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Abstract.

Climate indicators are useful tools to synthesise climate information from multiple station time-series into a single national

indicator. The method applied should be spatially representative and robust over time. We introduce a new method, based on

Empirical Orthogonal Functions (EOF) during the calibration period 1961–2018, in order to reconstruct the climate indicator

for temperature in Sweden for the full 1860–2020 period of available observations.5

The new method delivers results in good overall agreement with the reference method (i.e. arithmetic mean from selected

stations in the reference network). Discrepancies are found prior to 1900, primarily related to the reduced number of active

stations: the robustness of the indicator estimation is assessed by an ensemble computation with added random noise, which

confirms that the ensemble spread increases significantly prior to 1880.

The present study establishes that the 10-year running averaged temperature indicator rose from −1.03◦C in 1903 to10

+1.19◦C in 2010 (with respect to a mean value of +4.64◦C over the 1961–2018 calibration period), i.e. an increase by

+2.22◦C in a century. The temperature difference between 1860 and 2020 was largest for winter (DJF) averages (+3◦C) and

minimal for summer (+2◦C).

The leading EOF patterns illustrate the spatial modes of variability for climate variability, with a predominantly homoge-

neous, mono-modal distribution for temperature. For precipitation, the first EOF pattern displays more pronounced regional15

features (maximum over the West coast), which is completed by a north-south seesaw pattern for the second EOF. We illustrate

that EOF patterns calculated from observation data reproduce the major features of EOF calculated from GridClim, a gridded

data-set over Sweden, for annual and seasonal averages. The leading EOF patterns vary significantly for seasonal averages

(DJF, MAM, JJA, SON) for temperature.

Finally, future developments of the EOF-method are discussed for calculating regional aggregated climate indicators, their20

relationship to synoptic circulation patterns and the benefits of homogenisation of observation series.

The EOF-based method to compute a spatially aggregated indicator for precipitation is presented in a companion article

(Sturm, 2024a). The code and data for this study is available on Zenodo (Sturm, 2024b).
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1 Introduction

Direct observations over the instrumental period unequivocally illustrate the ongoing climate change, as cited in the latest25

IPCC (Physical science basis) report (Masson-Delmotte et al., 2021; Gulev et al., 2021)). Numerical methods that aggregate

time-series from individual observation stations over larger area into a single climate indicator, are therefore a useful tool to

represent climate change over e.g. an entire country. The goal of the present method is to compute a bias-free estimator, despite

the fact that data availability (i.e. station activity) varies over time. In other words, the challenge is to define a uniform method,

whose results for the early part of part of the record (with only few active observation stations, not necessarily spread uniformly30

over the territory) will be consistent with later results (with numerous, evenly spaced stations).

The Swedish Meteorology and Hydrology Institute (SMHI) has collected and compiled quality-ensured observations of tem-

perature across Sweden since the eighteenth century: in the current study, we present a total of 993 time-series for temperature

over the 1860–2020 period from observation stations across Sweden. We introduce a new method to calculate the respective

climate indicator over Sweden, with help of a gridded climate data-set (GRIDCLIM (Andersson et al., 2021)), available over35

1961–2018. First, missing observations during the 1961–2018 calibration period are replaced for selected observation sta-

tions (defined as calibration network). Second, the dominant modes of variability in the (now complete) calibration data-set of

observations are analysed with Empirical Orthogonal Functions (EOF).

The analysis of the leading EOF patterns illustrate the dominant modes of variance in the temperature observations. We

assess the similarities and differences between EOF computed from observation data versus a gridded data-set covering all of40

Sweden. In particular, we assess the effect of poorly sampled areas in the observation data-set, e.g. in high-elevation areas, on

the leading EOF patterns.

In order to test the robustness of the new climate indicator, we blend random noise and random sub-sampling from the

original station observations: this ensemble computation allows to define the 25% and 75% percentiles (in other words, the

range between which 50% of all ensemble computations are found).45

Finally, we discuss the discrepancies between the new EOF-based method and the original SMHI method, using an arithmetic

mean of observations from the reference station network.

2 Data and methods

The present sections first describes the data-sets used in this study: SMHI’s database for station observations over 1860–

2020 called SMHI-MORA, and the gridded data-set SMHI-GridClim (Andersson et al., 2021) produced as a combination50

of SMHI-MORA observations with UERRA regional reanalysis over the 1961–2018 period. The data-sets SMHI-MORA and

SMHI-GridClim will hereafter be referred to as MORA and GRIDCLIM.

Secondly, we describe the method currently implemented at SMHI to compute national climate indicators, based on an

arithmetic mean of selected reference stations. Thirdly we introduce a new method based on empirical orthogonal functions

(EOF), computed over the 1961–2018 period for which UERRA reanalysis is available. Leading EOF patterns established over55

the 1961–2018 period are used to reconstruct the climate indicator over the MORA period 1860–2020.
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Data-Set Period Ytemp
max # Sta. Perc.

Complete Total 993 100%

Initial 1860 32 3.2%

Maximum 1962 422 42.5%

Present-day 2020 293 29.5%

Calibration Total 338 100%

Initial 1860 18 5.3%

GridClimstart 1961 193 57.1%

Maximum 1977 249 73.7%

GridClimend 2018 151 44.7%

Reference Total 35 100%

Initial 1860 8 22.9%

Maximum 2009 35 100%

Present-day 2020 34 97.1%

Table 1. Number of stations found in the MORA database. The upper third represents the Complete MORA data-set, the middle third the

Calibration sub-set, i.e. stations with at least 15 years coverage during 1961–2018, and the bottom third the Reference selected stations for

the original SMHI methodology. For each subset, "Total" indicates the number of stations active at least once during the 1860–2020 period;

"Initial" shows the number of stations active in 1860; "Maximum" the maximum of simultaneously active stations; "Present-day" the

number of stations currently active. The complete time-evolution of active stations can be found in figures Fig. (1).

We finally describe a method to evaluate the robustness of various climate indicator estimators: the span of estimator reali-

sations is computing by adding normally-distributed noise and restricting the computation to a subset of MORA stations.

2.1 Observational data sets

2.1.1 MORA observation station network60

The MORA 1 database centralises meteorological and hydrological observations in Sweden. MORA is updated with real-time

observations, and used operationally in several SMHI services.

Each station is identified with a unique numeric ID, with station name, geographic coordinates (longitude, latitude, altitude)

as meta-data. If a station is relocated (e.g. if increasing nearby urbanisation leads to the station no longer), a new station

ID is created; after a few years overlap, the old station is usually closed. The MORA thus contains many missing values, as65

illustrated in and Fig. (1). Table (1) summarises the maximum number of simultaneously active stations –which occurs in the

1The MORA acronym stands for "Meteorologiska observationer för realtid och arkiv", meaning "Meteorological observations for real-time and archive".
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Figure 1. Upper plot: Number of active temperature stations in MORA over time (as bars). The dark grey line represents the number of active

in the original reference station network; they light grey line represents the number of stations for the calibration network (i.e. individual

stations being active at least 15 years during the calibration period 1961–2018, as highlighted by the dashed box). Lower plot: Median

latitude for active stations in the calibration data-set over time (incl. the [25%–75%] bounds). The median latitude is used as a proxy for the

distribution of the observation network.

early 1960’s– amounts to 42.5% for temperature of the total number of stations in the network. This indicate that, on average,

every station was replaced once or more under its lifetime.

The lower plot in Fig. (1) indicate the median latitude (as thick red line) and [25%; 75%] percentiles (in thin dashed red

lines) of active stations over time. The median latitude is used in the present study as a proxy for the progressive extension of70

the observation network, in particular the increased station density in Sweden’s northern regions over 1860–2020. It is worth

noticing that the relative decrease of active observations in MORA since 1960 proportionally favoured observation stations in

northern parts of Sweden.

Historical observations are continuously added to the MORA database, with ongoing digitalisation of historic observation

reports (from printed records). Newly rescued observations are quality-controlled, but currently not (yet) homogenised: hence75

possible biases related to changes in measure instruments or modifications in the station’s environment are not corrected.

Historical observations for temperature are available at daily or monthly resolution. Monthly average are computed in MORA

if less than 5 daily observations are missing, which are in this case interpolated.

The present study considers annually resolved observations, representing the annual average (hereafter referred to as ANN),

or seasonal averages 2 (winter – DJF, spring – MAM, summer – JJA and autumn – SON). Each station (identified by a single80

station Id) is here considered as a single record: no "station coupling" was applied in the current study, i.e. "stitching" together

2In season’s acronyms, the capital letter represents the first letter of the month (e.g. DJF: December–January–February).
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nearby stations (e.g. concatenating observations from a older station with a newer one close by, meant to replace it, in order to

obtain longer time-series) (Joelsson et al., 2022, 2023).

Since the mid 19th-century, a network of stations covering all of Sweden using standardised measuring methods is avail-

able. In the present study, in line with previous investigations at SMHI, we select 1860 as initial year for climate indicator:85

it follows the establishment of the first meteorological observation network by the Swedish Academy of Science (Svenska

Vetenskapsakademin) in 1858–1860. For the present study, we retrieved temperature observations for all available stations

over the 1860–2020 period. Monthly values were retrieved from MORA; annual means were computed as arithmetic average,

provided that no month was missing. The number of stations for temperature measurements are indicated in Table (1), while

the evolution of active stations is shown in Fig. (1). In Table (1), the fist column indicates the number of stations in the MORA90

data-set, for temperature (column #4), The rows Initial and Present-day show the number active stations respectively at the

start and the end of observation series. Additional rows GridClimstart and GridClimend indicate the number of active stations

during the 1961–2018 calibration period. The row Maximum indicates the year for which the number of active stations was

maximal, along with the corresponding number of active stations.

