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Abstract 

Lack of in-situ observations and reliable climate information in large part of the Himalayas 

poses a significant challenges for assessing water resources vulnerability accurately. Further, 

the reliance on only a few coarse resolution gridded datasets with considerable uncertainty 20 

complicates this problem. However, integrated hydrometeorological modeling systems, like 

WRF-Hydro, have the potential to provide information in such ungauged or poorly observed 

regions, yet they require careful calibration. Here, we calibrate and assess the fidelity of WRF-

Hydro in simulating the hydrological regime of the Beas basin. Selected WRF-Hydro model 

parameters are calibrated using the PEST framework, using eight simulations with two 25 

meteorological forcings from two WRF realisations. Model calibration improves the accuracy 

of the basin discharge simulation, however the choice of precipitation forcing is also critically 

important. We propose an ensemble weighting scheme to optimize an intra-annual tradeoff 

between streamflow under- and overestimation in different WRF-Hydro configurations. This 

study demonstrate the efficacy of using coupled (offline) WRF and WRF-Hydro for providing 30 

climate change impact-relevant information in data-sparse basins. 

 

Keywords: WRF-Hydro Calibration; PEST; Parameter sensitivity;  Parameter optimization; 
Model inversion 

 35 

Summary  
This study calibrates WRF-Hydro in a Himalayan basin, finding precipitation choice 

significantly influences results over parameter sets. Study highlights the importance of tailored 

calibration strategies and parameter sensitivity analyses for accurate streamflow predictions in 

Himalayan basins, crucial for effective water resource management. 40 

  

https://doi.org/10.5194/egusphere-2024-587
Preprint. Discussion started: 19 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 3 

1. Introduction 

The Himalayan ranges host one of the largest ensembles of glaciers that provide freshwater 
supply to most of South- and Southeast-Asia. However, water shortage is a rising concern in 
this region due to global warming causing snow/ice cover depletion. Climate change affects 45 
the cryosphere and the mountainous water cycle, i.e., glaciermelt and snowmelt, streamflow, 
precipitation, and runoff seasonality (IPCC AR6 WGII). Policymakers require a climate-
resilient transition framework and pathways for efficient water resource management that 
further requires risks estimation through assessment of hazards and vulnerabilities. Threfore, a 
sustainable and adaptive framework necessitates reliable information on historical and 50 
projected water resources. 

The response of water security in the region to climate change is intricately woven into a 
complex interplay involving climate change dynamics, glacier reduction, water availability, 
and evolving water demand patterns. (Cogley, 2011; Gardelle et al., 2012; Scherler et al., 
2011; Maurer et al., 2019; Nie et al., 2021). The water demands of the Himalayas could be met 55 
at least by the end of 21st century with water currently stored in glaciers (W. W. Immerzeel et 
al., 2013; W. W. Immerzeel and Bierkens, 2012) and large changes in runoff are unlikely 
anytime soon (T. Bolch et al., 2012; Khanal et al., 2020). Even so, the Beas basin is reportedly 
under stress of increasing water demand and could face severe water shortage (Kumar et al., 
2007; Moors et al., 2011).   60 
 
Moreover, the risk of insufficient streamflow to serve agriculture, horticulture, tourism, and 
hydropower is growing under climate change (Dixit et al., 2023; Dar et al., 2014; Murtaza and 
Romshoo, 2015; Romshoo et al., 2015; Scott et al., 2012; Slingo et al., 2005). Around 35% of 
the upper Beas basin's average annual flow is contributed by snow and glacier melt during 65 
1990-2004 (Kumar et al., 2007; Moors et al., 2011) that further reportedly increased to 52-56% 
during 1996-2008(Ahluwalia et al. 2015). Shean et al., (2020) found that the excess glacier 
melt runoff (resulting in a negative mass balance) to be in the range of ~12-53% for each basin 
in High Mountain Asia. In addition, Dixit et al. (2021) reported that ~90% of glaciers in this 
region could disappear by 2094 ± 3.5 years under RCP4.5, and by 2084 ± 8 years under 70 
RCP8.5. Therefore, enough evidence is available to believe that the vulnerability of snow and 
glacier-based water resources in this region cannot be ignored. 

However, inconsistent/unreliable observations along with poor in-situ coverage pose a 
challenge to close the water budget in this region (Hewitt, 2005; Bolch et al., 2012; Hartmann 
and Andresky, 2013; Maussion et al., 2011; Li et al 2017). Moreover, gridded observations 75 
tend to have coarse spatial resolution (for example IMD, APHRODITE, TRMM, PERSIANN-
CDR, CPC, CHIRPS, CRU and GPCP; Dixit et al. 2023). Alternatively, deploying a numerical 
model at convection permitting scale may fill up this gap, in particular given recent 
improvements in capturing localized features over complex terrain (Collier et al. 2013; 
Rasmussen et al. 2014). Therefore, coupling (online or offline) of climate impact models with 80 
high-resolution numerical models can provide useful insights about present and projected 
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future changes. But, climate impact models (such as hydrological models or agriculture 
models) need calibration or tuning of its parameters before deployment.   

Accuracy of streamflow simulations from such models is affected by the model calibration 
strategy, including optimization methods, target parameters, and calibration/validation period 85 
(Bittelli et al., 2009; Givati et al., 2012; Pennelly et al., 2014; Ragettli and Pellicciotti, 2012; 
Silver et al., 2017; Yucel et al., 2015). Shortlisting of target parameters is important and often 
depends on the basin’s characteristics. Overall, calibration of a hydrological model is region 
specific and a necessary exercise before its deployment. However, calibration inherits 
complexity from the model structure and definition of the involved processes. Estimation of 90 
parameters involved in physical processes require extensive expertise that may not always be 
readily available in the existing literature (Arsenault et al., 2014; Beven and Freer, 2001; Duan 
et al., 1992, 2006; Gan et al., 2014; Kavetski et al., 2003; Sorooshian and Gupta, 1983). 

Literature highlights usage of several methods to estimate these parameters and quantify their 
uncertainty, such as markov chain monte carlo (MCMC), monte carlo sampling, stratified 95 
sampling, Gauss-Marquardt-Levenberg algorithm, and bayesian networks (Matott et al., 2009). 
Several studies also preferred to perform manual adjustment to these parameters to get an 
optimum set. However, manual adjustment has limited search capability in solution space that 
may prevent obtaining a global minima or the best parameter set, whereas automatic methods 
are capable of exhaustive searching in parameter space, making these methods very popular 100 
recently (Arsenault et al., 2014; Moradkhani and Sorooshian, 2008; Tolson and Shoemaker, 
2007). For example,  heuristic or semiheuristic approaches can find the global minimum by 
itself  through iterative searches (Arsenault et al., 2014). 

