
 

 
Figure S1– The flowchart of the WRF-Hydro calibration experiments. 
  



 

 
 

 

S2. WRF-Hydro 

WRF-Hydro is one of such advanced hydrological models developed at the National Center 
for Atmospheric Research (NCAR), USA. It has five components (atmospheric model, land-
atmosphere parameterization, groundwater, hillslope and/or channel routing, and water 
management) that are connected through a coupler (Figure S1).  

 

 

Figure  S2 – Schematic diagrams of the WRF-Hydro coupler and components. From the technical 
description of WRF-Hydro (adopted from Gochis et al., 2018). 
 

The atmospheric component can be coupled through an online/offline mode. In the case of 
online coupling, it feeds back to the atmospheric component. In this model, various modules 
integrate detailed hydrological processes such as vertical land surface parameterization, surface 
overland flow, saturated subsurface flow, channel routing, reservoir routing, and conceptual 
base flow processes (Gochis et al., 2018). The model allows the routing of water that is excess 
to the soil infiltration capacity and the saturated subsurface water. The infiltration of excess 
water, together with possible exfiltration from the saturated soil, is subsequently allowed to 
pond on the land surface, move laterally, and reinfiltrate if conditions are feasible (Senatore et 
al., 2015). 

The hydrological processes are more sensitive to the grid size than to the atmospheric 
processes. Therefore WRF-Hydro allows the aggregation-disaggregation from the atmospheric 
grid to the routing grid. The disaggregation is performed after executing land surface processes 
and prior to routing exercise. Thereby, more accurate channel flow can be estimated with the 
more accurate representation of channel grids.  



 

Subsurface flow is computed prior to the overland flow routing to allow the overland routing 
of the water from exfiltration. It uses the quasi 3-D flow to calculate the saturated soil 
moisture's lateral flow, including the effect of topography, saturated conductivity, and saturated 
soil depth. WRF-Hydro does support a fully unsteady, explicit, finite difference, diffusive wave 
approach for the overland flow routing (Julien et al., 1995; Senatore et al., 2015; Ogden, 1997) 
that also accounts for the backwater effects. However, the simple steepest descent approach 
(D8 approach) is also available for overland flow routing. The numerical stability (meeting the 
courant criteria), to solve the diffusive wave equations is achieved through the conservative 
time step that can be changed, if required, in the namelist file. The model performs channel 
flow routing by integrating the diffusive wave equations through a first-order Newton-Raphson 
solver. The initial time step of channel flow routing remains the same as overland flow routing. 
The channel routing is performed grids-by-grids on routing grids along with the channel 
network. The overland flow discharge into the channel is computed using the mass balance 
analysis. 

 

S3. Parameter ESTimation (PEST) Tool 

PEST is a model-independent parameter estimation tool. It requires three input files: 
template files, instruction files, and control files. The template files are cloned to the parameter 
files, just that it holds a placeholder in place of the involved parameter's value. The instruction 
files are created to collect the model output. For every observation, one instruction file must be 
created. Control file acts as a controller to define the configuration of the inversion process, 
including the mode of operation. PEST can be run into four modes, estimation, predictive 
analysis, regularisation, and pareto. PEST was utilized in the estimation and regularisation 
modes in this study. 

PEST is iterative in behavior that means it runs in repetitive iterations. These iterations 
are required because of the non-linear behavior of the models. Due to this non-linearity, the 
parameter sensitivity changes by changing its value. Only one iteration would suffice for the 
inversion process in linear models (Doherty 2015). Each iteration computes the initial 
parameter sensitivity through the Jacobian matrix (Jacobian transformation). The initial 
sensitivity was then used to estimate the improved set of parameters through Marquardt 
lambda. The different lambda values were generated using the trial and error method. 

The calculation of partial derivatives (of observation with respect to the adjustable 
parameters) is a key to the inversion process. These derivatives are the elements of Jacobian 
matrix and can be calculated through forward or central differences with two, three, or five 
finite points. PEST is capable of starting the inversion using forward differences and switching 
to a central difference using three or five finite points if the inversion process seems to be 
slower, identified through the relative reduction in the objective function below a certain 



 

threshold. The runtime switch prevents the iterations’ slowdown and fastens the inversion 
process. 

The performance of PEST with the traditional methods could be compromised if the 
inversion problem is ill-posed. The Gauss-Marquardt-Levenberg method calculates the 
updated parameter set through the inversion of the normal matrix, added by the Marquardt 
lambda to its diagonals. If this matrix is singular, thereby non-invertible, then the problem is 
ill-posed and unable to compute the global minima of the objective function. However, 
Singular Value Decomposition (SVD) and Least Square (LSQR) guarantee numerical stability 
to solve the inverse problem. Hence, the global minima of the objective function are achievable. 
The addition of Tikhonov Regularisation ensures obtaining the parameter set with minimum 
error variance. In this study, the PEST was used in both with and without regularization mode. 
In case of regularization, both SVD and LSQR were used as a solver. The regularization was 
applied keeping in mind its superiority over the default classical mode. 

