Interactions of fertilisation and crop productivity on soil nitrogen cycle microbiome and gas emissions

Laura Kuusemets^{1*}, Ülo Mander¹, Jordi Escuer-Gatius², Alar Astover², Karin Kauer², Kaido Soosaar¹, Mikk Espenberg¹

5

¹University of Tartu, Institute of Ecology and Earth Sciences, Vanemuise 46, Tartu, 51003, Estonia ²Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Kreutzwaldi 5, Tartu, 51014, Estonia

10 Correspondence to: Laura Kuusemets (laura.kuusemets@ut.ee)

Supplementary Materials

15

20

Table S1: Field activities and their timings in the field.

Field operation	Date	Wheat	Barley	Sorghum
Sowing date		May 6 th		May 18 th
Organic	April 28 th			<i>N0 – 40 t/ha of (231.2</i> kg N
fertilisation				ha^{-1})
				N80 – 40 t/ha of (231.2 kg
				N ha^{-1})
				N160 - 40 t/ha of (231.2
				kg N ha ⁻¹)
Mineral	May 5 th	$N80 - 80 \text{ kg N ha}^{-1}$	l	
fertilisation		N160 – 120 kg N h	$a^{-1} N$	
	May 6 th			$N80 - 80 \text{ kg N ha}^{-1}$
				$N160 - 160 \text{ kg N ha}^{-1}$
	June 10th	N160 – 40 kg N ha	-1	
Herbicide	June 7 th	Sekator OD: 0.1 l/h	ia	
application				
	June 17 th	Tomahawk 200 EC	: 0.35 l/ha	Tomahawk 200 EC: 0.35
		MCPA: 1.5 l/ha		l/ha
		Orius 250 EW: 1 l/ha		MCPA: 1.5 l/ha
		Cerone: 0.5 l/ha		
Harvest date		August 18 th	August 16 th	September 27 th

Table S2: Primers used in qPCR, their concentrations and qPCR programs.

Marker gene Primer		Primer	Reference	qPCR program	
		concentration (µM)			
bacterial 16S rRNA	Bact517F	0,6	Liu et al., 2007	95°C 10 min; 35 cycles: 95°C 30 s,	
	Bact1028R	-	Dethlefsen et al., 2008	60°C 45 s; 72°C 45 s	
archaeal 16S rRNA	Arc519F	0,6	Espenberg et al., 2016	95°C 10 min; 45 cycles: 95°C 15 s,	
	Arch910R			56°C 30 s; 72°C 30 s	
nirK	nirK876	0,8	Hallin ja Lindgren, 1999	95°C 10 min; 45 cycles: 95°C 15 s,	
	nirK1040	-		58°C 30 s; 72°C 30s, 80°C 30 s ^a	
nirS	nirSCd3af	0,8	Kandeler et al., 2006	95°C 10 min; 45 cycles: 95°C 15 s,	
	nirSR3cd	-		55°C 30 s; 72°C 30s, 80°C 30 s ^a	
nosZI	nosZ2F	0,8	Henry et al., 2006	95°C 10 min; 45 cycles: 95°C 15 s,	
	nosZ2R	-		60°C 30 s, 72°C 30 s, 80°C 30 s ^a	
nosZII	nosZIIF	1.2	Jones et al., 2013	95°C 10 min; 45 cycles: 95°C 30 s,	
	nosZIIR	-		54°C 45 s, 72°C 45 s, 80°C 45 s ^a	
bacterial amoA	amoA-1F	0,8	Rotthauwe et al., 1997	95°C 10 min; 45 cycles: 95°C 30 s,	
	amoA-2R			57°C 45 s, 72°C 45 s	
archaeal amoA	CrenamoA 23F	0.8	Tourna et al., 2008	95°C 10 min; 45 cycles: 95°C 30 s,	
	CrenamoA 616R	-		55°C 45 s, 72°C 45 s	
comammox amoA	comamoA AF	1.2	Wong at al. 2018	95 °C 10 min; 40 cycles: 95 °C 15 s,	
	comamoA SR	1.2	wang et ut., 2010	55 °C 30 s, 72 °C 30 s	
nrfA	nrfAF2awMOD	1.2	Cannhenryon <i>et al.</i> , 2019	95 °C 10 min; 45 cycles: 95 °C 15 s,	
	nrfAR1MOD			56 °C 30 s, 72 °C 30 s	

