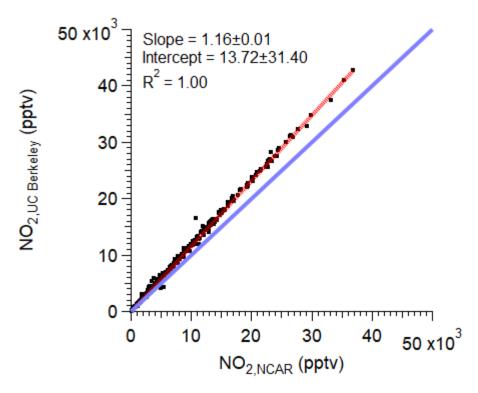
Table S1. Measured VOCs and their associated MCMv3.3.1 species in F0AM.

MCMv3.3.1 species	Aircraft observation		
СН3СНО	Acetaldehyde (PTRMS)		
СН3СОСН3	Acetone (PTRMS)		
BENZENE	Benzene (PTRMS)		
TOLUENE	Toluene (PTRMS)		
MXYL	C8 alkylbenzenes (PTRMS)*20% ^{1,2}		
PXYLE	C8 alkylbenzenes (PTRMS)*20% ^{1,2}		
OXYLE	C8 alkylbenzenes (PTRMS)*17% ¹		
STYRENE	C8 alkylbenzenes (PTRMS)*2% ¹		
EBENZ	C8 alkylbenzenes (PTRMS)*41% ¹		
C2H4	Ethene (WAS)		
C2H2	Ethyne (WAS)		
C2H6	Ethane (WAS)		
C5H8	Isoprene (WAS)		
IC4H10	i-Butane (WAS)		
NC4H10	n-Butane (WAS)		
IC5H12	i-Pentane (WAS)		
NC5H12	n-Pentane (WAS)		
PBENZ	i-Propylbenzene + n-Propylbenzene (WAS)		
MEK	MEK (PTRMS)		
СНЗОН	Methanol (PTRMS)		
С2Н5ОН	Methanol/2.5 ³		
NC7H16	n-Heptane (WAS)		
NC10H22	n-Decane (WAS)		
NC6H14	n-Hexane (WAS)		
NC8H18	n-Octane (WAS)		
C3H8	Propane (WAS)		
C3H6	Propene (WAS)		
C4H6	1,3-Butadiene (WAS)		
OETHTOL	2-Ethytoluene (WAS)		
METHTOL	3-Ethyltoluene (WAS)		
PETHTOL	4-Ethytoluene (WAS)		
TM123B	1,2,3-Trimethylbenzene (WAS)		
TM124B	1,2,4-Trimethylbenzene (WAS)		
TM135B	1,3,5-Trimethylbenzene (WAS)		
BPINENE	Monoterpenes (PTRMS)*0.45 ¹		
APINENE	Monoterpenes (PTRMS)*0.55 ¹		

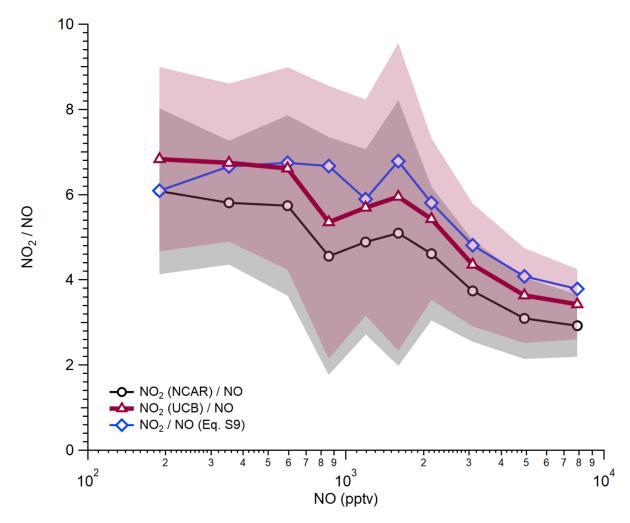
¹Speciated based on WAS measurements. ²Assume 50/50 split m-xylene vs. p-xylene. ³According to Schroeder et al. (2020)

⁷¹ 72 73

Table S2. The higher PNs lumping based on their primary precursor species from F0AM.


