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Abstract.

This document presents the response to reviews on Sturm (2024b): “EOF-based climate indicators over Sweden (part 1: tem-

perature)”. Both reviews (Anonymous, 2024a, b) recommend major revisions concerning the EOF methodology: we address

here previous shortcomings, present corrected results and discuss the difference to the original ones.

After a thorough review of suggested literature, we perform new analytical and numerical calculuses on the original data,5

and conclude that the rigorous theoretical approach reinforces the benefits of an EOF-based climate indicator to correct biases

of the reference method (arithmetical averaging). We hereby express our gratitude for the reviewers’ detailed comments and

suggestion, enabling major improvements to the previous manuscript.

1 Introduction

The submitted manuscript (Sturm, 2024b) describes a novel method to compute a national climate indicator for temperature in10

Sweden since 1860, based on an EOF (Empirical Orthogonal Functions) analysis. It is followed by a companion article using

the same methodology, applied on precipitation observations (Sturm, 2024a).

Both reviewers (Anonymous, 2024a, b) recommend major revisions to the submitted manuscript, which are addressed here-

after. The first review (Anonymous, 2024a) highlights a methodological flaw in the use of EOF:

‘As explained in a more detailed way below, the application of the EOF-based method is not totally correct. For instance, the15

method described here reconstructs the expansion temporal coefficients by projecting the available station observations onto

the EOF patterns. However, when restricted to the location of the available observations, the EOF patterns are not orthogonal

anymore – they are only orthogonal over the full set of stations in which they were calculated.

Thus, the way to ’reconstruct’ the expansion coefficients is another one in the case of gappy data, as described in the book

by von Storch and Zwiers (1999) Statistical Analysis in Climate Research. I believe that this methodological error is not20

determinant and that the application of the correct method will yield similar results.”

The second review (Anonymous, 2024b) recommends as major revisions (i) a better description of the gap-filling methodol-

ogy, based on a linear regression of the “gappy” MORA dataset versus the gridded GRIDCLIM (see below), and (ii) to develop

a “ specific test against the geometry in the distribution of missing values”.
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The present response to reviewers is structured as follows. As a preliminary task, we have further developed the theoretical25

fundamentals of EOF in climate studies, following suggested bibliography references (Hannachi et al., 2023, 2007; Storch and

Zwiers, 1999; Björnsson and Venegas, 1997; Preisendorfer, 1988): a succinct review is presented in the appendix. In particular,

we have focussed on following relevant aspects:

– Definition of EOF as eigenvectors of the covariance matrix of the observation dataset.

– Implication of the dimension conventions for the observational dataset (i.e. time× space or space× time observation30

matrix) for the EOF definition – in other words, the difference between defining the EOF on the spatial or time covariance

in observations.

– The estimation of EOF from a “gappy” dataset, i.e. containing missing values. This (previously overlooked) aspect

enabled a major improvement to the original manuscript.

The first section focuses on a better description of the original methodology. The first sub-section focuses on the gap-35

filling methodology (based on a linear regression of the “gappy” MORA dataset versus the gridded GRIDCLIM); the second

sub-section focuses on an analytical investigation on the impact of the breach of the orthogonality constraint in the original

methodology.

The second section explores the estimation of EOF from a gappy dataset, which represents the major improvement of the

revised manuscript. Following Storch and Zwiers (1999), we present in its first subsection a complementary method to estimate40

EOF from the gappy observation dataset, which does not require the gap-filling procedure over the 1961–2018 calibration

period. In order to evaluate the impact of the “geometry in the distribution of missing values” (Anonymous, 2024b), we

introduce an additional pre-processing of the observational dataset.

– While the original manuscript restricted the total 933 station time-series to 466 items over the 1961–2018 calibration

period, the computation of EOF from a “gappy” dataset allows to process all 933 stations.45

– The total 993 time-series included numerous duplicate stations, i.e. neighbouring stations with limited time overlap.

A merged dataset was prepared by “stitching” (or coupling) neighbouring stations into a single synthetic time-series,

reducing the number of station time-series to 727.

– An additional pre-processing step consisted in weighing the observation anomalies by a given station’s representative

area (derived from a Delaunay triangulation iof station coordinates in a Transverse Mercator projection). The weighted50

dataset contains 727 station time-series, identical to the merged dataset.

The second subsection presents an in-depth analysis of the degeneracy of EOF computed from a gappy dataset, including

North’s rule-of-thumb (North et al., 1982; Hannachi et al., 2023; Storch and Zwiers, 1999) and its underlying estimate of the

“effective sample size” (Thiébaux and Zwiers, 1984; Hannachi et al., 2007).
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The third subsection presents new results for the “gappy” EOF-based climate indicator for temperatures across Sweden,55

and their comparison to previously submitted results. Overall, the corrected methodology yields similar results to the initial

manuscript.

Both reviews strongly recommended a simplification of the manuscript’s structure and content. For that purpose, several

elements of the original study have been removed in the revised version:

– The dataset SMHI-ref (i.e. the climate indicator currently published by SMHI) was removed from the discussion. SMHI-60

ref is computed from 29 selected stations, from which individual station records are not available. This necessitated to

compare the anomaly of the (spatially averaged) SMHI-ref climate indicator from its 1961–2018 mean (i.e. spatial prior

to time averaging) to the spatial mean of 1961–2018 anomalies computed in the study (i.e. time prior to spatial averaging)

– which added unnecessary confusion.

– Instead, a less ambiguous diagnostic was used: the difference between the EOF-based climate indicator and the arithmetic65

average for the same “gappy” dataset.

– In the original submission, the EOF computed on gap-filled observations were compared to MCA (maximum covariance

analysis), erroneously referred to as SVD (singular value decomposition) between the same observations and the gridded

GRIDCLIM dataset. Since this analysis does not provide a significant added value to the present study, all references to

the SVD have been removed from the revised manuscript.70

– The geographical interpretation of the EOF patterns is no longer part of the revised manuscript. While the EOF patterns

and associated principal components presented in the original manuscript (Fig. (2–5) in Sturm (2024b)) are per se

correct1, they are no longer a priority in the revised version: since all datasets are consistently analysed for their spatial

covariance Ŝ=X⋆
ori ·X⋆

ori
†, following Eq. (9), the new EOF are defined as a ntime×ntime square matrices, thus no longer

suitable for a geographical interpretation.75

– To demonstrate the new EOF computations from gappy datasets, only the annual mean (ANN) for temperature is shown

here. Equivalent results for (annually-resolved) seasonal means (winter: DJF, spring: MAM, summer: JJA, autumn: SON)

are also available; discussion of those results will be included in the revised manuscript.