 

S4.  PEST configuration 

PEST requires a few thresholds to perform model simulations iteratively to optimize its 
parameters to suggest as terminating conditions either for iteration or experiment. Details of 
PEST and its functioning can be found in Doherty (2016). Following are some of the important 
thresholds. 

 

PEST uses objective function to minimize the total squared error between observed and 
simulated discharge:  
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Equation 1 

𝜙!		represents the measurement objective function, 𝑤# represents the weight, 𝑞#$%& is the 
observed discharge and 𝑞#&'! is the simulated discharge for kth timestamp. 𝜙!		works as an 
objective function when PEST uses traditional methods to solve the inverse problem, however 
if regularisation is applied, the objective function is modified to: 
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Equation 2 

where 𝜙 represents the total objective function, 𝜙! represents the measurement objective 
function and 𝜙( represents the regularised objective function. 



 

PEST runs through iterations because of the non-linear behaviour of the model and variable 
composite sensitivity of the parameters. Composite sensitivity is computed using Eq. 3, where 
J stands for Jacobian matrix and Q denotes the weight matrix.  
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Equation 3 

 

The multiple iterations are required because parameter sensitivity changes upon 
changing the parameter initial sensitivity using Jacobian derivatives, which depends on their 
initial values. PEST converges and optimizes the parameters over these iterations; however a 
certain threshold is necessary as termination condition. A few important thresholds that we 
used are as follows 

PHIRATSUF (phi ratio sufficient) was defined to determine whether the phi reduction 
goal for a particular iteration is achieved. So, if threshold criteria met (Eq. 4), PEST moves on 
to the next iteration. This value was chosen to be 0.001. 
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Equation 4 

PHIREDLAM (phi reduced lambda) determines when to move to the next iteration. 
However, the decision is made based on the different lambda values. If the ratio of objective 
function of successive lambdas (Eq. 5) fails to meet the threshold, PEST will not try with more 
lambda values and move on to the next iteration. This value was chosen almost zero to allow 
the PEST to try with the maximum number of lambdas. 
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Equation 5 

PHIREDSWH (phi reduced switch) determines when to switch to the higher orders for 
derivative calculation (i.e., two point forward difference to three/five point central difference). 
If the ratio of objective function through two successive lambdas (Eq. 6) values fails to meet 
the threshold, the higher order derivative calculation activates. This threshold makes sure that 
the inversion process is not slowing significantly. This value was chosen to be 0.1. 
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Equation 6 

PHIREDSTP (phi reduced stop) puts the threshold to the objective function of an 
iteration. If the objective function does not meet this threshold, PEST will cease execution after 
the occurrence of such iteration NPHISTP times. PHIREDSTP was chosen to be 0.01 and 
NPHISTP to be 3. 
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We used specialized version of PEST i.e. BeoPEST (it will be referred as PEST hereafter) 
where a parallelization architecture is in form of master and slave nodes (Figure 3). A manager 
controls all the parallel ongoing simulations while doing nothing by itself but recording 
performance of all iterations and generate new parameter sets based on simulation 
configurations. The simulations are performed at slave nodes that do not interact with each 
other directly. 

 

 
Figure 3– The schematic diagram represents the parallel processing during the model (WRF-Hydro) 
inversion under the PEST framework. 

 

 

 

 

 



 

 

 

 

Experiment  Calibration 
Period 

Optimization 
Iteration 

Model 
Calls 

Comment 

MP8KF_em ANN 9 743 (~ 743 model years) 

MP8KF_reg_lsqr ANN 9 737 (~ 737 model years) 

MP8KF_reg_svd ANN 22 1603 (~ 1603 model years) 

WSM6BMJ_em ANN 9 735 (~ 735 model years) 

WSM6BMJ_reg_lsqr ANN 15 1103 (~ 1103 model years) 

WSM6BMJ_reg_svd ANN 18 1348 (~ 1348 model years) 

WSM6BMJ_reg_lsqr_jjas JJAS 24 1687 (~ 562 model years) 

WSM6BMJ_reg_svd_jjas JJAS 14 987 (~ 329 model years) 

 
Table 1 – Design experiments for the WRF-Hydro calibration under the PEST framework. The 
experiments include the traditional as well as more sophisticated (SVD or LSQR regularisation) 
numerical solutions to the inverse problem. The comment column shows the number of model years 
required to achieve the optimum solution. 
 