Lumped PN	Primary Precursors	Largest PN in MCMv3.3.1	
	Aromatics: benzene, toluene,	ACCOMEPAN	
Arom	xylenes, ethylbenzene,		
	propylbenzene, ethyltoluene,		
	trimethylbenzenes, styrene		
Alk	MEK, butane, pentane,	C3PAN1	
	decane, etc.		
Isop	Isoprene	CO2C3PAN	
Monoterpenes	Monoterpenes	C3PAN2	

S2. Comparison of NO₂ Measurements


There were three different measurements of NO_2 on the DC-8 during KORUS-AQ: (1) by chemiluminescence (Weinheimer et al., 1994), (2) by laser induced fluorescence (Thornton et al., 2000), and (3) by cavity enhanced absorption spectroscopy (Min et al., 2016). Here, only chemiluminescence and laser induced fluorescence are considered. Comparison of the NO_2 mixing ratios by these two measurements are shown in Figure S2. Though the correlation is high ($R^2 = 1.00$), the laser induced fluorescence NO_2 is ~16% higher than the chemiluminescence NO_2 . To determine which NO_2 to use for the study, the NO_2 -to-NO ratio was compared, as this ratio can be calculated with the observations on the DC-8. This ratio is defined by Eq. S9:

85
$$\frac{[\text{NO}_2]}{[\text{NO}]} = \frac{k_{NO+O_3}[\text{O}_3] + k_{NO+HO_2}[\text{HO}_2] + k_{NO+RO_2}[\text{RO}_2]}{j_{NO_2}}$$
(Eq. S9)

Note, though steady-state RO₂ is used throughout the paper and can provide some uncertainty in the calculated NO₂-to-NO ratio in Eq. S9, at high NO mixing ratios where both HO₂ and RO₂ concentrations are low, the O₃ + NO reaction dominates the term. It was found that the NO₂-to-NO ratio using the University of California, Berkeley, NO₂ generally agreed better with the calculated NO₂-to-NO ratio from Eq. S9. However, both NO₂-to-NO ratios 1σ spread of observations overlap with the calculated NO₂-to-NO ratio from Eq. S9. Thus, the University of California, Berkeley, NO₂ measurements are used throughout the manuscript. The use of the NCAR NO₂ had small changes but does not change the main conclusions and trends discussed throughout the paper.

Figure S2. Scatter plot of the NO₂ measured by University of California, Berkeley, laser induced fluorescence and the NCAR chemiluminescence. The one-to-one line is shown in blue and the ODR fit for the data is shown in red.

Figure S3. Binned NO₂-to-NO ratio, where NO is from NCAR chemiluminescence and NO₂ is either from NO₂ chemiluminescence (black) or University of California, Berkeley, laser induced fluorescence (dark red), versus NO. Shading is $\pm 1\sigma$ spread in the observations for both observed ratios. The NO₂-to-NO ratio in blue is calculated using observations (Table 2) and Eq. S9.

S3. Error Analysis in Calculation of α_{eff} and R(VOC)

In Sect. 3.3, Eq. 8 – 11 assumes that $L(O_x)$ and $L(\sum ANs)$ is negligible. However, $L(O_x)$ is approximately 25% of the $P(O_x)$ over SMA (e.g., Figure 6). An analysis of how much unmeasured R(VOC) and the α_{eff} is impacted by neglecting these two terms is calculated using Eq. S9.

$$\frac{\Delta O_x}{\Delta \Sigma ANs} \approx \frac{P_{O_x}}{P\Sigma ANs} = \frac{\gamma (1-\alpha)R(VOC)[OH] - L(O_x)}{\alpha R(VOC)[OH] - L(\Sigma ANs)}$$
(Eq. S9)

Here, γ is the effective O_x produced per VOC reacted (1.53), α is the effective branching ratio to form Σ ANs, R(VOC) is the VOC and CO reactivity, and L_{Ox} and $L_{\Sigma}ANs$ are the loss terms for O_x and Σ ANs.