– Suggestions for minor revisions, such as changes in formulation, typographic errors and figure labelling have not (yet)

been considered at the present stage. Pending the reviewers’ reaction to the major revisions presented in the revised80

version, the author will naturally incorporate all comments in the revised manuscript.

In conclusion, we are grateful to the didactic and encouraging remarks made by the reviewers. It allowed to revisit the

fundamentals of EOF methodology (now summarised in the present appendix), and improve the quality of the manuscript by

1In the original manuscript, the centered observation matrix Xc, of dimension mspace ×ntime, was centered around its time-mean: Xc =X−µtime (X).

Since the number of time-steps ntime is inferior to the number of station time-series mspace (i.e. ntime <mspace), the “economical” implementation of the EOF

algorithm assumed a de facto spatial covariance analysis. This explains why the 1st EOF pattern is unimodal, the 2nd bi-modal etc.
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incorporating the EOF computation on “gappy” datasets. Fortunately, this rigorous approach confirmed that the initial results

(Sturm, 2024b) were correct, albeit not being sufficiently demonstrated.85

This response to the reviews addresses primarily the requests for major revisions, from both a theoretical and numerical

perspective. The sections hereafter also prefigure the structure and new graphs to be included in the revised manuscript version,

pending to the new comments by reviewers. It is also worth mentioning that the methodological improvements described

hereafter also apply to the 2nd companion article (Sturm, 2024a): the corresponding new graphs will be presented in the

dedicated response to reviewers.90

2 Demonstration of the original methodology

2.1 Gap-filling and centring of the MORA observation dataset

Let X (t,x) represent a climate variable (e.g. temperature) as a continuous function in time (noted t) and space (noted x). The

X (t,xy) function is sampled at time-steps ti ∈ [[1,nyear]] and locations xj ∈ [[1,msta]]; in other words, the function X (t,x) is

discretised as a matrix X, where:95

∀i ∈ [[1,nyear]], ∀j ∈ [[1,msta]],Xi,j = X (ti,xyj) (1)

X is thus a matrix of dimensions [nyear,msta], where each row ∀i ∈ [[1,myear]],X(i, :) =
−−−→
X (ti) represents the spatial pattern

at time-step ti, and each column ∀i ∈ [[1,nsta]],X(:, j) =
−−−−→
X (xyj) the time-series at location xj .

The present study focuses on annually resolved observation time-series, i.e. annual (ANN) or seasonal (DJF, MAM, JJA,

SON) averages. Each annually resolved dataset is analysed independently, applying the procedure below.100

Let X⋆
Full be the original MORA observation dataset over the entire study period 1860 – 2020, and X⋆

Cal its subset over the

1961–2018 calibration period. Both X⋆
Full and X⋆

Cal contain missing values, as indicated by th ⋆ symbol.

Let X◦
GridClim be a subset of the gridded GRIDCLIM dataset at the locations of X⋆

Cal, applying nearest neighbour interpolation.

GRIDCLIM dataset is complete (i.e. without missing values), as indicated by the ◦ symbol.

Let D =
[−→
D1, . . . ,

−−−→
Dnyear

]†
represent all non-missing values in observations in X⋆

Cal, where
−→
D1 represents all non-missing105

time-steps ti, ∀[[1,nyear at location xyj . for and X◦
Cal the gap-filled MORA dataset. All matrices X⋆

Cal,X
◦
Cal,X

◦
GridClim share the

same dimensions.

The for each location where X⋆
Cal displays missing values, a linear regression over the time-dimension is computed:

Linear regression: ∀i ∈ [[1,nyear, ]],X
⋆
Cal(i, j ∈

−→
Di)≈ ai ·X◦

GridClim(i, j ∈
−→
Di)+ bi

⇒

X◦
Cal(i, j) = X⋆

Cal(i, j), ∀(i, j) ∈ D
X◦

Cal(i, j) = ai ·X◦
GridClim(i, j)+ bi, ∀(i, j) /∈ D

(2)110
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Prior to performing the EOF analysis, the matrix X=X◦
Cal needs to be centred, i.e. the temporal mean needs to be subtracted

from each time-series. The centred matrix is noted Xc and defined in Eq. (3), where −→µ = E
(−→
Xj

)
, ∀j ∈ [[1,msta]] is a row

vector of dimension (1×msta) representing the time-average (i.e. average along 1st axis) of X⋆ and
−−→
1nyear = [1, . . . ,1]† the

nyear-dimension (column) unit-vector.

For the complete matrix X◦
Cal, the time-average

−−−−−−−→
µ1961−2018

time can be computed explicitly. However, since X◦
GridClim is not115

defined outside the 1961–2018 calibration period, Eq. (2) cannot be applied to fill gaps. The
̂−−−−−−−→

µ1860−2020
time time-average for X⋆

Full

is estimated solely based on available observation, i.e. ∀(i, j) ∈ D1860−2020.

X◦
Cal, ∀ti ∈ (1961,2018)


∀j ∈ [[1,msta]], µ(j) =

1

nyear
·
nyear∑
i=1

x(i, j)

⇒ xc(i, j) =x(i, j)−µ(j)

X⋆
Full, ∀ti ∈ (1860,2020)


∀j ∈ [[1,msta]], µ̂(j) =

1

|
−→
Di|

·
∑
i∈Di

x⋆(i, j)

⇒ x⋆
c(i, j) =x⋆(i, j)− µ̂(j)

⇔X⋆
c =X⋆ −−−→

1nyear
† · −̂→µ (3)120

Given the significant differences in mean temperatures between southern and northern Sweden, it is preferable to reconstruct

the national climate indicator based on anomalies rather than absolute observed values. When estimating the covariance matrix

S of a “gappy” dataset, during which missing values are replaced by zeros (cf. Eq. (9)), anomalies introduce less bias than

absolute values.