Distribution prior and posterior to calibration is an important feed for automatic methods to 
optimize the parameter set. Various methods use either one or both of them to adjust parameters 105 
(Jin et al., 2010). Some of the most frequently used algorithms are generalized likelihood 
uncertainty estimation (GLUE) method (Beven and Binley, 1992), Metropolis–Hastings (MH) 
algorithm, and a Markov Chain Monte Carlo (MCMC) method (Bates and Campbell, 2001; 
Beven and Freer, 2001; Freer et al., 1996; Kuczera and Parent, 1998). In this study, we 
demonstrate the capability of PEST (Parameter ESTimation), a model-independent parameter 110 
estimation tool, to calibrate WRF-Hydro with an exhaustive parameter search utilizing two 
modes, estimation mode and regularisation mode.  

The aim of  this study is to calibrate WRF-Hydro with an automatic approach as an alternative 
of manual adjustment method. The objectives are (1) to identify the sensitivity of various 
parameters for a Himalayan mountain headwater basin, (2) explore the feasibility of calibrating 115 
a wide parameter set (considering parameters beyond just soil parameters i.e. vegetation 
parameters or snow parameters), especially for regions like the Beas basin with shallow soil 
depth and dense vegetation cover, and (3) evaluate and find the best method for the calibration. 
This study also extends previous work with PEST and WRF-Hydro that used either a limited 
number of parameters or idealized representation of some of the processes such as no 120 
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infiltration of retention of water (Li et al. 2017; Wang et al. 2019; Senatore et al. 2015). In 
addition, it serves as a case study for calibrating WRF-Hydro for both operational use and 
climate change studies over complex terrain.  

 

1.1 WRF-Hydro modelling overview 125 

WRF-Hydro is a spatially distributed, physically based hydrologic model that can be coupled 
with an atmospheric model in online or offline mode. Details on the model’s basic structure 
can be found in Supplementary section S2 or the model’s technical description 
(https://ral.ucar.edu/projects/wrf_hydro/documentation).  

Several studies calibrated WRF-Hydro over different parts of the world using manual and 130 
automatic methods. Wang et al. (2019) calibrated WRF-Hydro using PEST over the 
midwestern United States (US) for Manning’s coefficient (MannN), saturated hydraulic 
conductivity (REFDK), runoff/infiltration rate (REFKDT), and channel slope. Sofokleous et 
al. (2023) conducted a grid based calibration of WRF-Hydro for 31 small mountain watersheds 
in Cyprus using three parameters infiltration, hydraulic conductivity and percolation. Liu et al. 135 
(2021) tested the parameter sensitivity of REFKDT, retention depth (RETDEPRT), surface 
roughness (OVROUGHRT), and MannN over semi-humid and semi-arid areas of northern 
China. Li et al. (2017) evaluated the performance of WRF-Hydro over Beas basin and found it 
reasonably well over this region. They calibrated REFKDT, soil evaporation exponent, soil 
layers, saturated soil hydraulic conductivity, reference soil moisture for transpiration, 140 
RETDEPRT, OVROUGHRT, and MannN. Past calibration efforts of the model suggest a wide 
range of parameters in consideration, most of them are soil or channel parameters. In this study, 
we consciously broaden the calibration parameter set to include vegetation parameters as this 
region has a shallow soil column but significant vegetation cover. One of the goals is to 
determine if model performance can be further improved by incorporating vegetation 145 
parameters in calibration process.  

 

1.2 PEST (Parameter ESTimation) framework 

PEST is a parameter optimization framework and newly introduced in surface hydrological 
models, but otherwise widely used in groundwater modelling. It performs model inversion to 150 
optimize its parameters using advanced mathematical concepts and transformations.  

PEST calculates the parameter sensitivity through parameter optimization iterations, governed 
by various thresholds. Each optimization iteration starts with an initial sensitivity determined 
by the Jacobian matrix based on the parameters’ initial values. Thereafter, model runs are 
performed with updated parameter sets, generated using control parameters. PEST’s 155 
parallelization capability can perform multiple runs (in isolation) at a time to reduce overall 
time cost. Two parallel framework are available: parallel-PEST and BeoPEST. They are similar 
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to perform their job as both of them parallelize the PEST, but BeoPEST has a better runtime 
manager and better parallelizing capability. More details about PEST can be found in 
Supplementary Section S3-S5 and Doherty (2016). 160 

 

2 Data and Methods 

2.1 Study Area 
 
Beas basin is bounded by the outer, middle, and greater Himalayan ranges, and situated in 165 
Himachal Pradesh state of India (Figure 1). The microeconomics of the region is majorly driven 
by agriculture/horticulture and tourism. The Beas river is also an important tributary of the 
Indus river system and hence plays a significant role to fulfil the water demand downstream. 
 

  170 
 
Figure 1: Beas basin with basin boundary, underlaid by a Digital Elevation Model (SRTM 
90 m). The highest and lowest elevation within the basin boundary is approximately 6545 masl 
and 826 masl, respectively. The sky blue region represents glaciers. Glaciers in study region 
cover approximately 12.6% of the area.  175 

 

Sharp changes in topographical conditions and diverse physiography makes this region very 
diverse in spatio-temporal conditions. The topography varies from 826 to 6545 masl (Hegdahl 
et al. 2016), with more than 20% area above 4800 masl and the highest peak at more than 
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6500 masl. The upper reaches have deciduous and alpine vegetation, while the lower reaches 180 
have a substantial amount of area under agricultural and horticultural practices. Soild 
precipitation occurs mostly during the winters because of the Western Disturbances (WDs), 
contributing significantly to the riverstream during summer. The Indian Summer Monsoon 
(ISM) causes mostly rainfall and has the highest variability to the annual cycle of precipitation 
and streamflow (55% vs. ~ 7%; Kumar et al. 2007). 185 
 
2.2 Observational Dataset 
 
Sparse coverage of in-situ observation makes model verification a challenging task in this 
region. However, intercomparison of available gridded datasets and past literature provides 190 
some basis to select the most reliable among them (Dixit et al., 2023). APHRODITE has more 
spatial heterogeneity and better spatial variability over higher elevations compared to other 
gridded datasets (TRMM: Tropical Rainfall Measuring Mission, APHRODITE: Asian 
Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation, 
CHIRPS: Climate Hazards Group InfraRed Precipitation with Station, GPCP: Global 195 
Precipitation Climatology Project, PERSIANN-CDR: Precipitation Estimation from Remotely 
Sensed Information using Artificial Neural Networks- Climate Data Record, IMD: Indian 
Meteorological Department, and CPC: Climate Prediction Center; Dixit et al. 2023; Figure 2). 
 