One limit in these equations is if $L(\sum ANs)$ is near 0 and $L(O_x)$ is important. At this limit, assuming all R(VOC) is captured by observations, this would lead to an α_{eff} of ~ 0.02 . This is equivalent to the calculated α_{eff} using the observed VOCs and calculated secondary VOCs from F0AM and would indicate no missing R(VOCs).

However, there are multiple reasons to assume this limit in that $L(\sum ANs)$ is 0 is incorrect and that the observations do not capture α_{eff} and R(VOC). First, the total OH reactivity measured by Penn State indicates missing reactivity at low NO_x mixing ratios, as discussed in Sect. 3.3 and shown in Fig. 4. Second, the comparison of speciated and measured $\sum PNs$ as well as the comparison of the F0AM calculated and measured $\sum PNs$ indicates missing R(VOC) to account for the unmeasured PNs, as discussed in Sect. 3.1 and 3.4 and Fig. 2 and 5. Finally, González-Sánchez et al. (2023) showed that even for long-lived ANs, the lifetime is ~50 hours. However, for multifunctional ANs, this lifetime drops down to 2-16 hours. Note, however these multifunctional ANs are mainly from biogenic VOCs and not anthropogenic VOCs. Yet, as predicted in MCM (Jenkin et al., 2015), ANs from anthropogenic VOCs are expected to have similar lifetimes as ANs from biogenic VOCs.

To investigate the role of $L(\Sigma ANs)$ and $L(O_x)$ on unmeasured R(VOC) and α , Eq. S9 instead of Eq. 11 is used. The results are summarized in Figure S4. If the ANs lifetime of 16 hours is assumed, which may be a lower limit, the average unmeasured R(VOC) decreases from 1. $7^{+1.1}_{-0.4}$ s⁻¹ ¹ to 1.4 s⁻¹, and the unmeasured α would be 0.09, leading to an $\alpha_{\rm eff}$ of 0.032. Note, both of these values are very close to the values calculated assuming losses were negligible. For the unmeasured R(VOC) and α shown in Fig. 4, the Σ ANs lifetime would be equivalent to 11.5 hrs. This is in the range of lifetime for multifunctional ANs, but a lower limit (González-Sánchez et al., 2023). If the typical ANs lifetime shown in González-Sánchez et al. (2023), ~6 hrs, is assumed, the average unmeasured RVOC increases from 1.7 $^{+1.1}_{-0.4}$ s⁻¹ to 2.2 s⁻¹. This would lead to an α_{eff} of 0.045. Note this is still with the uncertainty of R(VOC) found with the Penn State observations at low NO_x. Thus, though uncertainty in both Σ ANs lifetime and the unmeasured α impact the calculated unmeasured RVOC, (a) inclusion of the loss terms of both O_x and Σ ANs lies within the spread in observed RVOC at low NO_x mixing ratios and the associated calculated RVOC assuming the loss terms were negligible, (b) if the $L(O_x)$ term is considered, the $L(\sum ANs)$ term must also be included as it is non-negligible in environments with freshly-produced, multifunctional ANs.