Absolute values can easily recovered by adding the mean −̂→µ to anomalies X=Xc +
−−→
1nyear

† · −̂→µ .125

2.2 Application to MORA reconstruction

This subsection investigates in more detail the methodology used in Sturm (2024b), in response to comments by (Anonymous,

2024a, b).

In this section, all observation datasets are assumed to be centred, i.e. X=Xc. This study focuses on the spatial covariance,

we derive the ntime eigenvalues of covariance matrix S′ =X ·X†. According to Eq. (A7), X◦
cal =Acal ·EOFcal

†, where A is130

a ntime square matrix and EOF a unitary [mspace × ntime] matrix2.

Let (⊠)⋆ represent matrices with missing data, subscript (⊠)cal refer to matrices defined over the calibration period 1961–

2018, and (⊠)rec to the full reconstruction period 1860–2020. Let (̂⊠) represent estimated variables obtained with a gappy

dataset. Hence, X⋆
ori represents the original observations (with missing data), and X̂rec the reconstructed dataset.

2According to Eq. (A13), the notations EOF and A can be considered as interchangeable. In the current case, EOF are defined as eigenvectors of the

spatial covariance, the ntime eigenvector square matrix (transposed) is called A, and the [mspace × ntime] (transposed) principal component matrix is called

EOF
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In the present study, we assume stationarity for the EOF modes, therefore EOFcal ≡ ÊOFrec, with dimension [mspace ×135

ntime]. The principal components Ârec form a square matrix of rank ntime.

Ârec =X⋆
ori ·EOFcal ⇒ X̂rec = Ârec ·EOFcal

† (4)

Let Ârec be the estimated matrix of principal components from ’gappy’ data X⋆
ori. Let ntime be the number of eigenvalues for

the covariance matrix S. Since nyear <msta, ntime = nyear for the full EOF decomposition. Let D =
[−→
D1, . . . ,

−−−→
Dnyear

]†
represent

all non-missing values in X⋆
ori and N =

[−→
N1, . . . ,

−−−→
Nnyear

]†
all missing values.140

Let −→ei,⋆
∣∣∣
j∈

−→
Di

represent the eigenvector −→ei at locations where X⋆
ori is defined.

−→ei,⋆
∣∣∣
j∈

−→
Di

=

ei,j∀j ∈
−→
Di

0 otherwise
⇔−→ei =−→ei,⋆

∣∣∣
j∈

−→
Di

+−→ei,⋆
∣∣∣
j /∈

−→
Di

⇔ ⟨−→ei ,−→ek⟩= ⟨−→ei,⋆
∣∣∣
j∈

−→
Di

,−→ek⟩+ ⟨−→ei,⋆
∣∣∣
j /∈

−→
Di

,−→ek⟩

⇔ ⟨−→ei,⋆
∣∣∣
j∈

−→
Di

,−→ek⟩= δi,j −⟨−→ei,⋆
∣∣∣
j /∈

−→
Di

,−→ek⟩ (5)

Eq. (5) demonstrates that the presence of missing values in X⋆
ori that “gappy” eigenvectors are no longer mutually orthog-145

onal: ⟨−→ei,⋆
∣∣∣
j /∈

−→
Di

,−→ek⟩ ̸= δi,k. Bearing this in mind, the first step in the field reconstruction is to project X⋆
ori onto the EOFcal

eigenvectors calculated during the 1961–2018 calibration period, as shown in Eq. (6).

α̂i,k = E
(
⟨
−→
x⋆
i ,
−→ek⟩
)
=

1

|
−→
Di|

·
∑
l∈

−→
Di

x⋆
i,l · el,k =

1

|
−→
Di|

·
(
X̂⋆

ori ·
−−→ek,⋆

∣∣∣
l∈

−→
Dk

)

⇔ −̂→αi =
1

|
−→
Di|

·
ntime∑
k=1

X̂⋆
ori ·

−−→ek,⋆
∣∣∣
l∈

−→
Dk

(6)

Eq. (A8) demonstrates that principal components −→αi are mutually orthogonal. As a corollary to Eq. (5), the estimated prin-150

cipal components −̂→αi are no longer orthogonal to each other (i.e. ⟨−̂→αi,
−̂→αk⟩ ̸= δi,k ·λk). This particularity was pointed out in

anonymous reviews (Anonymous, 2024a, b).

x̂i,j =

ntime∑
k=1

α̂i,k · ek,j = ⟨−̂→αi,
−→ej †⟩=

1

|
−→
Di|

·
ntime∑
k=1

∑
l∈

−→
Di

x⋆
i,l · e⋆l,k

 · ek,j

⇔ −̂→xi =
1

|
−→
Di|

·
ntime∑
j=1

(
X̂⋆

ori ·
−→ei,⋆
∣∣∣
k∈

−→
Di

)
· −→ej † (7)

Eq. (7) illustrates the method described in Sturm (2024b, a). We can thus conclude that the estimated climate indicator155

ĈIrec |t=ti ) = E
(−̂→xi

)
is indeed different from ĈIori |t=ti ) = E

(−→
x⋆
i

)
.
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Without a priori knowledge of the structure of
−→
Di, thus −→ei,⋆ and −̂→αi, no analytical solution can be derived for ⟨−̂→αi,

−̂→αk⟩. The

following subsection explores the numerical assessment for this case study.

2.3 Estimation of the mean climate indicator

The climate indicator
−̂→
CI , computed as the mean of all values for a given time-step, can be expressed as the expectation E of160

the matrix X= (−→x 1, . . . ,
−→x msta).

Let |Di| ≤msta represent the number of available observations at time-step ti in −→x i =Xi =X(i, :). Let −→ei =EOFcal |t=ti

be the eigenvector corresponding to the ith eigenvalue, where i ∈ [[1,ntime]].