APHRODITE is also preferred by other studies as an observational dataset over the Himlayan 200 
regions (Andermann et al. 2011), having a reasonable temporal variation of precipitation 
(Ghimire et al. 2018). We also rely on APHRODITE as a reference dataset; refer to Dixit et al. 
2023 for more details, as they also compared these observation datasets with a few in-situ 
observations in the Beas basin and concluded that APHRODITE is the best among the selected 
datasets. 205 
 
Streamflow observations at the outlet (Thalout) provide a reference output for model 
calibration. As per availability, we obtain 3 year of observational data (2003-2005) to use as 
calibration and validation references. 
 210 
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Figure 2- Total annual precipitation of 2003 for (a) IMD, (b) APHRODITE, (c) TRMM, (d) 
PERSIANN-CDR, (e) CPC, (f) CHIRPS, (g) CRU and (h) GPCP. 

 215 
 

2.3 WRF setup and simulations 

WRF configuration (including parameterizations and forcing conditions) is adopted from Dixit 
et al. (2023) to generate high-resolution meteorological forcing to feed WRF-Hydro. Only 
exception to the configuration is LULC updation, as MODIS LULC underestimate glaciers 220 
significantly (Figure 3-b). It happens because of debris deposition over glacier surfaces causing 
a change in its reflectance profile shifting towards barren rock. High resolution satellite image 
(Figure 3-a) shows most of the glacier area being misclassified as debris. However, updated 
LULC shows glaciated area closer to the observation (RGI V6 glacier boundaries; Figure 3-
c,d)  225 

ERA-Interim reanalysis dataset from European Centre for Medium-Range Weather Forecasts 
(ECMWF) and customized by the National Center for Atmospheric Research (NCAR) 
(ds627.0|DOI: 10.5065/D6CR5RD9) provided initial and boundary conditions to the model. 
Dixit et al. (2023) performed sensitivity tests of microphysics and cumulus schemes over this 
region and  found that no scheme performed well in producing the precipitation throughout the 230 
annual cycle; however, MP8KF (Microphysics: MP8; Cumulus: KF) and WSM6BMJ 
(Microphysics: WSM6; Cumulus: BMJ) performed reasonably well for December-January 
(DJF) and June-September (JJAS), respectively. Therefore, two sets of simulations, each with 
MP8KF and WSM6BMJ are performed. 

 235 
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Figure 3– The glacier image from the MODIS LULC dataset used in the WRF-Hydro configuration. 
The blue shades in b-d represents the glacial area. (a) A zoomed-in high-resolution satellite image 
(LANDSAT 8) of the Bada Shigri glacier, with the RGI V6 glacier boundary overlay. The debris on the 
glacier makes it challenging to differentiate between glacier and barren rock. (b) The default MODIS 240 
LULC dataset. (c) The MODIS LULC dataset overlaid with RGI V6 glacier borders from the region. 
(d) the current MODIS LULC dataset. A black rectangular rectangle in panels b-d depicts the 
approximate position of a glacier in panel a. 
 

 245 

2.4 WRF-Hydro setup  

WRF-Hydro is offline-coupled with WRF and forced with hourly WRF outputs for 
precipitation, near-surface air temperature, humidity, surface pressure, incoming shortwave 
radiation, incoming longwave radiation, and wind speed. There is no feedback from the 
hydrological model to the atmospheric model. NCAR's GIS tool is used to outline basin 250 
boundaries, stream networks, and routing link files utilizing high resolution DEM and outlet 
location (https://github.com/NCAR/wrf_hydro_arcgis_preprocessor/archive/v5.1.1.zip). 

WRF-Hydro configuration requires the setup of two components- land surface components and 
routing components. Land surface options are mostly inherited from land surface model i.e. 
Noah-MP in this case. Noah-MP is a one-dimensional multi-physics parameterized model that 255 
can simulate various terrestrial fluxes related to energy, water, snow, and soil. The selected 
schemes for physical processes are listed in Table 1. 
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Table 1 – The selected options in the Noah-MP multiphysics parameterization for the physical 
processes. 260 

 

Physical Process Option 

Dynamic vegetation option LAI/SAI from lookup table 
Max vegfrac from climatology 

Canopy stomatal resistance Ball-Berry 

Soil moisture factor for stomatal resistance Noah 

Surface layer drag coefficient M-O 

Frozen soil permeability Niu and Yang (2006) 

Super cooled liquid water Niu and Yang (2006) 

Radiative transfer Two-stream applied to vegetated fraction 

Ground snow surface albedo CLASS 

Precipitation partitioning Jordan (1991) 

Lower boundary condition for soil 
temperature 

Bottom temperature from climatology 

Snow/soil temperature time scheme Semi-implicit with FSNO 

Surface resistance to evap/sublimation Snow/non-snow split 

Glacier treatment Slab 

 

Aggregation factor in WRF-Hydro provides a flexibiltity to represent the soil state parameters 
at higher resolution by disaggregating the parameters as per AGGFACTRT value. We chose 
this factor as 10 to get the disaggregated parameters at grid size of 300 m. Additionally, the 265 
model has switches to activate/deactivate different routing schemes such as overland flow, 
channel flow, and subsurface flow. 

Here, the D8 algorithm is used to activate the routing for both overland and subsurface flflow, 
allowing surplus water from one grid to flow in the direction of its neighboring eight grids' 
steepest slope. Channel routing is solved using diffusive wave gridded. It simplifies St. Venant 270 
equations for shallow water waves and is a one-dimensional diffusive wave with variable time-
steps. It formulates channel flow by integrating the diffusive waves using a first-order Newton-
Raphson equation; however, in low gradient cases—which do not exist in our study area—it 
may cause certain instabilities. The baseflow estimate is performed using the exponent bucket 
model. Six seconds of timestep integration is used for routing schemes. To a depth of one 275 
meter, the soil column is separated into four vertical layers. 
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2.5 WRF-Hydro calibration  

WRF-Hydro simulations obtained their meteorological forcing from WRF model output and 
terrestrial boundary conditions from geogrid file produced by WRF Preprocessing System 280 
(WPS). For calibration experiments, the model is initialized on 01 October 2001 and ran until 
31 December 2003, having year 2002 as a spinup period. Station-observed streamflow 
(Thalout) is used as a reference dataset to calibrate (2003), and validate (2004-2005) the model 
output. Calibration experiments follow the WRF output feeding to WRF-Hydro repeatedly 
under the PEST framework (Supplementary Figure S1). 285 