The present study focuses on annually-resolved climate indicators, using annual and seasonal averages (winter DJF: December–95

February, sprint MAM: March–May, summer JJA: July–August, autumn SON: September–November).

2.1.2 GRIDCLIM gridded data-set

The GRIDCLIM project (Andersson et al., 2021), performed by SMHI, combines the regional European reanalysis UERRA

(Schimanke and Service, 2019; Schimanke et al., 2019) with station observations to produce a uniform, bias-corrected gridded

climate dataset. Observations for Sweden were retrieved from the MORA database maintained by SMHI, and similar observa-100

tions were obtained for Norway and Finland from respective national meteorological agencies. Observations were completed

from ECMWF MARS archive for neighbouring countries in the study domain (Denmark, Baltic States). Quality control on the

observation data-sets were performed using the TITAN package (Båserud et al., 2020).

The original resolution of the UERRA reanalysis is 11 km, subsequently downscaled at 2.5 km with MEPS (Ono et al.,

2021). The GRIDPP open-source software (Lussana, 2007), developed by the Norwegian Meteorological Institute, performed105

an Optimal Interpolation (OI) analysis to combine observations and the UERRA gridded first guess. The full GRIDCLIM

data-set consists of 567× 823 = 466641 grid-points, of which 69842 cover the Swedish territory.

The GRIDCLIM data-set provides gridded estimates (at 2.5 km resolution) for following variables: 2-meter temperature,

2-meter relative humidity, daily maximum and minimum temperature, daily precipitation, and daily snow depth at hourly

resolution. We restrict the current analysis to 2-m temperature (henceforth referred to as "temperature"). The data was first110

averaged at monthly scale, and further to annually-resolved annual and seasonal averages.

The GRIDCLIM data-set (Andersson et al., 2021) covers the period 1961–2018, in accordance with the availability of the

UERRA reanalysis (Schimanke and Service, 2019; Schimanke et al., 2019). This is henceforth defined as the calibration period

(1961–2018) in subsequent method description.
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In the following sections, GRIDCLIM data-set is used in two ways: GridClim-all represents all 69842 grid-cells of the115

GRIDCLIM data-set covering the Swedish territory (in its native EPSG:9001 Lambert Conic Conformal projection with 63◦

standard parallel, 2.5km x 2.5km resolution), is used to compute the EOF and SVD output. GridClim-all is also represented

in Table (3) and corresponding graphs for comparison purposes. GridClim-sub is a subset of GridClim-all, whose grid-cells

correspond to MORA calibration station network. GridClim-sub is used for the gap-filling of MORA calibration data-set (338

for temperature) prior to the EOF analysis. GridClim-ref is a subset of GridClim-all, with time-series taken from grid-cells120

corresponding to the MORA reference network SMHI-ref (39 for temperature).

2.2 Computing a national climate indicator

2.2.1 Emulating the operational SMHI method

SMHI operationally calculates climate indicators for temperature (Engström, 2022, 2023). The climate indicators are computed

from a reference network of stations across the country (35 stations for temperature, cf. Table (1)), at annual and seasonal125

resolution, hereafter referred to as SMHI-ref data-set.

In the operational computations, the reference data consists of coupled stations (i.e. concatenating neighbouring stations

to obtain longer time-series for a given “meta-station”). The data is subsequently homogenised in order to correct breaks,

i.e. signal disruptions not deemed to be related to climate variability. These can include changes in mean value or seasonal

amplitude, as a result of changes in station location, instrument calibration etc.130

The original method to compute the climate indicator is the simplest way to synthesise multiple stations records as a sin-

gle time-series: it uses an arithmetic average, as presented in Eq. (1), where xista
(t) represents an individual (incomplete)

observation time-series and nsta(t) is a function counting active stations over time.

CIori(t) =

nsta∑
ista=1

xista(t)

nsta(t)

⇔ CIori(j) =

n∑
i=1

X(i, j)

n∑
i=1

(X(i, j) 6= NaN)

(1)

The method is described in further detail in the online documentation (Engström, 2022, 2023).135

The original method to calculate climate indicator as an arithmetic average of available station is currently applied by the

SMHI to the "reference network", with 35 (meta-)stations for temperature, cf. Table (1), lower half. In the results section, this

data-set is referred to as SMHIRef.

In the present study, the original method was emulated by selecting the individual station with the longest record in each

meta-station, without coupling and homogenisation. Hence, the emulated reference network in this study has sparser data140

coverage, thereby slightly different result, than the climate indicator provided by SMHI. In the results section, this data-set is

referred to as GridClim-sub.
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2.2.2 EOF decomposition of 2-dimensional [space, time] data-set

Standard linear algebra methods require the data-set to be complete, without any missing values (marked as not-a-number NaN

in the X notation). The GRIDCLIM gridded data-set is per construction complete over the calibration period 1961–2018: the145

EOF decomposition can be performed immediately. The EOF decomposition method is described in Björnsson and Venegas

(1997).

During the 1961–2018 calibration period, we select MORA stations having at least 15 year of data coverage. Initial tests

revealed that the EOF computation could result in physically inconsistent results, when stations with short data-coverage and/or

gaps (possibly with erroneous annual mean) were included in the input (see also discussion of Fig. (2)). Hence an additional150

criteria was introduced: we select only MORA stations who share at least 50% of variance with their corresponding grid-cell in

GRIDCLIM (i.e. a correlation factor r >
√

0.5 with pair-wise removal of missing data). This defines the "Calibration" subset

of MORA stations, whose dimension for temperature is given in Table (1).

The first step before gap-filling is to identify, for every station, which yearly record is available, defined by availability

matrix A. For each station, a linear regression (in least-square sense, i.e. minimising ε) is computed between available annual155

MORA station records XMORA and the value in the corresponding GRIDCLIM grid-cell. Missing values in the MORA station

record are substituted by the linear function applied to the GRIDCLIM value for the corresponding time-step, as shown in Eq.

(2). Replacing missing values using linear regression is a fairly trivial method, which requires a complete (gridded) data-set.

Alternative method include the use of homogenisation tools (Guijarro et al., 2023; Guijarro, 2024), or AI methods (Kadow

et al., 2020).160

∀i ∈ [[1,nstations]],∀j ∈ [[1,nyears]],



XMORA(i, j) 6= NaN⇒ A(i, j) = 1

XMORA(i, j) = NaN⇒ A(i, j) = 0

Linear regression MORA vs GRIDCLIM:

∀i ∈ [[1,nstations]],∀j ∈ (A(i, :) = 1),

αi ·XGridClim(i, :) +βi + ε=XMORA(i, :)

Substitution of MORA missing values:

∀i ∈ [[1,nstations]],∀j ∈ (A(i, :) = 0),

XMORA(i, :) =αi ·XGridClim(i, :) +βi

(2)

Hence, the calibration sub-set of MORA stations is now complete over the 1961–2018 calibration period. The data-set

XMORA can be centered, i.e. the 1961–2018 temporal mean for each station/grid-point is removed from the time-series. In

other words, centring the data-set X means computing individual station anomalies.
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Centering the data-set prior to applying the EOF analysis provides the advantage of representing the spatial and temporal165

variability of the studied data-set (i.e. respective spatial patterns and time loadings) as departures from zero. It is worth noticing

that absolute values can easily be obtained from the centered data-set (as both input or output), by adding the respective mean

over the reference period:

∀i ∈ [[1,nstations]],∀t ∈ [[1961,2018]]

xi
c(t) =xi(t)−

2018∑
t=1961

xi(t)

2018− 1961 + 1

⇔X(i, :) =Xc(i, :) + X1961−2018(i, :)

(3)

Hereafter, centered data-sets are marked as Xc.170

The Empirical Orthogonal Functions (EOF) method, equivalent to Principal Component Analysis (PCA), aims at decom-

posing the spatio-temporal variability in the data-set Xc as a series of spatial patterns (hereafter referred to as spatial EOF

patterns) EOF (Björnsson and Venegas, 1997), associated to its time expansion coefficients A.

Covariance matrix: R = XT
c ·Xc

Eigenvalue problem: EOF ·R = EOF ·Λ

⇔R = EOF ·Λ ·EOF−1

Time expansion coefficient: A = Xc ·EOF (4)

By construction, each pattern in the EOF matrix is “orthogonal” to each other, in other words spatially uncorrelated.175

Accordingly, all time expansion vectors (A) are temporally uncorrelated. The eigenvalue matrix (Λ) is a diagonal matrix,

indicating the variance associated to each EOF mode. Following property of the EOF is worth mentioning: EOF ·EOFT =

EOF ·EOF−1 = Id, hence EOFT = EOF−1.

As a result, the original matrix Xc can be identically reconstructed based on its decomposition in spatial patterns (EOF)

and associated time expansion coefficients (A). Assuming that the original data-set Xc has n stations/grid-points, and m time180

steps (as columns), the number of unique modes in the present study is set to p= min(n,m), i.e. in practice the number of

time steps.