	Barley			Sorghum			Sorghum w	ith manure		Wheat		
	N0	N80	N160	NO	N80	N160	N0	N80	N160	N0	N80	N160
N added with	0	80	160	0	80	160	231.2	311.2	391.2	0	80	160
manure + mineral												
fertilizer												
N in plant biomass	18.17	46.06	90.14	11.63	21.02	51.73	44.82	60.48	106.34	26.39	93.56	128.74
Change of soil N	-50.09	-40.38	104.40	-18.41	-64.38	-222.79	-163.11	-159.34	-198.82	-116.62	-273.28	-214.64
content												
N losses	31.93	74.31	-34.54	6.78	123.36	331.06	349.49	410.06	483.68	90.24	259.72	245.89
(Methodology S4)												
N ₂ O-N emissions	0.08 ±	0.16 ±	0.31 ±	0.09 ±	0.09 ±	0.34 ±	0.18 ±	0.34 ±	0.32 ±	0.10 ±	0.22 ±	0.45 ±
	0.02	0.02	0.03	0.04	0.03	0.03	0.04	0.06	0.02	0.01	0.04	0.06
N ₂ -N emissions	1.59 ±	2.29 ±	7.12 ±	3.38 ±	2.52 ±	6.66 ±	3.93 ±	4.59 ±	4.47 ±	1.81 ±	2.64 ±	7.69 ±
	0.14	0.33	0.78	0.87	0.49	2.11	0.51	0.80	0.50	0.48	0.53	2.58

Table S3: Partial N budget of the sites (kg N ha⁻¹).

Table S4: Spearman correlation coefficients between soil total carbon, total nitrogen, NH_4^+ -N, NO_3^- -N, total dry weight40biomass and N in total dry weight biomass. Significance is indicated as *** - 0.001; ** - 0.01; * - 0.05; ns - not significant.

	Total carbon	Total	NO ₃ ⁻ -N	NH4 ⁺ -N	Total	N in total
		nitrogen			biomass	biomass
Total carbon	1	0.91***	ns	ns	0.49*	0.35*
Total	0.91***	1	0.50*	ns	0.59**	0.58**
nitrogen						
NO ₃ ⁻ -N	ns	0.50*	1	ns	0.78***	0.84***
NH4 ⁺ -N	ns	ns	ns	1	ns	ns
Total	0.49*	0.59**	0.78***	ns	1	0.83***
biomass						
N in total	0.35*	0.58**	0.84***	ns	0.83***	1
biomass						

 Table S5: Spearman correlation coefficients between gene copies abundance and N₂O-N emissions. Significance is indicated as *** - 0.001; ** - 0.01; * - 0.05; ns - not significant.

Gene parameter	N ₂ O							
	All	Barley	Sorghum	Sorghum	Wheat			
				with				
				manure				
bacterial 16S rRNA	ns	ns	ns	ns	ns			
archaeal 16S rRNA	0.18*	ns	ns	ns	ns			
nirK	ns	ns	ns	ns	ns			
nirS	0.19*	0.58***	ns	ns	ns			
nosZI	ns	ns	ns	ns	ns			
nosZII	ns	ns	ns	0.41*	-0.46**			
bacterial amoA	ns	ns	ns	ns	-0.40*			
archaeal amoA	-0.15*	ns	ns	ns	ns			
comammox amoA	ns	ns	-0.47**	ns	ns			
nrfA	ns	ns	ns	ns	ns			

Table S6: Spearman correlation coefficients between moisture and gene copies abundance and N₂O-N emissions. Significance is indicated as *** -0.001; ** -0.01; * -0.05; ns - not significant.