Parameter constraints are important during the calibration process to reduce computational 
cost/time and preserve the physical significance of the model. Moreso, selection of parameters 
is a priority to avoid computational time/resources overhead. Therefore, One-At-a-Time (OAT) 
sensitivity is performed for 108 parameters from HYDRO.TBL, MPTABLE.TBL, 
GENPARM.TBL, and CHANPARM.TBL having each parameter perturbed to its default value 290 
in a model run. These parameters are selected based on dominant processes from different 
components of WRF-Hydro and available literautures. For example, Arsenault et al. (2018) 
found that five soil and six (or more) vegetation parameters control the sensitivity of sensible 
heat, latent heat, and soil moisture in Noah-MP. Vegetation parameters also play a key role to 
define a coupling of water and energy exchange between surface and atmosphere. 295 

OAT performs a single model run with a single parameter perturbation to find a parameter’s 
sensitivity based on a change in the hydrograph. Thereafter, the 42 most sensitive parameters 
are selected to undergo composite sensitivity analysis and model inversion (Table 2). 
Parameters’ bounds are defined from the literature and previous studies. 

 300 

Table 2 – The sensitive parameters chosen after one-at-a-time sensitivity analysis. The violet color 
denotes channel parameters, yellow soil parameters, green biophysical parameters, and cyan snow 
parameters. 

 
Parameter Initial Min Max 

 

 Parameter Initial Min Max 

 

chslp1 4.134077 1.5 4.5 

 

omega2 0.4 0.25 0.75 

chslp2 1.057639 0.5 2 betads 0.5 0.25 0.75 

chslp3 0.151969 0.1 0.65 betais 0.5 0.25 0.75 

chslp4 0.3 0.05 0.3 z0sno 0.002 0.0005 0.02 

mn1 0.95 0.1 0.95 rsurf 50 20 150 

mn2 0.387234 0.1 0.8 

 

saiw1 0.4 0.15 0.9 

mn3 0.283335 0.03 0.65 saim1 0.35 0.15 0.9 

mn4 0.100935 0.03 0.45 sais1 0.6 0.35 0.9 
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refdk 2.48E-06 1.00E-07 4.25E-05 saiw5 0.4 0.2 1 

refkdt 3.124642 1.5 7.5 saim5 0.5 0.2 1.5 

zbot 5.69325 2 8 sais5 1 0.5 2.5 

zvt1 3.05 1 8 saiw7 0.2 0.1 0.5 

 

zvt5 0.8 0.35 2.5 saim7 0.2 0.1 0.5 

zvt7 0.06 0.025 2 sais7 0.7 0.3 1.5 

hvt1 20 10 60 laiw1 4 1 7 

hvt5 16 8 30 lais1 4 1 7 

hvt7 1.1 0.5 7 laiw5 2 1.5 4.5 

 

mfsno 2.5 0.2 20 lais5 3.5 2.5 7.5 

albic1 0.8 0.6 0.95 laiw7 0.2 0.05 0.5 

albic2 0.55 0.4 0.75 lais7 2.3 1.5 5.5 

omega1 0.8 0.55 0.95  lvcoef 0.5 0.25 0.75 

 

However, model inversion with 42 parameters create a 42-dimensional solution space that may 305 
be computationally expensive. Thereby, SVD is utilized to perform parameter variance 
selection to reduce the dimensionality that reduce identifiability of Parameters (PI) because of 
their limited variance in truncated solution space. The PI of various parameters is assessed 
using the four singular values 25, 30, 36, and 42 (Figure 4). Notably, solution space lost the 
variance and hence the identifiability of known to be sensitive parameters in truncated solution 310 
space with 25 and 30 singular values (Figure 4; channel parameters).  However, most of these 
parameters are identifiable with 36 singular values but this is not more helpful to reduce the 
cost significantly. Therefore, regularisation is implemented while using all 42 parameters. 
Regularization can eliminate non-useful parameters to the null space in a particular iteration 
during the inversion process. However, they can return back to the solution space if they 315 
become sensitive in the following iterations.  
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Figure 4– The parameter identifiability (PI) plot for all 42 parameters, with 25, 30, 36, and 42 singular 320 
values. (a) Displays PI using the MP8KF forcing; (b) Displays PI using the WSM6BMJ forcing. 
 

3. Results 

 

3.1 WRF evaluation (Precipitation)  325 
 
WRF simulated precipitation underestimate observation over the Himalayan foothills of the 
Beas basin when evaluated using six experiments: all combination of three microphysics 
schemes: MP3, MP8, and WSM6; and two cumulus schemes: KF, abd BMJ, (Dixit et al. 
(2023)). The most reasonable combination was reported to be BMJ cumulus scheme along with 330 
WSM6 or MP8 microphysics. They concluded that MP8KF is better than the rest of the 
experiments in simulating precipitation for annual cycle (ANN) and DJF. However, for JJAS, 
WSM6BMJ simulates better variance, pattern correlation, temporal correlation and skill score 
than MP8KF, making WSM6BMJ a more favorable option to simulate JJAS climate. More 
details about these simulations, results, and discussion is available in Dixit et al. (2023). 335 
 
 
3.2 WRF-Hydro evaluation (streamflow) 
 
3.2.1 MP8KF* Experiments 340 

These experiments consistently underestimate streamflow at its outlet especially during the 
ISM (JJAS). However, they follow observation reasonably well during the winter (Figure 5). 
Uncalibrated WRF-Hydro produces the least accurate streamflow (Table 4). Calibration 
improved JJAS streamflow in all experiments for both the calibration as well as validation 
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period (especially for year 2005), although improvement is not sufficient with respect to the 345 
observed discharge. Performance metrics (NSE=Nash–Sutcliffe Efficiency; KGE=Kling-
Gupta Efficiency; d=index of agreement) quantify the visual improvement in the hydrograph: 
NSE increases from 0.1 to 0.3 (with regularisation experiments) during the calibration period 
and from 0.16 to ~0.4 for the validation period (Table 4). KGE and d also improved for both 
calibration and validation period (Table 4).  350 

Regulariation experiments show better performance in comparison to the classical estimation; 
however regularised SVD performs the best among these experiments for calibration. 

 
Figure 5 – Comparison of PEST-calibrated/validated discharge (with MP8KF forcing) in estimate and 
regularization mode, with default model discharge and observed discharge at the basin terminal. The 355 
top x-axis and right y-axis depict precipitation from APHRODITE and the driving WRF simulation 
(MP8KF forcing). 
 

 

Table 4 – The accuracy metrics for calibrated/validated WRF-Hydro discharge (using MP8KF forcing) 360 
with observation. The metrics are produced separately for calibration (2003) and validation (2004-
2005). d: index of agreement; KGE: Kling-Gupta Efficiency; NSE: Nash-Sutcliffe Efficiency 
Coefficient; RMSE: root mean squared error. 
 

