Supplement of

Aerosol Size Distribution Properties Associated with Cold-Air Outbreaks in the Norwegian Arctic

Abigail S. Williams¹, Jeramy L. Dedrick¹, Lynn M. Russell¹, Florian Tornow^{2,3}, Ann M. Fridlind³, and Israel Silber^{4,*}, Bejamin Swanson⁵, Paul J. DeMott⁵, Paul Zieger^{6,7}, and Radovan Krejci^{6,7}

¹Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA

²Center for Climate Systems Research, Columbia University, New York, NY, USA

³NASA Goddard Institute for Space Studies, New York, NY, USA

⁴Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA

*now at Atmospheric, Climate, and Earth Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA

⁵Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA

⁶Department of Environmental Science, Stockholm University, Stockholm, Sweden

⁷Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Contents

ext	
Text S1	1
gures	
Figure S1	2
ables	
Table S1	3
Table S2	4

Text S1.

A very weak negative correlation between D_{HM} and N_{HM} (r = -0.15, p < 0.05) is observed during CAO events at Andenes. If the supersaturation increase were aerosol-limited for non-precipitating low-cloud conditions, then a positive correlation of D_{HM} with N_{HM} is expected (Dedrick et al., 2024). If the supersaturation is not limited by the number of particles that activate, then D_{HM} may be limited by updraft velocity (Chen et al., 2016). No correlation is observed between D_{HM} and the updraft velocity retrievals available from Bear Island (COMBLE supplemental site) for time periods corresponding to when air mass trajectories arriving at Andenes passed near Bear Island (r = -0.1, p > 0.05). The absence of either correlation may result from scavenging of activated particles during precipitation.

Figure S1. Measured aerosol size distributions at Zeppelin Observatory (green; upwind) and Andenes (red; downwind) for 15 CAO trajectories (Sect. 4). For subplots (a)-(o), refer to Table S1 for corresponding dates and times.

Figure S1	Time (<i>mm/dd/yy HH:MM in UTC</i>)	Time (<i>mm/dd/yy HH:MM in UTC</i>)	
subplot	oplot of passage by Zeppelin Observatory of arrival at Andenes		
(a)	12/1/19 12:00	12/2/19 15:00	
(b)	1/3/20 09:00	1/4/20 15:00	
(c)	1/3/20 18:00	1/4/20 18:00	
(d)	1/3/20 21:00	1/4/20 21:00	
(e)	1/21/20 11:00	1/22/20 18:00	
(f)	2/4/20 13:00	2/5/20 18:00	
(g)	2/17/20 19:00	2/19/20 00:00	
(h)	2/17/20 23:00	2/19/20 03:00	
(i)	3/10/20 22:00	3/12/20 09:00	
(j)	3/11/20 02:00	3/12/20 12:00	
(k)	3/12/20 04:00	3/13/20 06:00	
(1)	3/12/20 22:00	3/13/20 18:00	
(m)	3/13/20 0:00	3/13/20 21:00	
(n)	3/13/20 01:00	3/14/20 00:00	
(0)	3/24/20 04:00	3/25/20 15:00	

Table S1. The dates and times that air masses passing by Zeppelin Observatory arrived at Andenes for each of the 15 CAO trajectories (Sect. 4) shown in Fig. S1.

Table S2. Summary of reported CCN concentrations and the CCN/CN ratios measured at high latitudes
(above 60°N) at supersaturations (SS) near 0.4 %. Values reported are mean except where noted.

Reference	$CCN (cm^{-3})$	CCN/CN	SS (%)	Location
Moore et al., 2011	550 ^a	~ 0.90	0.42	Arctic boundary layer
Jung et al., 2018	45-81 ^b	~ 0.3-0.85	0.4	Zeppelin Observatory
Paramonov et al., 2015	31-149	~ 0.08-1.8	0.3	Pallas (Northern Finland)
	50-176	~ 0.1-0.38	0.5	Pallas (Northern Finland)
Dall'Osto et al., 2017	69-117	n/a	0.4	Canadian Arctic
Herenz et al., 2018	139	n/a	0.3	Canadian Arctic
	164	n/a	0.5	Canadian Arctic
Zabori et al., 2015	~75-230 ^b	~ 0.1-0.65	0.4	Zeppelin Observatory
Martin et al., 2011	35	n/a	0.41	High Arctic
Lathem et al., 2013	247 ^b	0.52	0.55	Arctic

^a95th percentile ^bMedian

References

- Chen, J., Liu, Y., Zhang, M., and Peng, Y.: New understanding and quantification of the regime dependence of aerosol-cloud interaction for studying aerosol indirect effects, Geophysical Research Letters, 43, 1780–1787, https://doi.org/https://doi.org/10.1002/2016GL067683, 2016.
- Dedrick, J. L., Russell, L. M., Sedlacek, A. J., III, Kuang, C., Zawadowicz, M. A., & Lubin, D.: Aerosolcorrelated cloud activation for clean conditions in the tropical Atlantic boundary layer during LASIC, Geophysical Research Letters, 51, e2023GL105798, https://doi.org/10.1029/2023GL105798, 2024.