Xc = A ·EOFT

⇔Xc =
p∑

i=1

−→
ai ·
−−−→
eofT i (5)

The EOF decomposition was applied over the 1961–2018 calibration period for the GRIDCLIM data-set, restricted to the

Swedish territory (Fig. (2)). Analogue results of the EOF decomposition on the MORA Calibration data-set for the 1961–2018185

period is shown in (Fig. (3)).
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2.2.3 Estimating the climate indicator and related uncertainties

The formulation in Eq. (5) can be extended beyond the 1961-2018 calibration period, despite missing values found in the

longer 1860–2020 record. Hereafter, X? represents a matrix X with missing values, and Â the estimator of its time expansion

coefficients. In other words, Â is an approximation of the time expansion coefficient matrix A for the entire study period190

1860–2020 and full rank of Λ (i.e. p, in our case the number of years in the calibration period, cf. Eq. (4)), with two limitations:

Missing values: Â can only be computed from available observations in X?. As illustrated in Fig. (1), the number of active

stations decreases continuously prior to the calibration period. In other words, the dominant modes in Â can only be

captured if the distribution of active stations represents a sufficient sampling of the corresponding spatial pattern EOF.

Stationarity: The current reconstruction methods relies on the implicit assumption that the dominant modes established during195

the 1961–2018 calibration period are time-independent, or at least reasonably represent the relative behaviour of observed

variables during 1860–1961.

Eq. (6) expresses the new method for estimating the gap-filled observation data-set, based on the EOF decomposition of the

MORA calibration subset XMORA,Cal
c .

Time expansion coefficients:

A'X?
c ·EOF

⇔ Â =
p∑

i=1

X?
c

i · eof i

⇒∀i ∈ [[1,p]]

âi(t) =
∑

xi
c(t) 6=NaN

xi
c(t) · eof i(t)

Data-Set reconstruction:

X̂c

EOF
=Â ·EOF−1

(6)200

Here, the notation EOF−1 represents the pseudo-inverse, since EOF is not a square matrix.

Since most of the variance is comprised in the leading modes (given that, by construction, eigenvalues in Λ are listed in

decreasing order), we chose to restrict the reconstruction of Â to the 10 leading modes (cf. Table Table (2)). Furthermore,

leading modes (eofMORA(#1−3) as shown in Figures Fig. (2)) display spatial patterns consistent with climate phenomenon,

while modes with lower eigenvalues mostly display numerical “noise” (i.e. patterns without obvious physical significance).205

Hence restricting to the 10 leading modes reduces the risk of spurious, physically inconsistent artefacts in Â
MORA

. Hence,

Eq. (6) is applied hereafter with p= 10.

Analogously to Eq. (1) defining CIori, the EOF-based climate indicator CIEOF can be expressed as:
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∀j ∈ [[1,2020− 1860 + 1]], CIEOF (j) =

n∑
i=1

X̂c

EOF
(i, j)

n∑
i=1

(Xc(i, j) 6= NaN)
(7)

Compared to the original method (Eq. (1)), the new methods has the advantage that available observations contribute to210

the estimated indicator according to their “weight” in the 10 leading modes. Hence the EOF-based method (Eq. (7)) can be

considered as a weighted, rather than arithmetic average of station data (Eq. (1)). Thus, it has the potential of being less sensitive

to changes in station coverage, as shown in Figures Fig. (1). The effect of damped variability when station coverage decreases

(mentioned in the previous paragraph) is corrected in the estimation of CIEOF by considering the number of active stations in

the denominator (
n∑

i=1

(Xc(i, j) 6= NaN) is equivalent to
n∑

i=1

A(i, j) in Eq. (2)).215

In order to test the robustness of the climate indicator estimator, we perform an ensemble computation to assess the effect of

sub-sampling and added noise.

∀k ∈ [[1,nens]], CIk
ens(j) =

∑
i∈(k-th random subset)

(
X̂c(i, j) + εk(i, j)

)

∑
i∈(k-th random subset)

(Xc(i, j) 6= NaN)
(8)

We assume hereafter that the daily temperature observations are normally distributed around 0, with a standard deviation

of εtemp = 0.5◦C. This is a conservative estimate, based on the fact that early thermometers were graduated with 0.5◦C incre-220

ments. The corresponding measurement uncertainty for monthly means are reduced by a factor
√

30 ·√nmonth, i.e. the average

amount of daily measurements in a monthly mean. nmonth represents the number of monthly records in the annually-resolved

average: for annual means, nmonth = 12, for seasonal means, nmonth = 3. Hence the random noise function ε is normally dis-

tributed, with a standard deviation of σtemperature
ANN = 0.5√

30·√nmonth
= 0.026◦C for annual temperature and σtemperature

seas = 0.053◦C for

seasonal means (DJF, MAM, JJA, SON). The presumed measurement error for monthly observations is here applied to annual225

values (i.e. a 12-member mean): we consider thus the random noise factor to be in the upper range of physically reasonable

values.

The second aspect to be assessed is the impact of sample size on the CI climate indicator estimate. A random subset

of stations within the calibration network, including three times as many stations as in the reference network were used to

compute the CI, with a new realisation of the random noise function ε. In other words, Table (1) indicates that the reference230

network contains nRef = 35 stations for temperature; the CI for each ensemble member is thus computed from n= 3×nRef

randomly chosen stations within the calibration network.

The procedure above is repeated 100 times; the 25% and 75% percentiles are computed and presented as thin lines on Fig.

(6), representing the difference from the original SMHIref (∆CI). The same procedure was applied to evaluate the 25% and

75% percentiles for RefNetwork, albeit using 100 realisations with half (i.e. n= nRef

2 ) of available stations in the reference235

network.
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3 Results

The first sections describe the EOF patterns computed for temperature, from the GRIDCLIM and MORA calibration data-set,

as computed from Eq. (4).

Following figures represent the leading EOF modes of annual temperature from GRIDCLIM (Fig. (2)); annual temperature240

from MORA (Fig. (3). seasonal temperature from GRIDCLIM (Fig. (4)).

Similarly, the SVD decomposition was performed for temperature for the GRIDCLIM and MORA data-sets. The EOF and

SVD patterns are virtually identical. Hence the corresponding figures are shown in the supplementary material.

Data-Set Method λ(#1) λ(#2) λ(#3) Sum

T GRIDCLIM EOF 92.2% 4.5% 0.9% 97.6%

T MORA EOF 82.9% 3.7% 1.3% 87.9%

Table 2. Portion of explained variance λ for the leading three modes with the EOF analysis of GRIDCLIM and MORA over the 1961–2018

calibration period. The sum of the variance explained by the first 3 modes is indicated in the last column.

3.1 EOF patterns for temperature

By construction, plain (i.e. unrotated) spatial EOF patterns (without prior detrending) are expected to display a uni-modal245

distribution in the first mode, a bi-modal distribution in the second, and a tri-modal in the third. This behaviour is clearly

apparent in Figures Fig. (2).

Fig. (3) represent the EOF patterns for the MORA data-set. The polygons represent the Delaunay triangulation of the MORA

stations in the calibration subset; it is worth noticing that, despite the area of the polygons vary (with a tendency to increase in

northern Sweden), each time-series has the same weight in the EOF method.250

Table (2) indicates how much of the total variance is expressed in the leading three modes (as obtained from matrix Λ in

Eq. (4)). For temperature, the EOF first mode is strongly dominant: up to 92.2% of the variance is expressed in the first mode.

This result confirms previous observation: temperature tends to vary fairly homogeneously across all of Sweden. This aspect is

clearly an advantage to define a robust climate indicator for the country: the computation will be less sensitive to the location

of stations, and less affected if the stations are temporarily inactive.255

3.1.1 Annual EOF patterns for temperature

Beyond this initial statement, it becomes obvious that GRIDCLIM (λEOF
GridClim(#1) = 92.2%,

∑3
i=1λ

EOF
GridClim(i) = 97.6%) has

significantly higher portion of variance explained in its first modes than MORA (λEOF
MORA(#1) = 82.9%,

∑3
i=1λ

EOF
MORA(i) =

87.9%). Several factors explain it: GRIDCLIM contains more homogeneous values, as a result of assimilating observations with

re-analyses. By representing mean temperature for each grid-cells, GRIDCLIM also fails to represent extreme values measured260

at point stations in MORA.
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Figure 2. Leading three EOF patterns for GRIDCLIM over Sweden (eof(#1− 3), upper row), with their associated time expansion vectors

(a(#1−3), lower row) for temperature. The unit for the product a(#1−3) ·eofT (#1−3) is in ◦C. Black crosses indicate the location of

MORA stations in the reference network.

Fig. (3) represents the leading EOF patterns for the MORA temperature data-set (top row) and their associated time-

expansion coefficients (according to Eq. (4) and Eq. (5)).

For mode #1 of temperature, the spatial EOF patterns from MORA resembles that of GRIDCLIM, despite some stations

standing out; the respective time expansion coefficient are similar (lower graphs in Fig. (2) and Fig. (3)), both in term of265

variability and trend.

For EOF mode eofMORA #2 and #3, the same conclusion holds: the GRIDCLIM spatial EOF pattern and time expansion

coefficients are generally accordingly represented in the EOF pattern for MORA, but it differs slightly in mountain regions. It

is beyond the scope of the present study to assess the causes of the discrepancy: it could be related to insufficient sampling of

high-altitude locations in the MORA station network in GRIDCLIM.270

3.1.2 Seasonal EOF patterns for temperature

The leading seasonal EOF modes for temperature in the GRIDCLIM data-set are shown in Fig. (4); by construction, EOF#1

displays a mono-modal distribution, EOF#2 a bi-modal etc. The overall geographic pattern is similar to the annual EOF (cf.