Experiment / 
Accuracy 

CALIBRATION (2003) 

 

VALIDATION (2004-2005) 

d KGE 
(2009) NSE RMSE d KGE 

(2009) NSE RMSE 

MP8KF_def 0.67 0.15 0.01 5714.74 0.65 0.24 0.16 6126.81 

MP8KF_em 0.75 0.30 0.21 5109.82 0.76 0.40 0.35 5396.66 

MP8KF_reg_lsq 0.72 0.25 0.15 5293.15 0.79 0.46 0.40 5146.30 

MP8KF_reg_svd 0.78 0.35 0.30 4783.72 0.78 0.45 0.39 5200.29 

 365 
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3.2.2 WSM6BMJ* Experiments 

WSM6BMJ* experiments show good representation of the summer precipitation totals, but 
tends to overestimate precipitation during other parts of the year (Fig. 6, top x-axis); thus the 370 
two WRF simulations, MP8KF and WSM6BMJ, have largely opposing strengths and 
weaknesses over the course of a calendar year. Consequently, WRF-Hydro calibration under 
WSM6BMJ* experiments shows substantial improvement in the hydrograph for summer 
streamflow in comparison to MP8KF* experiments (compare Fig. 5 and 6). However, these 
experiments produce spurious peaks during winter and spring corresponding to heavy storms 375 
in precipitation (Figure 6). Despite that, NSE shows reasonable accuracy (0.45; higher than 
each of the MP8KF experiments) for the default setup. Calibration inproves NSE to 0.53 along 
with improvements in KGE and d (Table 5). 

Similar to the previous section, SVD produces better accuracy for calibration. Performance 
metrics show that these experiments perform almost similar for both calibration and validation 380 
period.    

Among the calibration techniques, we find that SVD with regularised inversion generally 
produces the highest accuracy (Table 5), though a calibration using estimation mode is slightly 
better for validation period (Table 5).   

 385 

 

Figure 6– Comparison of PEST-calibrated/validated discharge (with WSM6BMJ forcing) in estimate 
and regularization mode with default model discharge and observed discharge at the basin outlet. The 
top x-axis and right y-axis show precipitation from APHRODITE and WRF simulation (WSM6BMJ 
forcing). 390 
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Table 5 – The accuracy metrics for calibrated/validated WRF-Hydro discharge (with WSM6BMJ 
forcing) with observation. The metrics are produced separately for calibration (2003) and validation 
(2004-2005). D: Index of agreement; KGE: Kling-Gupta Efficiency; NSE: Nash-Sutcliffe Efficiency 
Coefficient; RMSE: Root Mean Squared Error. 395 
 

Experiment / 
Accuracy 

CALIBRATION (2003) 

 

VALIDATION (2004-2005) 

d KGE 
(2009) NSE RMSE d KGE 

(2009) NSE RMSE 

WSM6BMJ_def 0.86 0.69 0.45 4258.94 0.75 0.54 0.26 5723.76 

WSM6BMJ_em 0.89 0.69 0.48 4126.01 0.84 0.71 0.40 5172.67 

WSM6BMJ_reg_lsq 0.89 0.69 0.50 4066.78 0.83 0.69 0.37 5287.68 

WSM6BMJ_reg_svd 0.90 0.72 0.53 3930.53 0.82 0.69 0.38 5262.51 

 
 

 
 400 
 

3.2.3 WSM6BMJ (JJAS) Experiments 

The previous two sections show that the performance of the calibrated model depends strongly 
on the season, most likely because of the precipitation differences in the respective 
experiments. Therefore, one might expect a seasonally specific calibration to further improve 405 
model performance during that season. To test this, we conduct additional experiments with 
the same configuration as in Section 3.2.2, but only for JJAS. 

In line with previous sections, the SVD method demonstrates superior performance in 
comparison to the LSQ method in terms of accuracy of calibrated discharge. LSQ exhibited 
inadequate accuracy and poorly reconstructed discharge (Figure 7, Table 6). Despite model 410 
performance metrics not indicating an ideal match of the SVD method with observations, a 
substantial improvement is achieved from its default configuration. However, it is worth 
noticing that both WSM6BMJ_ann_svd and WSM6BMJ_jjas_svd exhibit almost similar 
performance for calibration. Validation findings suggest that  WSM6BMJ_ann_svd possesses 
a slight advantage, an outcome that was unexpected but can be attributed to various factors. 415 
For instance, the validation runs do not commence in June every year, instead, they encompass 
full year runs with WSM6BMJ_ann_svd/WSM6BMJ_jjas_svd calibration parameters, so that 
the model is not getting an accurate initial condition at the start of the summer in 
WSM6BMJ_jjas_svd. Another possible explaination is that the model was allowed to run 
across different season, not just summer, using season-specific calibration parameter, 420 
potentially leading to inconsistent fluxes and inaccurate feedback. 
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Overall, both SVD experiments yield similar results in reproducing JJAS discharge, with no 
significant advantage of one method over the another. Notably, calibration for the JJAS period 
is relatively quicker to achieve compared to calibrating for an entire year. 

 425 

 

Figure 7– Comparison of PEST-calibrated/validated discharge (with WSM6BMJ forcing for JJAS only) 
using estimation and regularisation mode with default model discharge and observed discharge at the 
basin outlet. Top x-axis and right y-axis show precipitation for APHRODITE and WRF simulation 
(WSM6_BMJ forcing) 430 
 

Table 6 – The accuracy metrics of calibrated/validated WRF-Hydro discharge during JJAS only (with 
WSM6BMJ forcing) compared to observed discharge. The metrics are computed separately for the 
calibration (2003) and validation periods (2004-2005). d: index of agreement; KGE: Kling-Gupta 
Efficiency; NSE: Nash-Sutcliffe Efficiency Coefficient; RMSE: root mean squared error. 435 
 

Experiment / 
Accuracy 

CALIBRATION (2003) 

 

VALIDATION (2004-2005) 

d KGE 
(2009) NSE RMSE d KGE 

(2009) NSE RMSE 

WSM6BMJ_def 0.58 -0.41 -3.78 6468.45 0.71 0.48 -0.02 6962.52 

WSM6BMJ_jjas_lsq 0.47 -0.50 -6.33 8010.38 0.55 0.21 -0.46 9349.84 

WSM6BMJ_jjas_svd 0.65 -0.31 -2.55 5579.96 0.80 0.64 0.17 6079.46 

WSM6BMJ_ann_lsq 0.62 -0.71 -3.6 6341.48  0.80 0.66 0.24 5894.49 

WSM6BMJ_ann_svd 0.63 -0.62 -3.25 6099.20  0.80 0.65 0.24 5929.34 
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 440 