The climate indicator
−̂−−→
CIrec can thus be estimated as an arithmetic mean of non-missing values:

ĈIrec |t=ti =E
(−̂→xi

)
= E

 1

|
−→
Di|

·
nEOF∑
j=1

(
X̂⋆

ori ·
−→ei,⋆
∣∣∣
k∈

−→
Di

)
· −→ej †

165

⇔ ĈIrec |t=ti =

(
X⋆

ori ·
−→ei,⋆
∣∣∣
k∈

−→
Di

)
· −→ei †

|
−→
Di|

(8)

Eq. (8) hence provides a formal demonstration for Eq. (6) in Sturm (2024b).

3 Extension of the methodology to gappy datasets

3.1 Estimation of the covariance of a dataset with missing values

The first review (Anonymous, 2024a) accurately emphasises that EOF can be computed from datasets with missing values, e.g.170

demonstrated by Storch and Zwiers (1999)’s section on “gappy” datasets. This possibility, overseen in the first version of the

manuscript, allows to apply the method on the full observation dataset (hereafter referred to as CI-full, analogously to CI-cal

for the calibration network).

Following Storch and Zwiers (1999), the covariance matrix Ŝ=

[
. . . , σ̂i,j ,

. . .
]

, a square matrix with elements noted σ̂i,j can

be estimated as following:175

σ̂i,j =
1

|Ki ∩Kj |
∑

k∈Ki∩Kj

(xk,i − µ̂i) · (xk,j − µ̂j)
∗ (9)

where µ̂i =
1

|Ki|
∑
k∈Ki

xk,i

To avoid missing values in Ŝ, Eq. (9) needs to apply to the spatial covariance of the MORA observations; according to Eq.

(A12), it implies that Ŝ is a ntime square matrix. Following Eq. (A5) and Eq. (A7), we can estimate the reconstructed dataset

X̂rec following Eq. (10).180
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Figure 1. Upper plot: Number of active temperature stations in MORA over time (as bars). The dark grey line represents the number of active

in the original reference station network; they light grey line represents the number of stations for the calibration network (i.e. individual

stations being active at least 15 years during the calibration period 1961–2018, as highlighted by the dashed box). Lower plot: Median

latitude for active stations in the calibration data-set over time (incl. the [25%˘75%] bounds). The median latitude is used as a proxy for the

distribution of the observation network. (This figure is reproduced from the original manuscript (Sturm, 2024b).)

Ŝ · ÊOF= ÊOF · Λ̂⇔ Ŝ= ÊOF · Λ̂ · ÊOF
†

(10)

⇒ X̂rec =⟨X⋆
ori, ÊOF⟩ · ÊOF

†

The second review (Anonymous, 2024b) raises the question of the geometry of the observation network, and whether missing

values are randomly distributed. This is indeed a crucial aspect, which is not thoroughly covered in the original manuscript.

To answer this question, additional preprocessing steps need to be applied to the observational datasets. In the original185

manuscript (Fig. (1) and Table (1) in Sturm (2024b)), the total network, i.e. 993 time-series of temperature observations, were

reduced to 466 time-series for the calibration network. In order to qualify for the calibration network, a given station has to (i)

have at least 15 years of data coverage during the 1961–2018 calibration period, and (ii) a correlation coefficient (for annually

resolved records) r >
√
0.5 with the nearest-neighbour grid-cell in the GRIDCLIM dataset. Isolating a suitable calibration

network is required, in the original method, in order to construct a complete (i.e. NaN-free) MORA dataset prior to computing190

EOF over the 1961–2018 calibration period.

Thus emerges a new issue with the CI-full network geometry: the MORA database contains stations with nearly identical

geographical coordinates, but active over different time-periods (generally with a few year overlap). It is therefore usual to

construct time-series with fewer missing values by “stitching” (aka. as coupling or merging) neighbouring stations into a single

record (Sturm, 2024b; Joelsson et al., 2023).195
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In the present document, an automatic merging was performed by merging stations located in a 5 km radius: the synthetic

time-series is taken as the mean of available (i.e. arithmetic average, for each time-step, disregarding NaN). As a result, the

merged network is reduced from 993 to 727 time-series: this operation avoids duplicate time-series with long periods of missing

values. However, the merging procedure does not explicitly addresses the station density. It is obvious from Fig. (1, lower panel:

median latitude of active stations over time) and Fig. (2) in Sturm (2024b) that more observation stations are operated in the200

South (more populated) regions of Sweden (especially prior to 1900). Hence EOF are also computed after weighing each time-

series’ anomaly by the station’s representative area (obtained by Delaunay triangulation of the station’s coordinate in the Rikets

Nät 1990 (RT90)/Transverse Mercator projection). The weighted network has by construction the same number of station time

series (727) as the merged network. The relevance of spatial weighted anomalies for EOF analyses of climate observations is

documented e.g. in North et al. (1982); Quayle et al. (1991); Thomson and Emery (2014); Zhang and Moore (2015).205

3.2 Degeneracy of gappy EOF computations

The eigenvalues λ̂ computed from the GRIDCLIM and MORA datasets are shown in Fig. (2), and corresponding values in

Table (1). λ̂ FOR GridClim-sub are presented with all available preprocessing (original, i.e. 993 grid-cells), and the merged

and weighted processed (727) over the 1961–2018 calibration period. Similarly MORA-full-F represents the λ̂ for the full

(original), merged and weighted datasets over the entire study period (1860–2020). MORA-cal-N represents the gap-filled210

observation dataset for the calibration network (466 stations) over 1961–2018, as described in (Sturm, 2024b). For comparison

purposes, MORA-short-X represents a subset of the 1860–2020 MORA-full-F dataset, sampled at the same locations as MORA-

cal-N (i.e. the calibration network).

Unsurprisingly, we notice that datasets without missing values (i.e. GridClim-sub and MORA-cal-N) display an effective

sample size (n′
EOF) identical to S’s rank: ntime. Accordingly, the non-degenerate EOF account for almost all of X’s variance215

(
∑

λ̂ > 97%). Among datasets with missing values, MORA-short-X, i.e. a subset of MORA-full-F, restricted to the calibration

network, displays a slightly higher percentage of the variance (
∑

λ= 76%) compared to MORA-full-F (
∑

λ= 64%).