Gene parameter/N ₂ O-N	Moisture					
	All	Barley	Sorghum	Sorghum with	Wheat	
				manure		
bacterial 16S rRNA	ns	ns	0.55***	ns	ns	
archaeal 16S rRNA	ns	ns	ns	ns	ns	
nirK	ns	ns	ns	ns	ns	
nirS	0.29***	0.54***	ns	0.56***	ns	
nosZI	ns	ns	ns	ns	ns	
nosZII	ns	ns	ns	ns	ns	
bacterial amoA	ns	ns	ns	ns	ns	
archaeal amoA	ns	-0.38*	ns	ns	ns	
comammox amoA	ns	ns	-0.50**	ns	ns	
nrfA	ns	ns	0.44**	ns	ns	
N ₂ O-N	ns	ns	ns	ns	ns	

Figure S1: Abundances of bacterial and archaeal 16S rRNA genes according to crops and fertilisation rates during the study period.

Figure S2: Abundances of bacterial, archaeal and comammox *amoA* genes according to crops and fertilisation rates during the study period.

Figure S3: Abundances of *nirK*, *nirS*, *nosZI* and *nosZII* genes according to crops and fertilisation rates during the study period.

65 Figure S4: Abundance of *nrfA* gene according to crops and fertilisation rates during the study period.

Figure S5: NH_4^+-N (mg/kg) and NO_3^--N (mg/kg) contents of soil according to crops and fertilisation rates during the study period.

Figure S6: Soil moisture (m^3/m^3) over the study period according to crop types and treatment.

75

Supplementary Methodology

Methodology S1: Estimation of the di-nitrogen (N2) flux from the Daycent model

80 The N₂ emissions were estimated from the measured N₂O emissions using the N₂:N₂O ratio, which was calculated as proposed in the DAYCENT model (<u>Parton et al., 2001</u>), with the following equation (<u>Del Grosso et al., 2000</u>):

 $R_{N_2/N_2O} = F_r(NO_3/CO_2) \times F_r(WFPS)$ (Eq. 1)

where the factor $F_r(NO_3/CO_2)$ is a function of electron donor to substrate, calculated as:

$$F_r(NO_3/CO_2) = \max(0.16 k_1, k_1 e^{(-0.8 (C_{NO_3} - Flux_{CO_2}))})$$
 (Eq. 2)

and F_r (WFPS) is a factor accounting for the effect of soil water content on the N₂:N₂O ratio, with the water-filled pore space (WFPS):

 $F_r(WFPS) = 1.4/13^{2.2 WFPS}$ (Eq. 3)

95 Methodology S2: Nitrogen use efficiency

Nitrogen use efficiency (NUE, kg DM kg⁻¹ N⁻¹) was calculated as the biomass yield produced per unit of N applied (Pandey *et al.*, 2001) as follows:

$$NUE = \frac{Treatment\ biomass\ -Control\ biomass\ }{Total\ amount\ of\ nitrogen\ applied} \tag{Eq. 4}$$

100 Control biomass is the biomass yield of treatment with mineral fertilisation rate 0. For sorghum with manure amendment plots, control biomass is taken from sorghum without manure amendment plot with mineral N fertilisation rate 0.

Methodology S3: change of soil N content

Change of soil N content was calculated as a difference between the initial soil total N content and final soil total N content (Scinin, 2017)

105 (Sainju, 2017).

Total N content in soil was calculated (Sainju, 2017) as following:

$$STN = STN_c \times BD \times T \times 10\ 000$$

STN = Total N content in soil (kg N ha⁻¹), $STN_c = Total N$ concentration in soil (g N kg⁻¹), BD = bulk density (Mg m⁻³), T=thickness of the soil layer (m), 10 000 = conversion factor.

110

Methodology S4: N losses

N losses are calculated by substracting N outputs and change of soil N content from N inputs (Sainju *et al.*, 2017; Escuer-Gatius *et al.*, 2022). We consider N deposition, surface run-off and other fluxes neglectable.

115 N losses = $F_{min.fertiliser} + F_{manure}$ - harvest - ΔN_{soil}

 $F_{min.fertiliser}$ = amount of N added as mineral fertiliser, F_{slurry} = amount of N added as manure, ΔN_{soil} = change of soil N content during the experiment.