 

 

3.2.4 Ensemble of estimations 

WRF-Hydro inherits the performance intricacies from WRF’s precipitation input. Any extreme 
change in precipitation can lead to a similar behavior in discharge. MP8KF* underestimates 445 
summer precipitation/discharge but simulates the rest of the year relatively well. WSM6BMJ* 
produces summer precipitation/discharge better than MP8KF* but simulates the rest of the year 
relatively poorly. Therefore, seasonal dependent sensitivity of WRF/WRF-Hydro’s 
precipitation/discharge simulation motivates the use of ensembles to obtain reliable 
information. 450 

Hence, we compute an ensemble discharge using an experiment from MP8KF* and 
WSM6BMJ* experiments. SVD experiments produced higher accuracy (section 3.2.1-3.2.3) 
for calibration/validation, therefore, we use  MP8KF_reg_svd, WSM6BMJ_reg_svd, and 
WSM6BMJ_jjas_svd experiments to compute an ensemble mean as well as a weighted 
ensemble mean. We computer a total of four ensembles, two ensembles mean and two weighted 455 
ensembles, using Eqs. 1-4. 

 

Ensemble Mean: 

𝑀𝑃8𝑊𝑆𝑀_𝑟𝑒𝑔_𝑠𝑣𝑑_𝑒𝑛𝑠	(𝑡) 		= 	3
𝑀𝑃8𝐾𝐹_𝑟𝑒𝑔_𝑠𝑣𝑑	(𝑡)+ 	𝑊𝑆𝑀6𝐵𝑀𝐽_𝑟𝑒𝑔_𝑠𝑣𝑑	(𝑡)

2
8	

Equation 1 460 

 

𝑀𝑃8𝑊𝑆𝑀_𝑗𝑗𝑎𝑠_𝑠𝑣𝑑_𝑒𝑛𝑠	(𝑡) 	= 	3
𝑀𝑃8𝐾𝐹_𝑟𝑒𝑔_𝑠𝑣𝑑	(𝑡)+ 	𝑊𝑆𝑀6𝐵𝑀𝐽_𝑗𝑗𝑎𝑠_𝑠𝑣𝑑	(𝑡)

2
8	

Equation 2 

 

Weighted Ensemble: 465 

𝑀𝑃8𝑊𝑆𝑀_𝑟𝑒𝑔_𝑠𝑣𝑑_𝑒𝑛𝑠𝑊	(𝑡) 	= 	 ;					𝑀𝑃8𝐾𝐹_𝑟𝑒𝑔_𝑠𝑣𝑑	(𝑡)																					𝑖𝑓			𝑡 ∉ 		𝐽𝐽𝐴𝑆𝑊𝑆𝑀6𝐵𝑀𝐽_𝑟𝑒𝑔_𝑠𝑣𝑑	(𝑡)																						𝑖𝑓			𝑡		 ∈ 𝐽𝐽𝐴𝑆  

Equation 3 

 

 Equation 4.  
SEQ 

Equation_4. 
\* ARABIC 

9 

 Equation 4.  
SEQ 

Equation_4. 
\* ARABIC 

10 

Equation 4.  
SEQ 

Equation_4. 
\* ARABIC 

11 
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𝑀𝑃8𝑊𝑆𝑀_𝑗𝑗𝑎𝑠_𝑠𝑣𝑑_𝑒𝑛𝑠𝑊	(𝑡) 	= ; 					𝑀𝑃8𝐾𝐹_𝑟𝑒𝑔_𝑠𝑣𝑑	(𝑡)																					𝑖𝑓			𝑡 ∉ 		𝐽𝐽𝐴𝑆
𝑊𝑆𝑀6𝐵𝑀𝐽_𝑗𝑗𝑎𝑠_𝑠𝑣𝑑	(𝑡)																									𝑖𝑓			𝑡			 ∈ 𝐽𝐽𝐴𝑆𝑆 

Equation 4 470 

 

All four ensembles produce discharge with reasonable accuracy, having NSE greater than or 
equal to 0.5 (Table 7). The ensemble mean has both, a better mean discharge as well as greatly 
reduced spurious peaks outside of summer, creating a more realistic simulation overall (Figure 
8). For calibration, NSE increases to 0.56 (for weighted ensemble mean) and 0.64 (for 475 
ensemble mean) which is higher than any individual experiment in section 3.2.1-3.2.2 (Table 
5-7). However, validation suggests the weighted ensemble has a better NSE (0.60) than 
ensemble mean (0.47). Nevertheless, both calibration and validation accuracy improve 
following the ensemble approach (Figure 8, Table 7). The validation period (2004-2005) has 
more extreme peaks in precipitation/discharge due to winter and spring storms, affecting the 480 
accuracy of the ensemble mean, however swapping the JJAS discharge from both experiments 
in weighted ensemble lead to better accuracy. 

Since the accuracy of the ensemble mean decreases during the validation period, the 
unweighted ensemble approach might not be a reliable methods. However, any of the weighted 
ensemble performs better than individual experiments. 485 

 

 

Figure 8– Comparison of the default model discharge and the observed discharge at the basin outlet with 
an ensemble of PEST-calibrated/validated discharge (using MP8KF and WSM6BMJ forcing) 
employing estimate and regularization mode. 490 
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 495 

 

 

Table 7 – The accuracy metrics of a calibrated/validated WRF-Hydro discharge ensemble (with MP8KF 
and WSM6BMJ forcing) compared to observed discharge. The metrics are produced separately for 
calibration (2003) and validation (2004-2005). d: index of agreement; KGE: Kling-Gupta Efficiency; 500 
NSE: Nash-Sutcliffe Efficiency Coefficient; RMSE: root mean squared error. 
 