9



1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=993 x mtime=58)

λ: 
G

rid
C

lim
-s

ub
 [s

pa
ce

]

GridClim-sub,
original
 Σ λ1-4=98.16%
 λ(4)=0.3 ∈ [0.2; 0.3]
 λ(5)=0.2 ∈ [0.2; 0.3]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=727 x mtime=58)
λ: 

G
rid

C
lim

-s
ub

 [s
pa

ce
]

GridClim-sub
merged
 Σ λ1-4=98.16%
 λ(4)=0.3 ∈ [0.2; 0.3]
 λ(5)=0.2 ∈ [0.2; 0.3]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=727 x mtime=58)

λ: 
G

rid
C

lim
-s

ub
 [s

pa
ce

]

GridClim-sub 
weighted
 Σ λ1-4=98.16%
 λ(4)=0.3 ∈ [0.2; 0.3]
 λ(5)=0.2 ∈ [0.2; 0.3]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=466 x mtime=58)

λ: 
M

O
R

A-
ca

l-N
 [s

pa
ce

]

MORA-cal-N,
original
 Σ λ1-4=97.50%
 λ(4)=0.3 ∈ [0.2; 0.4]
 λ(5)=0.3 ∈ [0.2; 0.3]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=466 x mtime=161)

λ: 
M

O
RA

-fu
ll-X

 [s
pa

ce
]

MORA-short-X,
original
 Σ λ1-5=75.83%
 λ(5)=1.7 ∈ [1.5; 1.9]
 λ(6)=1.3 ∈ [1.1; 1.5]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=993 x mtime=161)

λ: 
M

O
R

A-
fu

ll-
F 

[s
pa

ce
]

MORA-full-F
original
 Σ λ1-3=63.75%
 λ(3)=2.3 ∈ [1.9; 2.7]
 λ(4)=1.7 ∈ [1.4; 2.0]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=727 x mtime=161)

λ: 
M

O
R

A-
fu

ll-
F 

[s
pa

ce
]

MORA-full-F,
merged
 Σ λ1-3=63.97%
 λ(3)=2.3 ∈ [1.9; 2.6]
 λ(4)=1.7 ∈ [1.4; 1.9]

1 2 3 4 5 6 7 8 9 10

100

101

102

NEOF: (nspace=727 x mtime=161)

λ: 
M

O
R

A-
fu

ll-
F 

[s
pa

ce
]

MORA-full-F, 
weighted
 Σ λ1-3=63.97%
 λ(3)=2.3 ∈ [1.9; 2.6]
 λ(4)=1.7 ∈ [1.4; 1.9]

Figure 2. Eigenvalue (λ̂) plots for the GRIDCLIM and MORA datasets, in original, merged and weighted form. MORA-cal-N represents the

gap-filled observation dataset for the calibration network (466 stations) over 1961–2018. MORA-short-X represents a subset of MORA-full-

F dataset, sampled at the same locations as MORA-cal-N. Corresponding values for EOF degeneracy are shown in Table (1). The dashed

vertical line indicates the first degenerate λ. The Y-axis shows λ on a logarithmic scale.
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3.3 Reconstruction of the climate indicator from gappy EOF

The climate indicator
−̂→
CI for temperature can be reconstructed using Eq. (11), where Di represents all non-missing values

in the original dataset X⋆
ori at the time-step t= ti,

−̂→
CIAM the original (i.e. arithmetic mean) climate indicator and

−̂→
CIEOF the220

EOF-based climate indicator. It is worth noting that Eq. (11) is valid regardless of the scaling convention of ÊOFcal.

−̂→
CICM =

∑
j∈Di

1

|Di|
·X⋆

ori

−̂→
CIEOF =

1

mspace
·
mspace∑
j=1

Â · ÊOF
†
=

1

mspace
·
mspace∑
j=1

⟨X⋆
ori, ÊOF⟩ · ÊOF

†
(11)

For all datasets in Table (1), ÊOF is computed from gappy datasets according to Eq. (10) . Note that X⋆
ori in Eq. (11) can

represent the full (original), merged or weighted station network, with their respective ÊOF. For datasets noted as “MORA-225

cal X MORA-full” and “GridClim-full X MORA-full” in Fig. (3) and Fig. (4),
−̂→
CIEOF is computed by projecting X⋆

ori on ÊOF

computed over the 1961–2018 calibration period (i.e. the square matrices ÊOF, of dimension 2018− 1961+1 = 58, for

MORA-cal and GridClim-full), analogously to Eq. (8) and Sturm (2024b).

Fig. (3) shows the estimated climate indicator
−̂→
CI in absolute values (i.e. mean temperature over Sweden in ◦C). By con-

struction, the estimated climate indicator from original (arithmetic)
−̂→
CIAM and the EOF-based

−̂→
CIEOF are identical for datasets230

without any missing values (i.e. GridClim-full and MORA-cal). GridClim-full is presented in Fig. (3) with 3 preprocessing: the

original (i.e. 993 station time-series), the merged and weighted versions (727). The comparison over the 1961–2018 calibra-

tion period indicates that all 3 version are highly correlated, with
−̂−−−−→
CIoriginal >

−̂−−−−→
CImerged >

̂−−−−−−→
CIweighted. This is consistent with the

fact that that observations in southern Sweden, characterised by higher temperatures, (i) are more abundant in early parts of

the record (therefore more likely to present more neighbour stations to be merged, hence
−̂−−−−→
CIoriginal >

−̂−−−−→
CImerged); (ii) present235

a higher station density than in Sweden’s northern parts (as demonstrated by the median and [25%,75%] percentiles of the

station’s latitude (Sturm, 2024b), Fig. (1)), hence
−̂−−−−→
CImerged >

̂−−−−−−→
CIweighted. In summary, the

−̂−−−−→
CIoriginal,

−̂−−−−→
CImerged,

̂−−−−−−→
CIweighted display

a close variability with an ∼ 0.1◦C offset for the Sweden average.

Over the 1860–2020 study period, all estimated climate indicators
−̂→
CI display a similar inter-annual variability, with increas-

ingly negative offset for
−̂−−→
CIEOF (full lines) versus

−̂−→
CIori (dashed lines) prior to 1930. In order to better assess the difference240

between
−̂−−→
CIEOF and

−̂−→
CIori, Fig. (4) represents ∆

−̂→
CI =

−̂→
CIEOF −

−̂→
CIori, i.e. the subtraction of full (

−̂−−→
CIEOF) and dashed (

−̂−→
CIori)

lines in Fig. (3).