Fig. (2)).
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Figure 3. Leading three EOF patterns for MORA (Calibration network) over Sweden (eofMORA(#1− 3)), with their associated time

expansion vectors (aMORA
EOF (#1− 3)) for temperature.

We can however notice that eofDJF (#1) for winter (i.e. DJF, upper left plot) has an amplitude about twice of eofANN (#1),275

as illustrated by the colour-bar. The feature highlight topographic features: when the mean temperature over Sweden increases,

low-land areas in the vicinity of mountains will experience a stronger temperature increase than surrounding areas.

The summer (JJA) eofJJA(#1) distinguishes itself from other seasons (and the annual mean), as the portion of explained

variance ( λJJA(#1) = 80%) is significantly less than the annual (λANN (#1) = 92%). During this season, a stronger second

mode (λJJA(#2) = 13%) reflects the North-South seesaw pattern, which is less pronounced in annual means: when Southern280

Sweden gets warmer, North-Western Sweden tends to get cooler.

The analysis of seasonal time expansion coefficients a (according to Eq. (4)) reveals seasonal differences. aANN(#1)

displays a distinctive shift to warmer (annual) temperatures around 1990. The same behaviour is identifiable for winter (DJF)

and spring (MAM), however not for summer (JJA) nor autumn (SON).

3.2 Reconstructing a national climate indicator CI285

Several methods are evaluated to estimate the climate indicator (CI) over the 1961–2018 calibration period and the whole study

period 1860–2020, as listed in Table (3). For each climate indicator (temperature and precipitation), the characteristics of the

reference (used for the SMHI reference method) and the calibration (used in the present EOF method) observation networks

are listed in Table (1), and illustrated in Fig. (1).
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Figure 4. Leading three EOF seasonal patterns for GRIDCLIM temperature over Sweden (eof(#1− 3), upper row), with their associated

time expansion vectors (a(#1−3), lower row) for temperature. The unit for the product a(#1−3) ·eofT (#1−3) is in ◦C. Black crosses

indicate the location of MORA stations in the reference network.

As a preliminary comment, the EOF (SVD) based CI estimates are generally very close to the SMHI reference indicator290

SMHI-ref. In order to investigate the differences between CI estimates computed in the present study with SMHI-ref, we

introduce ∆CI[Xc], the departure from SMHI-ref, defined in Eq. (9).

The definition of all CI methods, including their corresponding legend for figures in this section, are summarised in Table

(3). The upper part of the table lists indicators that apply to the 1961–2018 calibration period, while CI described in the lower

part apply to the entire study period 1860–2020.295




CIRef

ori = CIori[X?(Reference network)]

∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref

(9)

The calibration period 1961–2018 presents the advantage of having a complete GRIDCLIM data-set, as well as comparing

gap-filled Xc and original X?
c MORA data-sets. The present section evaluates the performance climate indicator (CI) estimates

with EOF (respectively SVD) methods. We also assess the representativity of the reference, calibration MORA station networks

for Sweden’s climate, compared to a CI computed over all grid-points in GRIDCLIM covering Sweden.300

Following estimations of CI are available over the calibration period:
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Figure 5. Leading three EOF seasonal patterns for MORA temperature over Sweden (eof(#1− 3), upper row), with their associated time

expansion vectors (a(#1− 3), lower row) for temperature. The unit for the product a(#1− 3) · eofT (#1− 3) is in ◦C. Black crosses

indicate the location of MORA stations in the reference network.

– CISMHI-ref: current CI definition used by SMHI, calculated as the arithmetic mean of observations for selected MORA

observations (i.e. a sub-set of the MORA calibration network). CISMHI-ref is not calculated in the present study; only the

climate indicator is available, without access to the underlying station data (including station coupling, partial homogeni-

sation and correction). Therefore, the centered climate indicator, in this particular case, is obtained as: CIcentered
SMHI-ref =305

CIabs
SMHI-ref− CIabs

SMHI-ref

∣∣∣
1961−2018

– CIGridClim-ref: arithmetic average of time-series from the GRIDCLIM data-set for grid-points where reference stations are

located. CIGridClim-ref is primarily meant to assess effect of time-space averaging order. Unlike CISMHI-ref, the spatial

average is performed on centered station records CIcentered
GridClim-ref =

∑nsta

ista=1 XGridClim(indRef-Network, :)

nsta

– CI{Sub,All}-GridClim: arithmetic average of time-series from the GRIDCLIM data-set for grid-points where calibration sta-310

tions are located (for CISub-GridClim), or all grid-points covering Sweden, as shown in e.g. Fig. (2) (for CIAll-GridClim).

– CIEOF-cal: average over the EOF-reconstructed X̂EOF
MORA, according to Eq. (7).

The definition of ∆CI over the 1961–2018 calibration period, including their corresponding legends for figures Fig. (6) and

following, are summarised in the upper Table (3).
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Label Mathematical expression and Description Nb.

sta-

tions

Date

range

Co-

lour

GridClim-

ref

CIori[XGridClim
c (Referencenetwork)], arithmetic average for all GRIDCLIM

grid-points ∈ reference network

39 1961-

2018

black

GridClim-

sub

CIori[XGridClim
c (Calibrationnetwork)], arithmetic average for all GRIDCLIM

grid-points ∈ calibration network

338 1961-

2018

yel-

low

GridClim-

all

CIori[XGridClim
c (GridpointsoverSweden)], arithmetic average for all GRIDCLIM

grid-points ∈ Sweden

69,842 1961-

2018

green

EOF-

cal

CIEOF [XMORA
c (CalibrationNetwork)], EOF-based method applied to the

gap-filled SMHI-MORA data for the calibration network

338 1961-

2018

cyan

SMHI-

ref

CIori[X?(Referencenetwork)]−CIori|1961−2018, original SMHI indicator,

centered to its 1961–2018 mean, for MORA data in the reference network

39 1860-

2020

grey

EOF-

rec

CIEOF [X?MORA
c (CalibrationNetwork)], EOF-based method applied to the

SMHI-MORA data for the calibration network

338 1860-

2020

red

Table 3. Description of the labels for Figures with corresponding label and colour. The number of stations for the reference and calibration

networks are indicated for temperature. The mathematical formalism follows the definitions in the text, where XMORA
c refer to the centered

SMHI-MORA data-set, and XGridClim
c refer to the gridded GRIDCLIM data-set.

3.2.1 Comparing SMHI-ref and GridClim-ref over 1961 – 2018315

Before comparing CI estimators with a larger network (GridClim-sub and GridClim-all) with GridClim-ref, let us evaluate

GridClim-ref versus SMHI-ref, operationally used by SMHI. The method to compute the GridClim-ref CI is similar, but not

identical to the SMHI-ref CI. To be consistent with EOF estimates, the GridClim-ref is based on the longest single time-series in

the MORA data-set, rather than the coupled ’pseudo-station’ used in SMHI-ref (in which nearby stations are ’stiched together’

to obtain longer continuous time-series, as explained in Joelsson et al. (2023). Furthermore, the centered climate indicator for320

GridClim-ref (and all other CI computed in the current study) is computed as the spatial mean of centered station time-series;

on the other hand, SMHI-ref is computed as the arithmetic mean of absolute station observations, from which the CI mean

over the 1961–2018 calibration period was subtracted (according to Eq. (9)), since individual station data used for SMHI-ref

calculation were no longer available.

The fact that SMHI-ref is computed with absolute values from observation stations makes it more sensitive to inhomo-325

geneities: if, despite the coupling procedure, a given station is interrupted, the computed CI will be affected, especially if the

multi-annual mean temperature of this station departs significantly from the ensemble mean.
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Fig. (6) enable to look in more details at systematic differences between GridClim-ref and SMHI-ref representing ∆CI ,

the departure from SMHI-ref ( according to Eq. (9)). CI estimates by SMHI-ref and GridClim-ref agree within at least a

∆CItemp ∈ ±0.1◦C for temperature over the 1961–2018 calibration period. This sets a first constraint on the CI accuracy, thus330

a metrics for the performance of EOF-based CI estimates.

3.2.2 How does spatial sampling affect the 1961 – 2018 climate indicator ?
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Figure 6. ∆CI , i.e. departures from centered original SMHI indicator, for temperature ∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref . Labels are

identical to Figure Fig. (6) .

Similar to SMHI-ref, we calculated 3 CI as arithmetic means: GridClim-ref (discussed in the previous section, with GRID-

CLIM values at the same locations as the SMHI-ref network), GridClim-sub, with GRIDCLIM values at locations corresponding

to the MORA calibration network, and finally GridClim-all, using all GridClim grid-points covering the Swedish territory (with335

the same resolution as Fig. (2)).