Experiment / Accuracy 

CALIBRATION (2003) 

 

VALIDATION (2004-2005) 

d KGE 
(2009) NSE RMSE d KGE 

(2009) NSE RMSE 

MP8WSM_ann_svd_ens 0.90 0.67 0.64 3430.56 0.83 0.62 0.47 4871.02 

MP8WSM_ann_svd_ensW 0.90 0.63 0.50 4039.98 0.89 0.72 0.60 4246.53 

MP8WSM_jjas_svd_ens 0.88 0.60 0.61 3600.79 0.82 0.59 0.47 4875.58 

MP8WSM_jjas_svd_ensW 0.90 0.67 0.56 3780.81 0.88 0.67 0.58 4316.89 

 

WRF-Hydro calibration with PEST framework in regularisation mode performs better than in 
estimation mode. The objective function in the regularisation mode is complemented by an 505 
additional cost function that prevents overfitting of the model to obtain global minima, unlike 
the estimation mode that calculates the sum of squared differences between simulation and 
observation. It uses Tikhonov Regularisation with SVD and LSQR solver to divide the 
parameter space into the null space and solution space. The null space contains the parameters 
that are inestimable, while the solution space contains the estimable parameters. The separation 510 
of null and solution spaces makes the problem well-posed and numerically stable. To generate 
more set of parameters, only estimable parameters are perturbed, however, inestimable 
parameters remains fixed to their values. Applying both solutions (SVD and LSQR), we find 
that SVD outperformed LSQR to provide an optimal parameter set through regularised 
inversion. However, LSQR has the advantage of computational speed. Therefore, LSQR could 515 
be a better choice for the highly parameterized inversion problem as SVD may become very 
slow. 
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3.3 Parameter Sensitivity 520 

Parameter sensitivity analysis helps to identify important parameters to undergo for calibration 
and perturbation. Composite sensitivity analysis assess the change in parameters’ sensitivity 
when all parameters are perturbed at the same time. It is calculated through the Jacobian 
derivate or parameters’ initial value. As the calibration process progresses, the values of 
parameter change and hence their sensitivity too. PEST does calibration process through 525 
iterations, known as optimization iterations, the value and sensitivity associated with iteration 
having minimum objective function known as optimized value and optimized sensitivity. 

Variations in value and sensitivity over iterations shows PEST capability to search the 
parameter space to find an optimum value (Figure 9-10). These figures are shown for 
regularised inversion experiments for MP8KF and WSM6BMJ forcing using SVD and LSQ; 530 
and are not shown for other calibration experiments as they seem to show similar information.  

A few biophysical parameters (saim7, sais7, zvt7, hvt7, laiw7, lais7, albic1, albic2, and lvcoef) 
did not change over the iterations (Figure 9). The corresponding sensitivity of these parameters 
also suggest no substantial role in inversion process (Figure 10). Besides, some parameters 
(chslp3, chslp4, sais5s) reached to their bounds and got freezed after some variations. These 535 
contrasting behaviour of parameters shows the relative importance of these parameters with 
respect to others, and could help to optimize the calibration process through further 
subselection of parameters. 

Once a parameter is frozen to its bound, it no longer participates in the inversion until next 
optimization iteration. Channel slope parameters shows limited/no variations, except for the 540 
second-order channel slope. Numbering (1,5 and 7) in the lai, sai, hvt, and zvt parameters refer 
to the specific LULC class. 1 stands for Evergreen Needleleaf Forest, 5 stands for Mixed Forest, 
and 7 stands for open Shrublands. Most of the biophysical parameters did not show variations 
for open Shrublands because of the limited landscape belonging to this class.  

If a parameter is not sensitive, it is not considered as an adjustable parameter, and hence no 545 
more set of values are generated. Therefore, parameters that showed almost no variations 
(saim7, sais7, zvt7, hvt7, laiw7, lais7, albic1, albic2, and lvcoef) are found to be insensitive. 
Furthermore, the channel slope parameters are sensitive (composite sensitivity) but reach to 
their bounds and does not participate in inversion. Because model calibration is a constrained 
inversion problem that means a parameter could be sensitive enough but can take a value in a 550 
certain range to not loose its physical relevance.  The constrained parameter calibration 
approach also helps to reduce model equifinality sets, however, they can not be minimized by 
just constraining parameters and require more advanced multi-objective functions. Moreover, 
frozen parameters may have different sensitivity over the iterations due to the changes in 
jacobian derivative that depends on the initial sensitivity computed using parameters’ initial 555 
values. A change in initial value can lead to a change in parameter’s sensitivity.  
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Manning coefficients are one of the most sensitive parameters (Figure 10) in addition to 
runoff/infiltration rate (refkdt) and saturated hydraulic conductivity (refdk). A few biophysical 
parameters (lai, sai, hvt, zvt) associated with Evergreen Needleleaf Forest and Mixed Forest 
are also sensitive. Snow parameters are sensitive except for the snow albedo parameters (albic1, 560 
albic2). Among snow parameters, mfsno is the most sensitive snow parameter. 

Though many parameters have different optimum values over the iterations, most of them are 
closer in their sensitivity under the SVD and LSQR regularised inversion (Figure 10). This 
signifies the method's robustness to provide optimal sensitivity (and hence inversion solution) 
to find the global minima. However, this also signifies the phenomena of equifinality (Beven 565 
and Freer, 2001; Savenije, 2001; Wang et al., 2019) where it is possible to get the many 
parameter sets associated with global minima. The impact of equifinality can be reduced using 
multi-observation objective function. For example, alongside the observed discharge, observed 
soil moisture or biophysical properties also constraint calibration process to limit number of 
ways for a model to reach global minima. 570 
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Figure 9– Variations in the parameter values of all adjustable parameters utilized in the inversion 
process under MP8KF forcing. The parameter fluctuations are displayed over the optimization iterations 
of the calibration process in regularisation mode, using SVD and LSQR inverse solutions. The solid 
line depicts parameter fluctuations, whereas the dashed line represents the parameter value in the most 575 
optimal iteration. The color green indicates SVD regularisation, while yellow denotes LSQR 
regularisation. 
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Figure 10– Variations in the sensitivity of all adjustable parameters utilized during the inversion process 580 
using MP8KF forcing. The composite parameter sensitivity is displayed over the optimization iterations 
of the calibration process in regularisation mode, using the SVD and LSQR inverse solutions. The solid 
line represents the parameter sensitivity, whereas the dotted line represents the parameter sensitivity in 
the most optimized iteration. The color green indicates SVD regularisation, while yellow denotes LSQR 
regularisation. 585 
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4. Summary and Discussion 

 

Here we attempt to calibrate WRF-Hydro over a Himalayan basin with an automated 
obtimization scheme. We find that calibration results are largely influenced by the choice of 590 
precipitation sourced from WRF. Among the calibration experiments, it is evident that the 
choice of precipitation input have more substantial influence on the outcome than the selection 
of parameter sets. Consistent with Dixit et al. (2023), the MP8KF* experiments are 
underestimating the discharge during summer and the WSM6BMJ* experiments are found to 
have extreme spurious peaks. Most of these discharge characteristics are inherited from the 595 
precipitation. Nonetheless, parameter tuning is also important to match the observed peaks and 
contributes to improve model performance. Our findings are consistent with Li et al. (2017) 
who performed hydrological simulations over the same region with WRF-Hydro fed with 
WRF-derived meteorological forcing similar to our MP8KF setup. They found that discharge 
is underestimated. They added additional runoff from a glacier model while keeping infiltration 600 
and retention depth to zero to compensate the offset. This clearly helped to attain desirable 
discharge but may not be helpful for other hydrological fluxes such as soil moisture or 
subsurface runoff.  