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

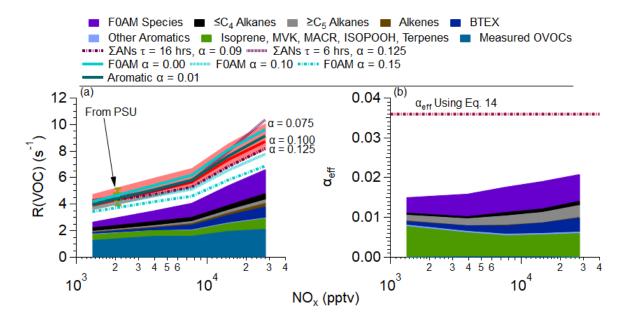
143

144

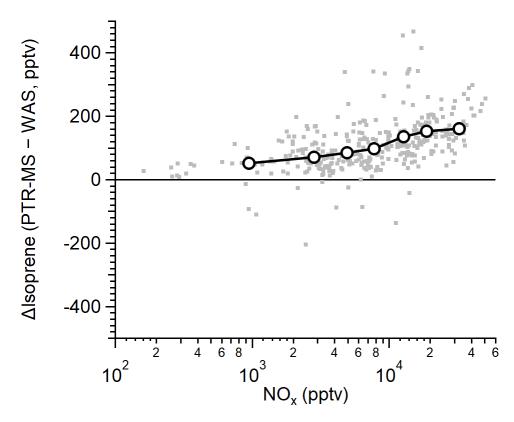
145

146

147


148

149


There are two potential other sources of uncertainty in the calculated, unmeasured RVOC—(1) assumed α for the F0AM secondary species and (2) α for aromatics. First, for α ranging from 0.00-0.10 for F0AM species, the unmeasured RVOC falls within the spread of observations and calculated unmeasured RVOC assuming F0AM α is 0.05. Thus, the calculated unmeasured is insensitive to the F0AM α until the F0AM α is greater than 0.10. Though the α values for secondary, oxygenated species is unconstrained (Orlando and Tyndall, 2012), α being greater than 0.10 is currently unexpected with what is currently known about chemistry of these secondary species. Second, the α for aromatic compounds was changed from the values found in

MCM (Jenkin et al., 2015) and Perring et al. (2013) to all being 0.01. This is due to recent a recent study finding that α is potentially lower for aromatic compounds (Xu et al., 2020). Even with this low α value for the aromatics, the average unmeasured RVOC is not greatly impacted, increasing from 1.7 to 1.8 s⁻¹. This is due to the aromatics accounting for a small fraction of the total α and Σ ANs.

Thus, though there are numerous assumptions and sources of uncertainty associated with constraining the unmeasured RVOC with the observations, the overall results of, on average, 1.7 s⁻¹ unmeasured RVOC is robust. As these various sensitivity investigations minimally impact the calculated unmeasured RVOCs using the assumptions in the main text, the unmeasured RVOCs associated with $\alpha = 0.10$ and assuming the loss terms are negligible are used.

Figure S4. Same as Figure 4, but with the sensitivities discussed in Sect. S3, including inclusion of O_x and ANs loss terms, range of α for F0AM secondary species, and lowering the aromatic α value.

Figure S5. The difference in the isoprene mixing ratio measured by University of Oslo PTR-MS and University of California, Irvine WAS, versus the observed NO_x. All data are shown in grey and equally sized bins are shown in black for observations collected over the SMA.

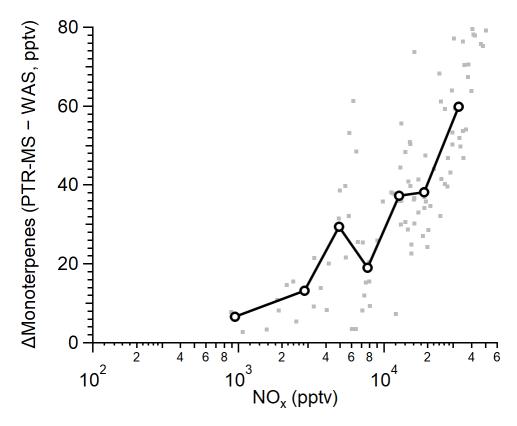
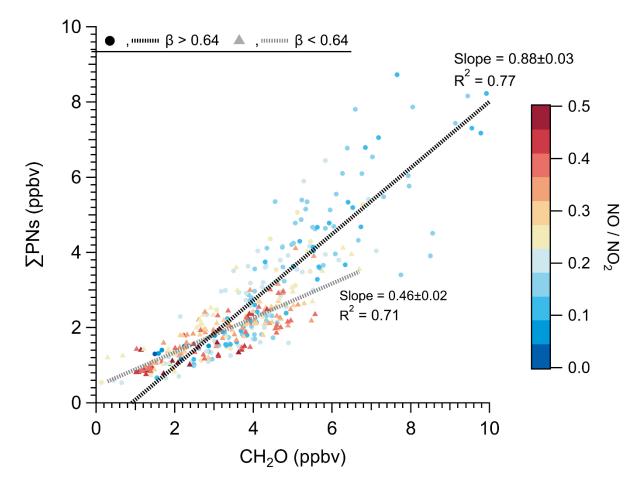
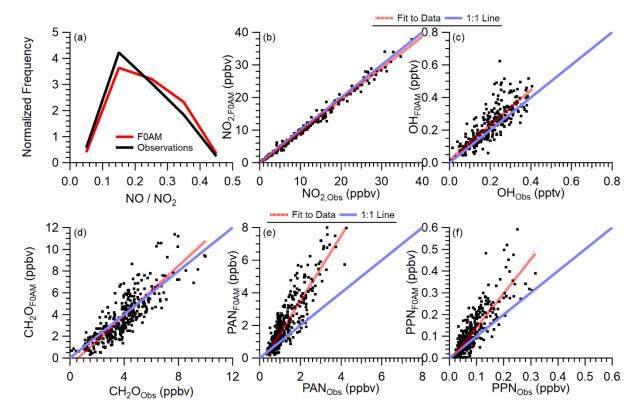