CI estimators using the calibration network of 338 stations for temperature all show minor, synchronised departures from

SMHI-ref, regardless of their computation method: arithmetic for GridClim-sub (yellow), EOF-based for EOF-cal (cyan, with

gap-filled X values) and EOF-rec (red, with missing observations X? ). Since their ∆CI is similar to GridClim-ref, we

conclude that CI estimated from the calibration network (1098 stations for precipitation) are equivalent; the difference to SMHI-340

ref is likely related to the difference of average method (spatial average of absolute values minus CI mean over 1961–2018 for

SMHI-ref, versus spatial average of departure from 1961–2018 for GridClim-ref, GridClim-sub, EOF-cal and EOF-rec).
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However, we see a significant change for the arithmetic CI in GridClim-all, compared to GridClim-ref (black line) and

GridClim-sub (yellow line): the CI is computed from all grid-cells covering Sweden (GridClim-all, in green line), stands out

with a larger amplitude in inter-annual variability. In other words, annual CI values with local minima (maxima) i GridClim-sub345

appear generally lower (higher) in GridClim-all.

GridClim-all, using all 69842 GRIDCLIM grid-points covering the Swedish territory (c.f. pixel resolution in Fig. (2)) captures

more of the inter-annual climate variability than the 39 stations in the SMHI-ref network for temperature. This is consistent

with the EOF patterns shown on Fig. (2) and Fig. (3): the 3 dominant modes in Figure Fig. (2) show large variations in

remote areas (e.g. Jämtland in central-western Sweden, Norrbotten close to the Finnish border). Such patterns are qualitatively350

well captured by the calibration network (Fig. (3), upper row): the leading EOF patterns (eofMORA(#1− 3) are similar to

(eofGridClim(#1−3), with a strong correlation of their respective time expansion coefficients (lower plots in Fig. (2) and Fig.

(3) for temperature).

However the difference in amplitude between the GridClim-all and GridClim-ref can be related to the under-sampled remote

areas with large variations. Hence an important conclusion: the definition of a ’national’ observation-based climate indicator355

is dependent on the station network on which it relies. In other words, a national network of stations covering most of the

territory is not per se a guaranty that all regions are equally represented in the ’national’ climate indicator, and may differ from

a gridded, land-covering approach. Vose et al. (2014) applied a methodology similar to GridClim-all: a spatially interpolated

data-set for temperature and precipitation observations for the contiguous US, with elevation-dependent dependence, proved

to make a significant difference the previous CI version.360

The similarity between GridClim-ref, with 39 stations for temperature, and GridClim-sub with 338 stations, supports the

sub-sampling method used for the CI robustness (Equation Eq. (8)). Given that a 10-time sub-sampling of carefully selected

stations (i.e. the reference network for GridClim-ref compared to the calibration network for GridClim-sub) yield comparable

results, we consider that selecting an ensemble of GridClim-sub subsets, each consisting of a randomly chosen subset with

3-time as many stations as GridClim-ref, is reasonable to evaluate the CI robustness.365

In summary, the difference between GridClim-ref and GridClim-sub for temperature on Fig. (6) are less than 0.1◦C, i.e.

smaller than discrepancies between GridClim-ref and SMHI-ref. However, ∆CI for GridClim-all significantly larger (up to

0.3◦C), which also shows in absolute values in Fig. (8).

3.2.3 Comparing EOF-estimated climate indicators to the SMHI reference indicator for 1860–2020: temperature

Earlier discussed results illustrate how EOF patterns are computed, based on the GRIDCLIM data-set (with grid-points covering370

all of Sweden) or the MORA calibration data-set (selected observation series). By construction, the EOF represent the dominant

modes of variability over the calibration period 1961–2018.

As a reminder, Xc
? represents a matrix of temperature observation with missing values ; Xc indicates that observations are

centered, i.e. the station average over the calibration period 1961–2018 Xcal.(i) has been subtracted, according to Eq. (3). Â

the estimator of its time expansion coefficients, from which the original data-set Xc
? can be estimated as X̂c

EOF , according375

to Eq. (6).
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The EOF patterns eofMORA(#1 − 10), established over the calibration period 1961–2018 on the MORA calibration data-

set, allow to reconstruct a climate indicator for study period 1860–2020: available observations prior to 1961 are projected on

the respective eofMORA(#1 − 10) patterns to obtain the estimated observation matrix X̂MORA, X̂MORA is then spatially

averaged to define the estimated CIEOF, according to Eq. (7).380

In the present section, we focus on the reconstruction of the climate indicator over the full experiment period 1860–2020.

The centered observational MORA data-set X?
c , including its missing values, is projected onto the EOF pattern (Equation Eq.

(6) for EOF to produce an estimate of the complete data-set X̂c

EOF
. The latter is used in Equation Eq. (7) to provide the CI

based on the EOF result. Note that only values originally available in the MORA data-set X?
c are used, hence the denominator

in Equation Eq. (7). In other words, the EOF method performs a weighted mean of time-series in the MORA data-set X?
c , with385

weights determined from the spatial variability established during the 1961–2018 calibration period. In particular, we discuss

following CI reconstructions over the full experiment period 1860–2020:

Fig. (8) presents the reconstructed CI for temperature EOF-rec and SVD-rec, compared to the original SMHI-ref (in grey).

At first glance, there is a very good agreement between SMHI-ref and the EOF-based reconstructions EOF-rec and SVD-rec,

both for inter-annual (upper panel) and decadal variability (lower panel). This result is consistent with the high portion of390

variance explained by the first mode of variability: λ(#1)> 80% in Table (2). The first spatial EOF pattern eofMORA(#1)

(shown on Figures Fig. (2), Fig. (3), upper left panel) is uni-modal (by construction), and furthermore fairly uniform: the CI

reconstruction from a limited number of stations (as for SMHI-ref) is therefore likely to be very close that from a larger station

network (as for EOF-rec). The same conclusion holds for the SVD reconstruction (svdMORA(#1), Figure Fig. (A2)).

In other words, we consider the EOF method for estimating the temperature CI as fully consistent with SMHI-ref, currently395

used by SMHI. The 10-year Gaußian moving average (lower panel) further indicates that decadal variability is portrayed by

all different CI: a largely continuous warming from 1860–1935, followed by an abrupt cooling in the early 1940s. Tempera-

tures across Sweden remain variable until 1980. The 1980–2020 period shows a consistent warming trend (the strongest on

instrumental records), with a 2◦C warming over the last 40 years.

Equation Eq. (8) illustrates a metrics for the robustness of the computed CI: it takes into account the impact of measurement400

error (symbolised by the normally distributed noise ε added) and sub-sampling. Since only available measurements (i.e. non-

NaN elements in the X?
c matrix) are used in EOF-rec, the 25%–75% percentile range implicitly mirrors the data availability:

if less stations are active, e.g. in the early parts of the record, the added noise ε is less likely to cancel out, hence the 25%–75%

becomes larger. This phenomenon is most obvious in the 10-year smoothed CI (lower panel): while the 25%–75% range is

small and constant over time during the 1961–2018 calibration period (during which the number of active stations does not vary405

significantly, cf. Fig. (1)), it increases gradually for earlier periods, reaching up to 0.4◦C for the 10-year smoothed CI prior to

1880. Despite the increasing scarcity of observations prior to 1900, the uncertainty due to measurement error and geographic

sampling appears smaller than the climate signal in annual and decadal temperature CI. Calculating the temperature CI from

at most 338 instead of 39 stations thus does not introduce a systematic bias.

On Fig. (6), ∆CI values for EOF-rec display 3 large outliers (in 1864, 1871 and 1879), by up to 0.75◦C. Given the small410

number of stations active at the time, it is difficult to conclude if such discrepancies are significant, nor which of the EOF-rec
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Figure 7. ∆CI , i.e. departures from centered original SMHI indicator, for temperature ∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref . Labels are

identical to Figure Fig. (6) .

and SMHI-ref values are physically more relevant. It is worth noticing that the 3 outliers occur for the coldest years in 1860–

1880. This is not surprising, since the spread of extreme cold temperatures across Sweden is larger than for warm extremes: the

inclusion (or not) of a station with a strong negative anomaly may therefore have a large impact on the CI value. It is furthermore

interesting to notice that the EOF-rec 25%-75% percentile envelope includes the SMHI-ref value, for all 3 outliers: this further415

confirms the hypothesis that such large punctual discrepancies might be related to a single station observation, which becomes

pregnant when only few stations are active.

3.2.4 Seasonal EOF reconstructions of the climate indicator 1880–2020: temperature

Fig. (7) presents EOF-rec, the EOF-based reconstruction of temperature CI for seasonal averages. Since it is beyond the scope

of this study to investigate per se the differences in the seasonal CI, we focus here on the differences between EOF-rec and420

SMHI-ref, i.e. ∆CIEOF , presented in Fig. (7).

When analysing seasonal EOF-rec, one needs to keep in mind that the EOF patterns
−−−−→
eof seas, defined in Eq. (5), are computed

independently over the 1961–2020 period for each seasonal average Xseas
c . Hence the difference for the annual ∆CIANN

EOF cannot

be obtained as an average of seasonal ∆CIseas
EOF . In other words:

∀ iSeas= DJF, MAM, JJA, SON,∆CIANN
EOF 6=

∑
∆CIiSeas

EOF

4
(10)425
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The largest discrepancies between EOF-rec and SMHI-ref for the annual indicator, shown in Fig. (6), were found prior to

1880: ∆CIEOF for individual years sporadically exceed 0.5 ◦Cfor the national climate indicator. As a consequence of such

spurious differences, the decadal Gaußian average prior to 1880 does not express any physical signification.