Instead, we find that improved precipitation can improve the calibration performance and helps 
to achieve reliable streamflow. Moreover, we followed an ensemble weighting approach in this 605 
study to overcome the underestimation of summer precipitation. Alternatively, bias correction 
could also help in the regions where observations are available with sufficient frequency in 
time and space, which is not the case in our region. Our study region has significant snow/ice 
cover that necessitates using sub-daily forcing to reliably compute snowmelt runoff and, 
consequently, streamflow. Further limitations and reasons for not performing precipitation bias 610 
correction are discussed in the Supplementary Section S6. 

Instead, the contrast between MP8KF*/WSM6BMJ* experiments and their respective 
underestimation/overestimation of the summer/winter-spring precipitation helps to obtain an 
accurate discharge through forming an ensemble mean that balances the counteracting effects. 
WRF-Hydro calibration with PEST framework in regularisation mode performs better than its 615 
estimation mode. However, LSQR has the advantage of computational speed. Therefore, LSQR 
could be a better choice for the highly parameterized inversion problem. 

Many parameters failed to help converging the model and are considered as not useful 
parameters. Most of these parameters are biophysical parameters associated with open 
shrubland. However parameters associated with Evergreen Needleleaf Forest (ENF) and Mixed 620 
Forest (MF) shows substantial role in calibration. Additionally, deep soil temperature depth 
(zbot), momentum roughness length (zvt1, zvt5), height of canopy (hvt1, hvt5), and snow 
related parameters are found to be sensitive to produce discharge. Notably, ice albedo 
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parameters (albic1, albic2) are not sensitive which are important to estimate radiation fluxes 
and eventually melt through energy exchange with downward sensible heat flux. We suspect 625 
the semsitivity of these parameters are compromised by other parameters, especially mfsno, 
however further investigation is required to come out precisely with the explaination. mfsno is 
a snowmelt parameter and is the most sensitive snow parameter that is responsible for the snow 
cover fraction of a grid. The z0sno (snow surface roughness length) and rsurf (snow surface 
resistance) are also found sensitive to control melt discharge. The soil parameters refdk and 630 
refkdt are also sensitive to the volume of discharge through runoff/infiltration partitioning. The 
channel parameters are among the most influential parameters for discharge and holds highest 
sensitivity. Channel slope parameters are sensitive but froze to their bounds quickly after a few 
iterations that shows its higher sensitivity to influence discharge. Slope parameter can influence 
discharge volume and peak substantially. Since, JJAS discharge is underestimated in 635 
uncalibrated version of the model, PEST does try produce higher peaks through increasing 
slope parameters and eventually reaching its bound. Therefore, it is advise to be cautious while 
defining bounds for these parameters. 

 

WRF-Hydro provides flexibility to define a scaling factor for overland flow roughness 640 
parameter (OVROUGHRT) and retention depth (RETDEPRT). It can be used to provide spatial 
heterogeneity of these parameters. These parameters help to increase/decrease the water 
availability over the surface and hence sometimes used as to calibrate the discharge (Kerandi 
et al., 2018; Li et al., 2017; Wang et al., 2019). Wang et al., (2019) used RETDEPRT as 0.001, 
which means the soil would have lesser retention depth, hence lesser ponded water. The lesser 645 
ponded water provides more water to runoff to join the channel, thereby produce more surface 
and channel runoff. They found that the model underestimated discharge, so infiltration was 
kept to zero to provide more surface water to the runoff and routing scheme. The zero 
infiltration would provide more water to runoff from the surface and join channel to produce 
more discharge. However, these scaling parameters are not changed in this study. Instead, the 650 
associated LULC type parameters are selected to go through the inversion process and find the 
optimal value.  

 

 

5.  Conclusions 655 

By conducting a full sensitivity and calibration demonstration, this study shows the 
applicability of the calibrated version of WRF-Hydro coupled with a reliable version of WRF. 
It can be a useful tool to provide robust climate information for consumption of policymakers, 
especially to overcome poor spatio-temporal coverage of observation in this region. 
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However, any model calibration exercise is highly dependent on the regional physiographical 660 
and topographical conditions, so it should be an independent exercise for every region and 
every model before its deployment. Therefore, values of the parameters we found optimal may 
not be directly used for other parts of the world. However, the method to calibrate the model 
can be applied over any region. Moreover, a few of the most sensitive biophysical, soil, and 
snow parameters identified can be used as initial targets when performing calibration in similar 665 
regions, saving time and computational cost. This study also recommends to use the regularised 
inversion with SVD solver for parameter optimization, consistent with Wang et al. (2019). 
Wang et al. (2019) did a limited time calibration of few days but found that SVD regularisation 
outperforms other methods over the midwestern United States. We recommed to follow this 
approach for hydrological model calibration over any part of the world as PEST is model 670 
independent and can be coupled with any model with slight configurational changes. 
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Code Availability 

• WRF-Hydro code is available at https://github.com/NCAR/wrf_hydro_nwm_public 
• WRF code is available at https://github.com/wrf-model/WRF 

 

Data Availability 685 

Softwares used in this study are open source and are free to download/use i.e. WRF 
(https://github.com/wrf-model/WRF/releases), WRF-Hydro 
(https://ral.ucar.edu/projects/wrf_hydro/model-code), and PEST 
(https://pesthomepage.org/programs). Python is used in production of figures and other 
analysis of results. Meteorological datasets are also available in open domain i.e. 690 
Observational datasets-  

IMD (https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_NetCDF.html),  
APHRODITE (https://www.chikyu.ac.jp/precip/english/downloads.html) 
TRMM (https://disc.gsfc.nasa.gov/datasets/TRMM_3B42_Daily_7/summary) 
PERSIANN-CDR (https://chrsdata.eng.uci.edu/) 695 
CPC (https://psl.noaa.gov/data/gridded/data.cpc.globalprecip.html) 
CHIRPS (https://data.chc.ucsb.edu/products/CHIRPS-2.0/) 
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CRU (https://crudata.uea.ac.uk/cru/data/hrg/) 
GPCP (https://downloads.psl.noaa.gov/Datasets/gpcp/) 

Reanalysis datasets –  700 
ERA-Interim (https://rda.ucar.edu/datasets/ds627.0/dataaccess/ ) 

The river discharge dataset is not publicly available but can be purchased from Bhakra Beas 
Management Board (BBMB) 
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