Figure S6. Same as Figure S5, but for monoterpenes. Lower amount of data is associated with the measurements being below detection limit for WAS.

Figure S7. Same as Figure 3b, but with the data colored by the NO-to-NO₂ ratio. Further, the fits are differentiated between the β value, where β value describes the fraction of time an acyl peroxy radical (R(O)O₂) reacts with NO₂ versus NO. The β is equal to $(k_{R(O)O2+NO2}[NO_2])/(k_{R(O)O2+NO2}[NO_2]+k_{R(O)O2+NO2}[NO])$.

Figure S8. Evaluation of the F0AM model performance versus gases measured on DC-8 over the SMA and not used to constrain the model. (a) Normalized frequency of the NO-to-NO₂ ratio predicted by F0AM and measured (NCAR NO and UC Berkeley NO₂). (b) Scatter plot of F0AM predicted NO₂ versus observed NO₂ from UC Berkeley. (c) Scatter plot of F0AM predicted OH versus Penn State observed OH. (d) Scatter plot of F0AM predicted CH₂O versus CAMS observed CH₂O. (e) Scatter plot of F0AM predicted PAN versus GT-CIMS observed PAN. (f) Scatter plot of F0AM predicted PPN versus GT-CIMS observed PPN.

S4. Sensitivity in F0AM Results with Missing R(VOC)

184

185

186

187

188

189

190

191

192

193

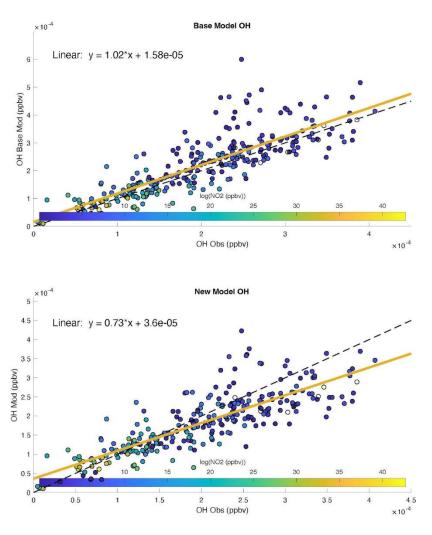
194

195

196

197

198


199

200

201

202

We add to the model a test of whether the estimated additional OH reactivity of $\sim 1.7 \text{ s}^{-1}$ would degrade model performance in simulating formaldehyde or OH. We add approximately 800 pptv of C₄H₉CHO (pentanal), on average, as a proxy for unmeasured aldehydes, such as octanal, nonanal, decanal, etc. The concentration of pentanal varies according to the calculated missing OH reactivity. The average OH reactivity from this species is ~0.5 s⁻¹. Total OH reactivity goes up by 1.2 s⁻¹ after including all the products produced from the oxidation of pentanal. Therefore, the added primary species (pentanal) results in over twice as much reactivity from secondary oxidation products. The largest secondary oxidation products are smaller aldehydes (HOC₃H₆CHO, HOC₂H₄CHO, C₃H₇CHO), which have OH reactivity of 0.1 to 0.2 s⁻¹ each. With the inclusion of $\sim 0.5 \text{ s}^{-1}$ pentanal to F0AM as a surrogate for missing R(VOC), OH is reduced by $\sim 25\%$ compared to the base model (Figure S9). We attribute this OH reduction to the build-up of the peroxynitrate (C₅H₉NO₅) from pentanal to approximately 500 pptv. This pentanal peroxynitrate is likely overestimated given the rapid exposure of PN species to warmer temperatures through mixing, as discussed by Crawford et al. (2021). Model formaldehyde change with the inclusion of ~0.5 s⁻¹ pentanal to F0AM by < 5% (Figure S10). This is attributed to the balance of increased production of formaldehyde and RO₂ to convert NO to NO₂ by pentanal, but the decreased OH which then reduces production/conversion.