Fig. (4) demonstrates the equivalent results between the EOFcal, i.e. the gap-filled X◦ over the 1961–2018 period (based on

the 466-station calibration network), and the “gappy” ÊOF, computed from Eq. (10) (cf. dataset definitions in Table (1)):

– MORA-cal X MORA-full is virtually identical to MORA-short: ̂EOFMORA-short, computed from the (gappy) subset at245

the 466 stations of the 1860–2020 X⋆
ori dataset, is thus equivalent to EOFcal computed from the 1961–2018 gap-filled

X◦
MORA dataset in Eq. (2).
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2000195019001

2

3

4

5

6

7 Reconstructed climate indicator for temperature: absolute values (ANN)

GridClim-full, original GridClim-full, merged GridClim-full, weighted
MORA-cal, original MORA-short: original MORA-full, original
MORA-full, merged MORA-full: weighted
MORA-cal X MORA-full

GridClim-full X MORA-full

Figure 3. Reconstructed climate indicator for temperature for annual means (ANN). The legend shows the dataset (MORA or GRIDCLIM)

and preprocessing (original, merged or weighted) as defined in Table (1). Full lines represent
−̂→
CIEOF, the EOF-reconstructed climate indicator;

dashed lines the
−̂→
CIAM reference (i.e. arithmetic mean, for a given time-step, over all available station observations for a given dataset).

– GridClim-full X MORA-full is virtually identical to MORA-full: ̂EOFMORA-full, computed from the total 933-station

(gappy) X⋆
ori, is thus equivalent to EOFGridClim-full, the subset of the (complete) gridded GRIDCLIM sampled at the

993-station MORA locations.250

This result confirms the comment for major revision by Anonymous (2024a)3: while the method originally described in

Sturm (2024b) fails to enforce the orthogonality for the projection of the gappy dataset, its result is equivalent to the rigorous

EOF-computation following Storch and Zwiers (1999)’s section on “gappy” datasets. It furthermore demonstrates that the

spatial covariance (S=X ·X†) of the 1961–2018 GRIDCLIM (sampled at the MORA 933-station locations) is equivalent to
̂SMORA-full, computed with Eq. (9) from the gappy 1860-2020 MORA dataset.255

The corrected method reinforces the initial conclusion in Sturm (2024b): the difference ∆
−̂→
CI between the reference (arith-

metic averaged)
−̂−→
CIori and the EOF-based

−̂−−→
CIEOF reconstructed climate indicator amounts to ∼−1◦C over the 1880–1900

period for the full and merged versions gappy X⋆
ori dataset. In other words, compute the climate indicator for temperatures over

Sweden as the arithmetic mean of available observations introduces a significant positive bias for the period prior to 1930. This

3“Perhaps more importantly, the EOF-based method contains some technical errors that need to be addressed, although I believe these changes would not

strongly impact the final results.”
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GridClim-full, original GridClim-full, merged GridClim-full, weighted
MORA-cal, original MORA-short: original MORA-full, original
MORA-full, merged MORA-full: weighted
MORA-cal X MORA-full

GridClim-full X MORA-full

200019501900

Reconstructed climate indicator for temperature:
difference from reference (ANN)

Figure 4. Difference between the reconstructed climate indicator and the reference method, for temperature for annual means (ANN). The

legend shows the dataset (MORA or GRIDCLIM) and preprocessing (original, merged or weighted) as defined in Table (1). In other words,

lines represent the ∆
−̂→
CI =

−̂→
CIEOF−

−̂→
CIori, subtraction of full and dashed lines in Fig. (3). The slight offset in time (X) coordinates for various

datasets is a plotting artefact to distinguish similar curves: all refer to the same date.

bias is primarily due to the fact that observations in Sweden’s southern (warmer) regions are more abundant prior to 1900, as260

shown in the spread of latitude of active stations over time (Fig. (1) in Sturm (2024b)).

Following the reviewers’ suggestion, we introduce a new, weighted climate indicator: the observed station anomaly is

weighted by the a given station’s representative area (based on Delaunay triangulation of station coordinates in a Transverse

Mercator projection). Stations in the less densely sampled northern regions thus gain a larger influence on the aggregated

national climate indicator. The weighted EOF-based climate indicator displays a negative bias compared to the reference (i.e.265

arithmetically averaged) indicator as well, albeit of lesser amplitude (∆
−̂→
CI ∼−0.75◦C for the 1880–1900 mean). The weighed

climate indicator however does not appear robust prior to 1880, as a result of the scarcity of observations in northern Sweden

in early records.

4 Conclusions

Comments and suggestions for major revisions by Anonymous (2024a, b) allowed a significant improvement of the original270

manuscript (Sturm, 2024b): the author is deeply grateful to the reviewers’ efforts. The major improvements are listed hereafter:
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– The fundamentals of EOF calculus, in particular the impact of time× space versus space× time convention for the

dimension of the X⋆
ori observation matrix, was reviewed with help of suggested bibliography references (Hannachi et al.,

2023, 2007; Storch and Zwiers, 1999; Björnsson and Venegas, 1997; Preisendorfer, 1988). The summary, with consistent

notation, is presented in the appendix.275

– The possibility to compute EOF (wrt. X⋆
ori spatial covariance) from “gappy” datasets (i.e. with missing values) was

explored from both an analytical and numerical perspective. As a corollary, this study investigates the EOF degeneracy

with North’s rule-of-thumb (North et al., 1982; Hannachi et al., 2023; Storch and Zwiers, 1999) and its underlying

estimate of the “effective sample size” (Thiébaux and Zwiers, 1984; Hannachi et al., 2007).

– To investigate the impact the distribution of missing values in space and time in the observation matrix X⋆
ori, we define 3280

preprocessing options: the original, full (993 station time-series) dataset; the merged dataset, where neighbouring stations

(within a 5-km radius) are averaged to a synthetic time-series with lesser missing values; the weighted dataset, where

observed anomalies of merged time-series are weighted by each station’s representative area (obtained by Delaunay

triangulation of the station’s coordinate in the Rikets Nät 1990 (RT90)/Transverse Mercator projection).