 

Using above thresholds, two simulations were designed under parameter estimation mode, each 
with MP8KF and WSM6BMJ meteorological forcing. Under the parameter estimation mode, 
PEST provides a traditional numerical solution; hence it does not guarantee a solution to the 
inverse problem. To solve this problem, four more experiments were designed with a 
regularisation mode that uses SVD or LSQR (MP8KF_reg_lsqr, MP8KF_reg_svd, 
WSM6BMJ_reg_lsqr, and WSM6BMJ_reg_svd experiments in Table 3). The experiments 
designed so far were using meteorological forcing for an entire year. However, WSM6BMJ 
performs well just for JJAS that accounts for highest annual variability, hence two more 
experiments were designed focused just on JJAS using WSM6BMJ forcing to explore whether 
a season-specific calibration can improve performance (WSM6BMJ_reg_lsqr_jjas and 
WSM6BMJ_reg_svd_jjas experiments in Table 4.3). Hereafter, MP8KF* experiments will 



 

refer to a set of hydrological experiments that uses MPKF meteorological forcing and similarly 
for WSM6BMJ* experiments.  

 

S5. Regularisation 

Regularisation refers to the mathematical measures taken to find a stable solution to otherwise 
ill-posed problems (Doherty and Skahill, 2006). It also helps finding the solution to inverse 
problems that are well-posed but ill-conditioned (Linden et al., 2005), besides being applied to 
the well-posed and well-conditioned problems. The over-parameterization of a model can lead 
to the ill-posedness of the numerical solution. The constraints or additional information 
provided in the form of mathematical relationships to stabilize the solution is known as 
regularization constraint optimization. 

The regularisation can offer a robust optimization strategy while estimating the unique 
value of model parameters. There are two general approaches implementing the regularization, 
penalty function and dimensionality reduction. Tikhonov regularization is an example of a 
penalty function, and truncated singular value decomposition is an example of a dimensionality 
reduction approach. 

PEST offers the use of Tikhonov regularization by aiding an additional objective 
function besides the one for the measurement, known as the regularization objective function. 
Therefore, the overall objective function will be  𝛷 =	𝛷! +	𝜇-𝛷( where 𝛷! is a measurement 
objective function and 𝛷( is a regularization objective function. 𝜇 is a regularization weight 
factor. PEST calculates 𝜇 following an iterative search process during every optimization 
iteration of the Gauss-Marquardt-Levenberg method (Doherty, 2003).  

  



 

S6. Bias correction challenges 
 

The bias correction of the simulated precipitation was attempted using the station 
observed precipitation. It is to be noted that the stations are spread within a small area, and 
cover only a very small fraction of the model domain. Supplementary Figure A2.1 shows the 
observed, WRF simulated, and bias corrected precipitation for ANN, JJAS, and DJF. No 
significant changes were found in the simulated precipitation after the bias correction, since 
the stations cover a very small fraction of the model domain. Also, to be noted is that large 
biases occur over higher altitudes where there are no stations. Bias corrected JJAS precipitation 
was found to underestimate the observation throughout the region, similar to the simulated (non 
bias-corrected) precipitation pattern. For JJAS precipitation,  R-square was found to be slightly 
decreased, however, R to be slightly increased. The RMSE remains almost similar (Table 
A2.1). 

Therefore, using the bias corrected precipitation for WRF-Hydro calibration may not 
add much value. Instead, the weighted ensemble was used to represent the JJAS and DJF 
precipitation with different parameterization schemes. The ensemble methodology appeared to 
overcome the underestimation/overestimation in the precipitation for different seasons. 
Thereby, a good accuracy was achieved when using a weighted ensemble. Moreover, the 
observations are available at daily frequency. However, the hourly precipitation was used to 
account for the more reliable snowmelt and discharge consequently. Notably, the important 
conclusion from this chapter is to have different parameterizations into consideration (for 
different seasons) to produce reliable precipitation/discharge. 

 

 ANN JJAS DJF 

 WRF WRF-BC WRF WRF-BC WRF WRF-BC 

RMSE 4.25 4.15 9.5 9.3 2.8 2.82 

R-square 0.51 0.46 0.58 0.49 ~0 ~0 

R 0.56 0.66 0.41 0.45 0.32 0.47 

Table S6 – The accuracy metrics of the WRF simulated precipitation with APHRODITE observation 
before and after the bias correction.



 

 

 

Figure S6- (a) shows the observed average annual precipitation for (i) ANN, (ii) JJAS, and (iii) DJF. (b) 
shows the average annual precipitation bias to (a) for MP8_KF experiment with WRF for (i) ANN, (ii) 
JJAS, and (iii) DJF. (c) shows the bias corrected precipitation of the WRF MP8_KF experiment using 
observed precipitation at seven locations for (i) ANN, (ii) JJAS, and (iii) DJF. 

 