Figure S9. Comparison of F0AM predicted OH versus observed OH for the base F0AM model (top) and sensitivity F0AM model that included $\sim 0.5 \text{ s}^{-1}$ pentanal to account for missing R(VOC). The values are colored by observed NO₂ (note, the scale is in logarithmic scale).

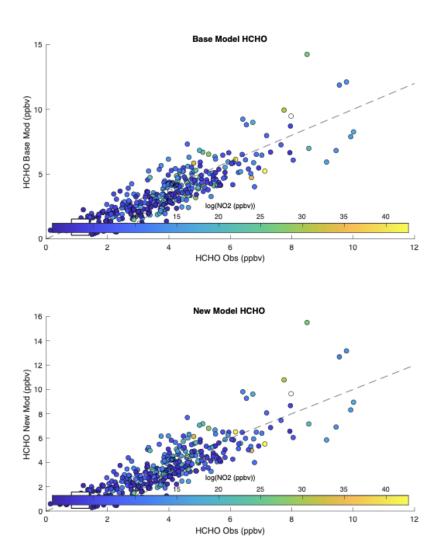


Figure S10. Same as Figure S9, except for formaldehyde.

S4. Aerosol Contamination of the CAFS Downwelling Optic

During KORUS-AQ ambient aerosols deposits were regularly evident on all leading edges of the aircraft, particularly during low altitude spirals near Seoul. The deposits collected on the leading edge of the downwelling CAFS optic (Figure S9), resulting in optical reductions in the actinic flux of up to 20%. The precise reductions depended on the aerosol coating efficiency and cleaning by precipitation. The optic was centered above the DC-8 fuselage in the zenith 1 port, just aft of the forward cabin exit door. The upwelling optic was unaffected, likely due to the larger aircraft boundary layer near its location under the aft fuselage.

Extensive analysis was required to correct the downwelling data. This involved identification of contaminated periods, characterization of the angular impact, optical thickness and time evolution. Corrections were applied to the direct beam only. Corrections to diffuse light were estimated to be small (<3%) and the corrective skill insufficient for application to the data. Such aerosol coating had not been detected during numerous high aerosol encounters on previous campaigns. They appear to result from unprecedented aerosol combinations in the SMA.

The final CAFS dataset includes a flagging scheme (Table S3) to tag the contaminated periods. For any quality flag > 0 the photolysis frequency uncertainties should be increased by 20% to account for the low bias during contamination. For quality flag 0 the uncertainty should be conservatively increased by 10% due to the uncertainty in the aerosol cleaning efficiency during the remainder of the flights.

Table S3. CAFS data quality flag summary

Quality	Aerosol deposit	Direct Beam	Correction	Correction
Flag	Contamination?	Impacted?	Applied?	Source
0	No	No	No	-
1	Yes	No	No	-
2	Yes	Yes	Yes	Current spiral
3	Yes	Yes	Yes	Nearest spiral and turns
4	Yes	Unknown	No	Insufficient spiral data

Figure S11. Strong aerosol contamination of the optic following the flight on 19 May, 2016.