The methodological improvements above lead to new findings, which reinforce the conclusions of the initial study. The285

EOF-based climate indicator for temperatures in Sweden
−̂→
CIEOF, shown in Fig. (3) and Fig. (4) is inferior to the arithmeti-

cal mean of available observations
−̂→
CIAM by up to −1◦C prior to 1900, when all station time-series in X⋆

ori are considered

individually (original preprocessing) or neighbouring stations are merged into synthetic time-series (merged preprocessing).

The difference is reduced to −0.75◦C if anomalies in X⋆
ori are weighted by the station’s representative area (weighted pre-

processing). This result is related to the particular “shape” of the Swedish observation network. Stations in the southern parts290

generally extend further back in time (with a higher nummer of duplicate/neighbouring stations), with a higher spatial den-

sity than in their northern counterparts; for obvious climatological reasons, southern Sweden is characterised by higher mean

annual temperatures.

The use of the diagnostic ∆
−̂→
CI =

−̂→
CIEOF −

−̂→
CIori, computed for various datasets (i.e. subsets of MORA and GRIDCLIM) and

preprocessing (i.e. original, merged and weighted) is convenient to assess the bias of station location and data availability on295

a national climate indicator for temperature in Sweden: the EOF-based
−̂→
CIEOF proves less sensitive than the arithmetic mean

−̂→
CIAM to the distribution of missing values in X⋆

ori. This result can be further investigated using Monte-Carlo and/or sensitivity

to white-noise perturbations (Sturm, 2024b).

The investigation of EOF from gappy datasets further strengthens the validity of the methodology presented in Sturm

(2024b) (despite its lack of formal demonstration): reconstruction of the principal component matrix X̂rec by projecting the300

full 1860–2020 gappy dataset X⋆
ori on EOFcal, the eigenvector computed over the 1961–2018 calibration period. Two exam-

ples are available with matching dimensions: the 466-station subset of “MORA-cal X MORA-full” and the full 993-station

“GridClim-full X MORA-full”. In the first case, the similarity between MORA-cal X MORA-full and MORA-short demonstrates

that ̂EOFMORA-short (i.e. the EOF computed from a subset of the 1860–2020 gappy X⋆
ori dataset, sampled at the locations of

the calibration network defined in Sturm (2024b)) is equivalent to EOFcal computed from the 1961–2018 gap-filled X◦
MORA305
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dataset. The second case is even more conclusive: the close similarity between GridClim-full X MORA-full and MORA-full in

Fig. (4) implies following equivalence:

mspace∑
j=1

⟨X⋆
ori,

̂EOFMORA: 1860-2020⟩ · ̂EOFMORA: 1860-2020
†
≃

mspace∑
j=1

⟨X⋆
ori,EOFGridClim: 1961-2018⟩ ·EOFGridClim: 1961-2018

† (12)

−̂→
CIAM should however not be considered equivalent to SMHI-ref, the reference climate indicator historically used by the

Swedish Meteorology and Hydrology Institute. While the mathematical formula is the same (arithmetic mean of available310

observations), SMHI-ref is computed on 29 carefully selected synthetic (merged) long time-series with few missing values,

spanning fairly uniformly over Sweden. The comparison between Fig. (3) and Fig. (8) in Sturm (2024b) shows that SMHI-ref

is similar to
−̂→
CIEOF presented in Fig. (3): the arithmetic average of a limited amount (29) of long time-series distributed across

Sweden is representative of the EOF-based climate indicator with all (993) observation stations.
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Appendix A: Empirical Orthogonal Functions: theorem and definitions315

Empirical orthogonal functions (EOF) are a mathematical method to decompose a 2-dimensional matrix in two orthogonal

matrices, i.e. whose column vectors are mutually uncorrelated. It is a synonym for principal component analysis (PCA).

Since the initial theorem by Autonne (1913), EOF were applied in the (presumably) first attempt of numerical weather

forecasting (Richardson and Lynch, 1922; Schultz and Lynch, 2022). These initial efforts were continued to apply EOF for

short-range numerical weather prediction (Wadsworth et al., 1948; Fukuoka, 1951; Lorenz, 1956).320

Fundamental notions of linear algebra, and demonstration of the EOF theorem, can be found in e.g. Strang (1988, 1993, 2023).

Applications of EOF methods specifically for climate and atmospheric sciences are explicited in e.g. Hannachi et al. (2023, 2007);

Preisendorfer (1988); Storch et al. (1995); Storch and Zwiers (1999); Björnsson and Venegas (1997); Bretherton et al. (1992);

Hartmann (2016); Wilks (2011, 2006).

We summarise hereafter the mathematical formalism of EOF, following the nomenclature in Hannachi et al. (2023, 2007);325

Storch and Zwiers (1999); Björnsson and Venegas (1997); Preisendorfer (1988).

A1 Standard convention for matrix dimensions: [ntime × mspace]

Preisendorfer (1988); Hannachi et al. (2007) define the [ntime × mspace] observation matrix Xori. According to this conven-

tion, columns
−→
x′
j =X(:, j)∀j ∈ [[1,mspace]] represents the time-series of X (t,xy) sampled a times ti ∈ [[1,ntime]] for loca-

tion xyj . Similarly, rows
−→
xori
i

† =X(i, :)†∀i ∈ [[1,ntime]] represents the spatial pattern of X (t,xy) sampled at the location330

xyj ∈ [[1,mspace]]. The standard convention for the dimensions of matrix X is described in Eq. (A1):

Xori =(−→x1, . . . ,
−−−→xmspace)

†

=


xori
1,1 · · · xori

1,mspace

...
. . .

...

xori
ntime,1

· · · xori
ntime,mspace

 (A1)

Anomalies are computed by subtracting the time average, as indicated in Eq. (3).

The following subsections abide to the standard convention [ntime ×mspace]. The last subsection demonstrates the differences335

between the [ntime × mspace] and [mspace × ntime] conventions, as illustrated in Eq. (A13).