120 References

Cannon, J., Sanford, R. A., Connor, L., Yang, W. H., & Chee-Sanford, J.: Optimization of PCR primers to detect phylogenetically diverse nrfA genes associated with nitrite ammonification. *Journal of Microbiological Methods*, *160*, 49–59. https://doi.org/10.1016/j.mimet.2019.03.020, 2019.

Dethlefsen, L., Huse, S., Sogin, M. L., & Relman, D. A.: The Pervasive Effects of an Antibiotic on the Human Gut
Microbiota, as Revealed by Deep 16S rRNA Sequencing. *PLOS Biology*, 6(11), e280. https://doi.org/10.1371/journal.pbio.0060280, 2008.

Escuer-Gatius, J., Lõhmus, K., Shanskiy, M., Kauer, K., Vahter, H., Mander, Ü., Astover, A., Soosaar, K. Critical points for closing the carbon and nitrogen budgets in a winter rapeseed field. *Nutrient Cycling in Agroecosystems*, 122, 289–311. https://doi.org/10.1007/s10705-022-10202-8, 2022.

130 Espenberg, M., Truu, M., Truu, J., Maddison, M., Nõlvak, H., Järveoja, J., & Mander, Ü.: Impact of Reed Canary Grass Cultivation and Mineral Fertilisation on the Microbial Abundance and Genetic Potential for Methane Production in Residual Peat of an Abandoned Peat Extraction Area. *PloS One*, *11*(9), e0163864. https://doi.org/10.1371/journal.pone.0163864, 2016.

Hallin, S., & Lindgren, P. E.: PCR detection of genes encoding nitrite reductase in denitrifying bacteria. *Applied and Environmental Microbiology*, 65(4), 1652–1657. https://doi.org/10.1128/AEM.65.4.1652-1657.1999, 1999.

- Henry, S., Bru, D., Stres, B., Hallet, S., & Philippot, L.: Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. *Applied and Environmental Microbiology*, 72(8), 5181–5189. https://doi.org/10.1128/AEM.00231-06, 2006.
- Jones, C. M., Graf, D. R., Bru, D., Philippot, L., & Hallin, S.: The unaccounted yet abundant nitrous oxide-reducing microbial community: A potential nitrous oxide sink. *The ISME Journal*, 7(2), 2. https://doi.org/10.1038/ismej.2012.125, 2013.

Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D., & Philippot, L.: Abundance of narG, nirS, nirK, and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland. *Applied and Environmental Microbiology*, 72(9), 5957–5962. https://doi.org/10.1128/AEM.00439-06, 2006.

- Liu, Z., Lozupone, C., Hamady, M., Bushman, F. D., & Knight, R.: Short pyrosequencing reads suffice for accurate microbial community analysis. *Nucleic Acids Research*, *35*(18), e120. https://doi.org/10.1093/nar/gkm541, 2007.
 Pandey, R. K., Maranville, J. W., & Bako, Y.: Nitrogen Fertilizer Response and Use Efficiency for Three Cereal Crops in Niger. *Communications in Soil Science and Plant Analysis*, *32*(9–10), 1465–1482. https://doi.org/10.1081/CSS-100104206, 2001.
- 150 Rotthauwe, J. H., Witzel, K. P., & Liesack, W.: The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. *Applied and Environmental Microbiology*, 63(12), 4704 4712. https://doi.org/10.1128/aem.63.12.4704-4712.1997, 1997.

Sainju, U. M.: Determination of nitrogen balance in agroecosystems. *MethodsX*, *4*, 199–208. https://doi.org/10.1016/j.mex.2017.06.001, 2017.

155 Tourna, M., Freitag, T. E., Nicol, G. W., & Prosser, J. I.: Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. *Environmental Microbiology*, 10(5), 1357–1364. https://doi.org/10.1111/j.1462-2920.2007.01563.x, 2008.

Wang, M., Huang, G., Zhao, Z., Dang, C., Liu, W., & Zheng, M.: Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. *Bioresource Technology*, 270, 580–587.

160 https://doi.org/10.1016/j.biortech.2018.09.089, 2018.