The result is comparable for seasonal ∆CIEOF-rec in Fig. (7). In general, seasonal ∆CIEOF display discrepancies similar

to the annual CI (±0.5◦C). GridClim-all displays the largest discrepancies found during the 1961–2018 calibration period430

(±0.75◦C). A conclusion can be drawn from the discussion of EOF patterns in Fig. (2) versus Fig. (3): the leading modes

of variability for the complete GRIDCLIM data-set reveal more details, which are not all captured in the MORA calibration

network. Thus, for some individual years where under-sampled region weigh strongly in the national mean, the ∆CIGridClim-all

will display larger absolute values.

The prime objective of the EOF method was to better capture the climate variability, and thereby be less sensitive to the435

observation network configuration. Fig. (7) demonstrates that the EOF-method delivers a national CI which is more represen-

tative for all of Sweden that the reference method: while EOF-rec does not capture all the amplitude of ∆CIGridClim-all signal

(which cannot be expected from EOF-rec, based on the calibration network coverage), the ∆CIEOF-rec displays identical signs

to ∆CIGridClim-all.

The robustness of the CI reconstruction is assessed by adding random noise and selecting a sub-sample of X̂c, according to440

Eq. (8). Thin lines in Fig. (7) represent the 25% and 75% of a 100-member ensemble of random realisations. The span between

the 25% and 75% percentiles increases the further back in time the CI is computed. This is consistent with the evolution of

the number of active stations shown in Fig. (1), upper sub-figure: the fewer stations are active for a given year, the more will

random noise affect the ∆CIEOF-rec.

For all seasons, the 25% and 75% percentiles of ∆CIEOF-rec include the ∆CI = 0 line (i.e. X-axis), at least for the Gaußian445

10-year running average. In other words, there is a 50% probability that EOF-rec does not significantly differ from SMHI-ref –

according to Eq. (8), with εseas
T = 0.053◦C measurement accuracy for seasonal averages (corresponding to a fairly conservative

estimate of a daily measurement precision εseas
T = 0.5◦C).

The 10-year Gaußian filter (i.e. lower row in sub-plots in Fig. (7)) for seasonal ∆CIEOF-rec shows a limited, albeit persistent

negative bias for DJF and SON temperatures for the 1915–1970 period. On the other hand, JJA temperatures have positive450

departures over 1905–1960.

The 1900–1960 period corresponds to a steady expansion of MORA network for temperature (Fig. (1), upper plot): the

number of active stations increases from less than 100 in 1900 to over 400 in 1960. During this period, the station density has

improved in northern Sweden, as illustrated by the 75% percentile of active stations’ latitude (Fig. (1), lower plot).

As illustrated in Fig. (4), the leading EOF pattern eofGridClim
DJF (#1) has its highest values in northern Sweden; the same holds455

for eofGridClim
SON (#1). Hence, a higher station density in northern Sweden, as captured by EOF-rec, can explain the discrepancy

with SMHI-ref (whose station network has remained fairly constant during 1900-1960: black line in Fig. (1), upper plot).

The situation is different for summer (JJA) temperature. eofGridClim
JJA (#1) does indeed slightly higher values in mountain

regions (Jämtland, Sarek region), but differences with central Sweden are not as pronounced as for DJF and SON. However,

the second mode eofGridClim
JJA (#2) – characterised by a clear North-South dipole, explains more than twice of the signal variance460
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Figure 8. Estimates of the annual climate indicator CI for temperature with various methods. The CI is represented as thick lines, whereas

the 25% and 75% percentiles of the robustness ensemble CIens are shown as thin lines of the same colour. The labels for various CI are

indicated in Table Table (3) .

(λJJA(#2) = 13%) than for DJF and SON. The stronger influence of the second (bipolar) mode thus explains the discrepancy

between EOF-rec and SMHI-ref.

For all seasons, ∆CIEOF-rec exhibits large values. However, the associated span of 25%–75% percentiles indicate that this

results may not be significant. Therefore, they are not discussed in detail in the present study.

4 Discussion465

4.1 Benefits of the EOF-based climate indicators

The EOF methods were designed to emulate the original the original SMHI climate indicators (hereafter referred to as CI)

for temperature. Indeed, the resulting CI reconstruction (referred to as EOF-rec) are in close agreement with the original CI,

computed as the arithmetic mean of selected observation time-series (referred to as SMHI-ref).

The present study introduces the EOF method as an alternative CI estimate: instead of deriving the CI as an arithmetic mean470

of available time-series, it is computed as a weighted mean. The corresponding weighting coefficients are established using

independent (i.e. orthogonal) modes of variability in the observations during the calibration period. The weighing coefficients

are derived from EOF (empirical orthogonal functions) patterns, noted eof .
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Figure 9. Reconstructed seasonal absolute CI for temperature and the centered original SMHI indicator ∆CI[Xc] = CI[Xc]−CIcentered
SMHI-ref .

Labels are identical to Figure Fig. (8) .

We choose a calibration period extending from 1961–2018, which corresponds to the period covered by the gridded climate

data-set GridClim. From a theoretical point of view, using a weighted CI method makes its estimates less sensitive to changes475

in observation availability over time, i.e. how the spatial density of stations in the observation network evolves over time. Such

an automated method also allows to use the full observation database, instead of solely hand-selected stations in the reference

network.

Our results confirm that SMHI-ref CI, based on a reference network of 39 stations for temperature, is well representative

for a larger ensemble of 338 temperature stations, referred here as calibration network, used for EOF-rec. In other words,480

SMHI-ref and EOF-rec present largely equivalent results for the CI estimation, provided that sufficient meteorological stations

are active, i.e. after 1901. This is a novel result per se, since the reference network used in SMHI-ref had not been thoroughly

evaluated against the full observation database.

Based on the EOF method, we also suggests a metrics to evaluate the range of likely CI values. By adding random noise

and sub-sampling in an ensemble computation, we can plot the 25% and 75% percentiles in addition to the median value for485

the complete data-set. The spread between the 25% and 75% percentiles reflects mainly the data availability, and becomes

significantly larger prior to 1900.
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Furthermore, the EOF analysis enables to visualise the dominant modes of variability in the MORA observation data-set,

and compare it to the gridded data-set GRIDCLIM. The EOF patterns illustrate that the seasonal variability for temperature is

significantly different from annual means.490

Finally, the EOF-method has been tested in the present study for CI temperature. Since this method is fully automated, it

lends itself in principle to other climate variables for which SMHI provides an aggregated climate indicator, e.g. precipitation

(as presented in Sturm (2024a)), snow depth or length of the growing season.

4.2 Implication for decadal climate variability over Sweden

Despite being relatively small (±0.1◦C), differences between the EOF-based CI EOF-rec and the reference SMHI-ref are495

relevant for the analysis of decadal climate variability over Sweden, especially for seasonal means (as shown in Fig. (8) and

Fig. (9)).

Fig. (6) and Fig. (7) suggest that SMHI-ref may underestimate spring (MAM) and autumn (SON) temperatures by 0.1◦C

prior to 1920. During summer (JJA), SMHI-ref appears to underestimate temperature by 0.05◦C for the 1900–1960 period. On

the other hand, temperatures in winter (DJF) and autumn (SON) estimated by EOF-rec are 0.1◦C lower than SMHI-ref.500

During the 1961–2018 calibration period, the warming trend for mean annual temperature over Sweden is estimated by

SMHI-ref to +1.9◦C between 1980 and 2020. EOF-rec suggests a stronger trend: +2.1◦C. The trend for winter (DJF) temper-

atures is more pronounced: +3.5◦C for SMHI-ref, which increases to +3.9 in EOF-rec. On the other hand, EOF-rec suggests

a smaller temperature increase for the 1960–2020 for spring (MAM), and to a lesser extent for summer (JJA). The difference

between the SMHI-ref and EOF-rec are predominantly related to spatial sampling: the larger number of observation stations505

used for EOF-rec as compared to SMHI-ref (summarised in Table (1)) enables to better represent climate variability in Swe-

den’s northern regions. Since northern Sweden experiences a stronger recent warming (in connection to polar amplification

(Masson-Delmotte et al., 2021; Gulev et al., 2021)), EOF-rec captures a stronger temperature increase than SMHI-ref. The

latter is even more pronounced for GridClim-all, which calculates the CI for all grid-points over Sweden for the 1961–2018

period. SMHI-ref is thus likely to represent a smaller amplitude for decadal climate variability (in particular lesser trend for510

recent warming) compared to other national indicators computed from gridded data-sets Vose et al. (2014).

4.3 Comparison to climate indicators in other countries

Vose et al. (2014) presents the climate division data-set for the conterminous US for temperature since 1895. Station data

is interpolated using thin-plate smoothing spline method, accounting for invariant predictors such as elevation. A national

indicator can be derived from area-weighted average of “division units” constituting the grid.515

The method for deriving a area-weighted climate indicator for the contiguous is analog to the GridClim-all CI presented in

this study, i.e. the mean of all grid-points in the GRIDCLIM data-set covering Sweden.

Furthermore, Vose et al. (2014) indicate that a version 2 of the US CI led to overall lower estimates of mean monthly

temperatures compared to version 1. During 1960–2014, the difference between the old and new version is fairly constant
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at −0.4◦C. The difference steadily increases prior to 1960, reaching 0.9◦C in 1895. The difference in monthly temperatures520

between both data-sets displays a distinct seasonal cycle.