237 References

- Crawford, J. H., Ahn, J. Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim, J., Lee, G., Park, J. H.,
- 239 Park, R. J., Woo, J. H., Song, C. K., Hong, J. H., Hong, Y. D., Lefer, B. L., Lee, M., Lee, T., Kim,
- 240 S., Min, K. E., Yum, S. S., Shin, H. J., Kim, Y. W., Choi, J. S., Park, J. S., Szykman, J. J., Long,
- 241 R. W., Jordan, C. E., Simpson, I. J., Fried, A., Dibb, J. E., Cho, S. Y., and Kim, Y. P.: The Korea-
- 242 United States air quality (KORUS-AQ) field study, Elementa, 9, 1-27,
- 243 https://doi.org/10.1525/elementa.2020.00163, 2021.
- Farmer, D. K., Perring, A. E., Wooldridge, P. J., Blake, D. R., Baker, A., Meinardi, S., Huey, L.
- 245 G., Tanner, D., Vargas, O., and Cohen, R. C.: Impact of organic nitrates on urban ozone
- 246 production, Atmos Chem Phys, 11, 4085–4094, https://doi.org/10.5194/acp-11-4085-2011, 2011.
- González-Sánchez, J. M., Brun, N., Wu, J., Ravier, S., and Clément, J.: On the importance of
- 248 multiphase photolysis of organic nitrates on their global atmospheric removal, Atmos Chem Phys,
- 249 23, 5851–5866, https://doi.org/10.5194/acp-23-5851-2023, 2023.
- Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene,
- 251 Atmos Chem Phys, 15, 11433–11459, https://doi.org/10.5194/acp-15-11433-2015, 2015.
- 252 Min, K.-E., Washenfelder, R. a., Dubé, W. P., Langford, a. O., Edwards, P. M., Zarzana, K. J.,
- Stutz, J., Lu, K., Rohrer, F., Zhang, Y., and Brown, S. S.: A broadband cavity enhanced absorption
- spectrometer for aircraft measurements of glyoxal, methylglyoxal, nitrous acid, nitrogen dioxide,
- and water vapor, Atmos Meas Tech, 9, 423–440, https://doi.org/10.5194/amt-9-423-2016, 2016.
- Orlando, J. J. and Tyndall, G. S.: Laboratory studies of organic peroxy radical chemistry: an
- overview with emphasis on recent issues of atmospheric significance, Chem Soc Rev, 41, 6294–
- 258 6317, https://doi.org/10.1039/c2cs35166h, 2012.
- Perring, A. E., Pusede, S. E., and Cohen, R. C.: An observational perspective on the atmospheric
- 260 impacts of alkyl and multifunctional nitrates on ozone and secondary organic aerosol., Chem Rev,
- 261 113, 5848–70, https://doi.org/10.1021/cr300520x, 2013.
- Sander, S. P., Abbatt, J. P. D., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Huie,
- 263 R. E., Kolb, C. E., Kurylo, M. J., Moortgat, G. K., Orkin, V. L., and Wine, P. H.: Chemical Kinetics
- and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-
- 265 6, Jet Propulsion Laboratory, Pasadena, 2011.
- Schroeder, J. R., Crawford, J. H., Ahn, J. Y., Chang, L., Fried, A., Walega, J., Weinheimer, A.,
- Montzka, D. D., Hall, S. R., Ullmann, K., Wisthaler, A., Mikoviny, T., Chen, G., Blake, D. R.,
- Blake, N. J., Hughes, S. C., Meinardi, S., Diskin, G., Digangi, J. P., Choi, Y., Pusede, S. E., Huey,
- G. L., Tanner, D. J., Kim, M., and Wennberg, P.: Observation-based modeling of ozone chemistry
- in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ),
- 271 Elementa, 8, https://doi.org/10.1525/elementa.400, 2020.
- Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO₂: In-situ laser-induced
- 273 fluorescence detection at parts per trillion mixing ratios, Anal Chem, 72, 528-539,
- 274 https://doi.org/doi:10.1021/ac9908905, 2000.
- Weinheimer, A. J., Walega, J. G., Ridley, B. A., Gary, B. L., Blake, D. R., Blake, N. J., Rowland,
- F. S., Sachse, G. W., Anderson, B. E., and Collins, J. E.: Meridional distributions of NO_x, NO_y,
- and other species in the lower stratosphere and upper troposphere during AASE II, Geophys Res
- 278 Lett, 21, 2583–2586, https://doi.org/10.1029/94GL01897, 1994.

- 279 Xu, L., Møller, K. H., Crounse, J. D., Kjaergaard, H. G., and Wennberg, P. O.: New insights into
- the radical chemistry and product distribution in the OH-initiated oxidation of benzene, Environ
- 281 Sci Technol, 54, 13467–13477, https://doi.org/10.1021/acs.est.0c04780, 2020.