Vose et al. (2014) indicate that changes in the temperature CI is primarily related to better sampling (i.e. increased density of

observation stations). This conclusion is in agreement with this study, illustrated in Fig. (2): high-elevation regions in Sweden

display a particular behaviour in eofGridClim(#1), which is under-sampled in the MORA network EOF-rec and absent in the

reference network SMHI-ref. Hence, an area-weighted CI over Sweden is likely to yield significantly different results than the525

current station-based CI, both for annual and seasonal estimates.

Meteo-Swiss Begert et al. (2005) provides a set of 12 homogenised monthly temperature series since 1864. Climate indica-

tors are available as time-series for each reference observation station, or as interpolated maps over the Swiss territory (since

1871). The Swiss meteorological service adopts a hybrid approach (maps and individual observation time-series), which differs

from SMHI’s aggregated national climate indicator.530

Kaspar et al. (2017) presents a review of climate observation in Germany since 1881. Available observations are interpolated

on a 1 km x 1 km grid, which allows for altitude-dependent correction of the considered climate variable.

In the United Kingdom (Office, 2024), climate indicators are available for England, Wales, Scotland and Northern Ireland, as

well as the entire UK since 1881, based on the HadUK-grid. In France (Meteo-France, 2024), monthly indicators are available

for each department since 1852, as well as long homogenised time-series for selected observation stations.535

This brief overview reveals that most national weather agencies adopt a hybrid approach to produce climate indicators. Long,

homogenised time-series provide a long-term base-line for climate change in time, which is complemented by gridded data-sets

to represent its spatial variability. The present study shows the relevance of the EOF method to better capture the spatial of

climate variability, as a first step towards delivering region-specific climate indicators. The homogenisation of climatological

observations is an ongoing task at SMHI (Joelsson et al., 2022, 2023).540

4.4 Comparison to studies of historic climate variability in Fennoscandia

Bergström and Moberg (2002) present daily air temperature and pressure series for Uppsala for 1722–1998, located in Central

Sweden (70 km north of Stockholm). In accordance with this study, Bergström and Moberg (2002) report lower maximum daily

temperatures between 1880-1900 and 1950–1970. It is interesting to notice that the minimum daily temperature does not dis-

play similar variations, but a strong positive trend since 1980. Furthermore, the daily temperature amplitude (i.e. the difference545

between daily maximum and minimum temperatures) shows a mostly continuous decrease since 1880, particularly marked

after 1980. The current study focuses on annual and seasonal means of mean daily temperature; conclusions by Bergström

and Moberg (2002) provide a rationale to apply the EOF methods to annual/seasonal means of daily maximum and minimum

temperatures and temperature amplitude: these complementary CI could illustrate the climate variability in Sweden in more

details.550

Wilcke et al. (2020) set the long-lasting high-pressure systems that occurred in summer 2018 over Sweden, causing extreme

warm and dry conditions, in historical context. Wilcke et al. (2020) used as reference the Stockholm temperature series (Moberg

and Bergström, 1997; Moberg et al., 2003) spanning 263 years (1756–2018); the MORA data-set of temperature observations
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1860–2018, the same as the one used in this study, was also used, along with 5 long (150-year) climate simulation by CMIP

global climate models. Temperature anomalies ∆T were calculated for the periods 1861–1890 and 1989-2018, using the555

1981–2010 as deference. The probability density functions for summer temperature anomalies show a distinctive difference

between 1861–1890 and 1989–2018: for the southern half of Sweden, the shift in median values amounts to ∆T = +1◦C,

and ∆T = +1.5◦C for the northern half of Sweden, which is consistent with the ∆T = +1.25◦C in Fig. (9). These results

are consistent with a recent attribution study of extreme events in Sweden, using temperature observations in Sweden since

1882 (Holmgren and Kjellström, 2023). Wilcke et al. (2020) further emphasises that summer temperature changes are larger560

in the northern Sweden than in its southern half, which is consistent with Fig. (4): the analysis of extreme events throughout

the 1860–2020 period therefore requires a detailed representation of the temperature patterns, which the EOF method is more

likely to represent than the SMHI reference (arithmetic) method.

4.5 Persistence of leading EOF modes

Kjellström et al. (2022) present a large-scale atmospheric clustering affecting Scandinavian temperature and precipitation565

between two climate normals (1961–1990 and 1991–2020). The frequency of circulation types display significant changes

between 1961–1990 and 1991-2020; the change in occurrence frequency differs also for individual months. They also report

strong inter-annual correlations between the North Atlantic Oscillation (NAO) index and temperature CI, in particular for

winter (DJF) with an R2 = 60%; the CI for summer (JJA) temperature however is much smaller R2 = 5%. For precipitation,

the winter (DJF) CI has the strongest correlation (R2 = 20%). It is worth noticing that the correlation coefficients between the570

NAO-index and the national CI for temperature, for each season, are very close between the 1961–1990 and 1991-2020 period.

These results are highly relevant for the present study. Since the occurrence of various circulation types are proven to differ

between the 1961–1990 and 1991–2020 normal periods, it is reasonable to assume that the circulation type distribution is also

different for previous 30-year periods. The underlying assumption for this study is that the EOF pattern, calculated over the

1961–2018 calibration period, is deemed sufficiently persistent to be applied over the entire 1860-2020 study period. Further575

research is thus needed to evaluate if the leading EOF modes eof(#1− 10) for temperature vary significantly over 30-year

periods. In that case, the EOF method could be adapted by identifying a predictor representing circulation types (e.g. based

on mean sea-level pressure reconstructions since 1850 (Allan and Ansell, 2006; Ansell et al., 2006; Gallego et al., 2005)). A

particular set of EOF patterns eof(#1−10) can be assigned to dominant clusters of the predictor, which could be used for CI

reconstruction EOF-rec for earlier periods.580

The North Atlantic Oscillation (NAO) is commonly accepted as the dominant circulation type affecting climate variability in

Sweden, in particular during winter. The fact that correlation R2 between the NAO-index and temperature is similar between

1961–1990 and 1991-2020 indicate that, despite a change in the occurrence of circulation type, the relation between NAO and

temperature/precipitation CI is persistent. In other words, while the circulation types change, the internal variability (i.e. the

leading EOF patterns) remains mostly unchanged.585

Balting et al. (2021) show, using and EOF analysis on δ18O from tree cellulose across Europe, that the dominant modes of

climate variability are stable since 1850. Furthermore, the second EOF, resembling features shown in Fig. (A3), is associated
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to summer European patterns. Hence, it would be interesting to investigate if eofMORA(#2) in Fig. (A3), can specifically be

related to blocking situations over Sweden, which are associated to extreme conditions (e.g. during summer 2018).

Observation data presented in this study can be used to assess the correlation of circulation indices with temperature time-590

series over Sweden, for annual and seasonal averages, over 30-year time-slices between 1860 and 2020. Several reconstructions

of NAO since 1850 are available (Cropper et al., 2014, 2015; Comas-Bru and Hernández, 2018; Hanna et al., 2022; Jacobeit

et al., 2001b; Slonosky et al., 2000; Zveryaev, 2006), or the last millennium (Gouirand et al., 2007; Jones et al., 2001). Comas-

Bru and Hernández (2018) also provides estimates of the East Atlantic (EA) and Scandinavian (SCA) circulation patterns

since 1851 to present. We however would advise that observations in the MORA database be processed at a monthly resolution595

(instead of annually resolved ANN, DJF, MAM, JJA, SON averages) for such an analysis.

Jacobeit et al. (2001a, 2003) present zonal circulation indices (NAO: North Atlantic Oscillation, CEZ: Central European

Zonal Index) for Europe over the 1780–1995 period. The NAO index shows a period until the 1850s with accumulating

negative anomalies in winter whereas, in summer, positive are prevailing during 1820–1910. This is in contrast with recent

evolution with positive anomalies prevailing during winter (1920–1970) and negative ones during summer (1970–1995).600

Numerous studies have assessed the impact of synoptic circulation (mostly NAO) on precipitation and temperature patterns

across Scandinavia since 1850 (Hänsel, 2020; Ansell et al., 2006; Gallego et al., 2005; Hanna et al., 2022; Alvarez-Castro

et al., 2018; Fleig et al., 2015; Jones and Mann, 2004; Philipp et al., 2007; Slonosky et al., 2000; Kyselý, 2007, 2008). While

it is beyond the scope of the present study to assess the dependence of observed temperature to synoptic circulation patterns,

it would be interesting to investigate whether the leading EOF modes eofMORA differ significantly for e.g. positive/negative605

phase composites of the NAO.

Such an analysis would however require to analyse the temperature and precipitation observations at monthly resolution,

instead of annually resolved (ANN, DJF, MAM, JJA, SON) as in the present study: Massei et al. (2007), based on a wavelet

analysis of the daily NAO index, demonstrate that a large portion of the power-spectrum of NAO variability is found at sub-

annual frequencies.610

5 Conclusions

The present study introduces a new method to aggregate observation time-series into a single climate indicator, which is

evaluated for temperature over Sweden. A prerequisite for the new method is to emulate the climate indicator operationally

used by the Swedish Meteorology and Hydrology Institute (SMHI), based on an arithmetic mean of all station time-series.

5.1 Added value of station coupling and homogenisation615

The present study focuses on the individual station measurements in the MORA database maintained by SMHI. On one hand,

it has the advantage of considering all available observations; on the other hand, it comprises only few station with long

time-series. SMHI Climatology experts (including the authors of the SMHIref indicator (Alexandersson, 1986)) have used the

’coupling’ technique to stitch together similar station records into a long, single ’pseudo-station’; however, such a process has
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long been a time-intensive, person-operated effort; it has thus been restricted to a limited number of carefully chosen stations620

(e.g. the SMHI reference network). A recent development by Joelsson et al. (2022) enables an automatic, objective coupling

routine. The present methodology can be improved by using the coupling routine prior to applying the EOF method.

The quality control applied to all observations stored in the MORA database aims at insuring that the instrumental value is

correctly digitised; however it does not account for biases related to changes in station location, instruments, surroundings etc.

An a posteriori correction can be performed using homogenisation, such as BaRT/Homer (Joelsson et al., 2023) or Climatol625

(Guijarro et al., 2023), both homogenisation tools being used at SMHI. Homogenisation is particularly recommend when

working with coupled records, since the ’stitching’ is likely to introduce variations that are not related to climate, hence

considered inhomogeneities.

Further developments of the present method will investigate the impact of coupling and homogenisation on instrumental ob-

servations on the estimation of the climate indicators. An automated method for station coupling (Joelsson et al. (2022, 2023))630

enables an optimal compromise between the maximum number of different time-series and the longest times-series. The cou-

pling procedure will increase the number of time-series retained in the calibration data-set EOFcal that extend to the early

parts of the record. in other words, the light grey line in Fig. (1) is likely to be closer to the total number of active stations

(represented as staples). Furthermore, the number of missing values during the 1961–2018 calibration period is likely to be re-

duced, hence the gap-filling procedure (prior to the EOF analysis) is less likely to introduce numerical artefacts in the indicator635

reconstruction.

However, possible inhomogeneities (introduced by the coupling and/or other events, e.g. station relocation) will remain in

the calibration data-set EOFcal. These can be removed with the homogenisation procedure. This additional step will illustrate

to which extent the national climate indicator is sensitive to (presumably randomly distributed) inhomogeneities.

Finally, the homogenisation toolboxes Climatol (Guijarro et al., 2023) and Bart/HOMER (Joelsson et al., 2023) include640

a gap-filling feature (based on similarities with neighbouring stations), which potentially can deliver complete time-series

over the entire experiment period 1860–2020. It is however questionable to which extend the gap-filling algorithm delivers

physically significant results over such long periods, when the station availability drops to low numbers (e.g. in the early

part of the record). The present method, in particular the ensemble computation with randomly distributed noise, would be a

suitable tool to evaluate the robustness of the indicator estimation depending on the pre-processing steps (station coupling and645

homogenisation (Joelsson et al., 2022)), the choice of the calibration period and the climate variable (temperature, precipitation

and potentially other observational data-sets).

5.2 Further development of the SVD approach

As illustrated in this study, the EOF and SVD methods are largely equivalent in the present objective: defining a CI primarily

based on the MORA station network. However, the SVD method has the potential to be developed further. Most national650

weather agencies deliver regionalised climate indicators (Vose et al., 2014; Begert et al., 2005; Kaspar et al., 2017; Office,

2024; Meteo-France, 2024).
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Eq. (A3) only makes use of SVDMORA (defined in Eq. (A1)) to estimate X̂c

SV D
, the MORA data-set over 1860–2020.

The SVD method allows to use the other term in Eq. (A1): the spatial pattern SVDGridClim and associated time expansion

coefficients AGridClim. By construction (Björnsson and Venegas, 1997), the SVD time expansion coefficients AMORA and655

AGridClim are related to each other, with eigenvalue matrix ΛSV D defined in Eq. (A1).

AMORA ·
(
AGridClim)T =ΛSV D

AGridClim =
((

AMORA
)−1

·ΛSV D

)T

where the notation
(
AMORA

)−1

refers to a pseudo-inverse, since AMORA is not a square matrix. Based on this result, the

SVD method makes it possible to estimate a reconstructed gridded data-set Ĝc

GridClim
:

Ĝc

SV D
=Â

GridClim ·
(
SVDGridClim)−1

⇔ Ĝc

SV D
=
((

Â
MORA

)−1

·ΛSV D

)T

·
(
SVDGridClim)−1

⇔ Ĝc

SV D
=
((

X?
c ·SVDMORA

)−1

·ΛSV D

)T

·
(
SVDGridClim)−1

(11)660

New climate indicators based on GSV D
c can potentially be used to emulate the GridClim-all over the entire 1860–2020

period, provided that the projection of MORA X? on its SVD patterns is sufficient to capture the (dominant) climate variability

over the entire Swedish territory. If that is the case, it would be possible to define regional climate indicators based on GSV D
c ,

even in regions where no direct measurements are available. This assumption might be hard to fulfil in early parts of the records,

where only few stations are available (cf. Fig. (1)), and would require additional research to assess the significance of the665

method. The present method could extended by using regional climate simulations over the 1860–2020 period in substitution

for the single GRIDCLIM data-set used in this study; the principle of applying SVD to combine (even sparse) observations with

a gridded data-set remains valid. This is a promising way to characterise Sweden’s pre-industrial climate, to the best precision

the available observation evidence allows.

This example illustrates that relatively simple linear algebra methods, such as EOF and SVD, have the potential to deliver670

valuable results for the analysis of climate observations. The analysis can be further refined using more advanced method, such

as Principal Oscillation Patterns (POP), as presented in Storch et al. (1995).

Code and data availability. The code and processed data used in this study are freely available on Zenodo (Sturm, 2024b).

The computations for the present study are performed using the open-source software OCTAVE, which is mostly compatible with MATLAB.

The code is run with OCTAVE version 7.3.0 on a Linux computer. It further requires following OCTAVE packages:675

– io, version 2.6.4
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– netcdf, version 1.0.16

– stat, version 1.4.3

– mapping, version 1.4.1

The OCTAVE code is available freely available at. Since the final processed data used in this study is available (cf. below), the user may680

be able to run the code without the full list of required OCTAVE packages.

The data, processed as required for this study, is freely available for download. The archive format is OCTAVE’s binary format, which

can be loaded into an OCTAVE session using the load command. The processed data files, including the result of the EOF computation, is

organised in separate files for each annual and seasonal means (annual – ANN, and seasonal: winter – DJF, spring – MAM, summer – JJA,

autumn – SON).685
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A2 SVD decomposition of the coupled MORA and GRIDCLIM data-sets

In section 2.2.2, the EOF decomposition was described for a single independent data-set (MORA or GRIDCLIM). The EOF690

method can be further developed using the Singular Value Decomposition (SVD) method described hereafter. In the present

study, the leading EOF patterns eof(#1−3) were, in all but one case, virtually identical to their SVD counterparts svd(#1−3)

for both the MORA calibration network and the complete GRIDCLIM data-set.

The “Singular Value Decomposition” (SVD) is a further development of the EOF method (Eq. (4)), where the leading

modes no longer express the dominant variability in a single data-set, but the shared variability modes that two data-sets have695

in common. The SVD requires that both data-sets have the same number of time-steps (i.e. the same number of columns), but

may have different spatial dimensions (i.e. number of rows).

Being able to jointly assess the common variability, over the same period, of two data-sets with different spatial extent is

a particular benefit of the SVD method. In the present case, the (climate) variability of a given MORA station is no longer

solely compared to its corresponding grid-cell in the GRIDCLIM data-set (e.g. as was done in the gap-filling procedure); the700

SVD enables to assess how the 338 MORA time-series for observed temperature linearly relate to the 69842 individual time-

series from GRIDCLIM grid-cells covering the Swedish territory. Since regional-scale climate variability is (presumably) well

captured in the GRIDCLIM re-analysis product, the SVD method thus enables to isolate corresponding trends in the MORA

data-set – regardless of how well the one-to-one correspondence between the observed and simulated signal matches for any

single location.705

Covariance matrix: R = XMORA
c ·

(
XGridClim

c

)T

Singular Value Decomposition: R = SVDMORA ·ΛSV D ·
(
SVDGridClim)T

Time Expansion Coefficients:




AMORA = XMORA
c ·SVDMORA

AGridClim = XGridClim
c ·SVDGridClim

(A1)

Analogously to Eq. (4), the portion of the explained (common) variance can be retrieved from eigenvalues in diagonal matrix

ΛSV D. Similar to Eq. (5), the original XMORA
c and XGridClim

c matrices can be identically reconstructed from the results of the

SVD:





XMORA
c = AMORA ·

(
SVDMORA

)T

XGridClim
c = AGridClim ·

(
SVDGridClim)T (A2)710

The first three leading modes of the SVD for the MORA calibration subset are presented in Fig. (A2) for temperature:

the top row shows the spatial SVD patterns
(
svdMORA

)[1:3]

, the bottom row the corresponding time expansion coefficients
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(−−−−−→
aMORA

)[1:3]

. The portion of the variance explained by each mode is obtained from eigenvalues in matrix ΛSVD, and

displayed in the legend.

Analogously to Eq. (6), the original data-set with missing values X?
c can estimated using SVD patterns as X̂c

SV D
.715

X̂c

SV D
= Â

MORA ·
(
SVDMORA

)−1

(A3)

The climate indicator CI can thus be computed according to Eq. (7). Since eofMORA and svdMORA are virtually identical,

the reconstructed EOF-rec and SVD-rec cannot be distinguished from each other. Hence SVD-rec is not shown on Fig. (6) and

related figures.
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