A2 Theorem

The theorem for the decomposition in empirical orthogonal functions (EOF) (Storch and Zwiers, 1999) is expressed as:

Let X be an m-dimensional random vector with mean −→µ and covariance matrix S. Let λ1 ≥ λ2 ≥ ·· · ≥ λm

be the eigenvalues of S and −→e1 , . . . ,−→em be the corresponding eigenvectors of unit length. Since Σ is Hermitian,340

the eigenvalues λ are non-negative and the eigenvectors −→ei are orthogonal.
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The theorem translates to:

∀k ∈ [[1,m]], εk minimises

εk = E

(
∥(X−−→µ )−

k∑
i=1

⟨X−−→µ ,−→ei ⟩−→ei ∥2
)

εk = var(X)−
k∑

i=1

λi345

var(X) =

m∑
i=1

λi (A2)

Let EOF be the matrix of eigenvectors [−→e1 , . . . ,−→em]. By definition, eigenvectors are orthogonal (i.e. ∀i ̸= j,⟨−→ei ,−→ej ⟩= 0).

Eigenvectors are chosen to be unitary (i.e. ∀i, ∥−→ei ∥= 1). The orthonormality of matrix EOF can be summarised in Eq. (A3),

using the Kronecker symbol δi,j :

∀(i, j), ⟨−→ei ,−→ej ⟩= δi,j , where δi,j =

0 ∀i ̸= j

1 ∀i= j
350

⇔EOF ·EOF† = Imspace

⇔EOF−1 =EOF† (A3)

To determine EOF, we need to find the eigenvalues of the covariance matrix S . S, defined in Eq. (A4) has following

dimension: [mspace × mspace]:

S=

tntime∑
t=t1

−−→
x(t) ·

−−→
x(t)† =X† ·X (A4)355

Eq. (A3) indicates that principal components −→αi are obtained by projecting the centred observation matrix Xc on their

respective eigenvectors −→ei .

With S as the covariance matrix of Xc, we can exhibit the diagonal matrix Λ with non-negative eigenvalues λ1 ≥ λ2 ≥ ·· · ≥
λm ≥ 0. According to Eq. (1), Λ and S are square matrices of rank mspace.

S ·EOF=EOF ·Λ⇔ S=EOF ·Λ ·EOF†360

where Λ =diag(λ1, . . . ,λm) (A5)

We furthermore can demonstrate that the i-th eigenvalue λk represent the variance associated to the EOF mode (−→ei ,−→αi). The

portion of the variance explained by the i-th EOF mode can be expressed as r2i in Eq. (A6), similar to the squared correlation

coefficient used in linear regressions (Wilks, 2006).
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var(⟨X,−→ei ⟩) =−→ei † ·S · −→ei = λi365

⇒ r2i =
var(⟨X,−→ei ⟩)

var(X)
=

λi
myear∑
k=1

λk

(A6)

Let A be the matrix of associated principal component vectors A= [−→α1, . . . ,
−→αn]

†. A is a [ntime × mspace] matrix (i.e. same

dimensions as X) and is defined in Eq. (A7):

A=X ·EOF⇔X=A ·EOF† (A7)

Moreover, we observe that the covariance matrix of A is identical to the diagonal eigenvalue matrix Λ, as demonstrated in370

Eq. (A8).

A† ·A=EOF† ·X† ·X ·EOF

=EOF† ·S ·EOF

=EOF† ·EOF ·Λ ·EOF† ·EOF

⇔A† ·A= Λ (A8)375

Wilks (2006) lists different terminologies for matrices in Eq. (A3). EOF is commonly referred to as empirical orthogonal

functions (EOF), with synonyms being eigenvectors, modes of variation, pattern vectors, or principal directions. A is referred

to as principal components, expansion coefficients, scores, or amplitudes.

A3 Analysis of the spatial and time covariance

Let X be a [ntime ×mspace] matrix, where ntime ≪mspace, centred over its 1st dimension (i.e. by subtracting −−→µtime). Let X′ =X†380

be the conjugate transpose of X of [mspace ×ntime dimension, centred over its 1st dimension (i.e. by subtracting −−−→µspace). If all

values are real, XT =X†∀X ∈ Rm,n Since both X and X′ are both centred over their respective 1st dimension, X and X′ are

not strictly speaking identical:

X+
−−→
1nyear

† · −̂−→µtime =
(
X′ +

−−−→
1mspace

† · −̂−−→µspace

)†
⇔X−X′† =−̂−−→µspace

†
· −−−→1mspace −

−−→
1nyear

† · −̂−→µtime (A9)385

If X is centred in time prior to the analysis, then:

Xc =X+
−−→
1nyear

† · −̂−→µtime
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Xc −X′
c
†
=E
(
Xc

†
)
· −−−→1mspace (A10)

However, they can be considered as similar Xc ≃X′
c
†, if spatial anomalies are relatively small, i.e.

̂−−−−−−−→
µspace (Xc) = E

(
Xc

†
)
≪

1. For the sake of clarity, Xc is replaced by X in equations below.390


S=X† ·X=EOF ·Λ ·EOF†

A=X ·EOF

X=A ·EOF†

(A11)

where EOF, Λ are square matrices of dimension [mspace × mspace] and A the same dimensions as X ([ntime × mspace]).


X ·X† ≃X′† ·X′ = S′ =EOF′ ·Λ′ · (EOF′)

†

A′ =X′ ·EOF′

X′ =A′ · (EOF′)
†

(A12)

where EOF′, Λ′ are square matrices of dimension [ntime × ntime] and A′ the same dimensions as X′ ([mspace × ntime]).

Assuming that X† ≃X′, we obtain (A′)
† ≃ (EOF′)

†
X.395

X=A ·EOF†

X≃EOF′ · (A′)
†

(A13)

The development above allows us to reconcile the expression of EOF analysis by Storch and Zwiers (1999) Xc =EOF ·A
with Eq. (A7) Xc =A ·EOF† (Preisendorfer, 1988; Björnsson and Venegas, 1997; Hannachi et al., 2007). We further observe

the equivalent role of A′ ∼=EOF and EOF′ ∼=A in Eq. (A13), bearing in mind that square matrix EOF is of higher rank

(mspace) than A’s rank (ntime).400

Björnsson and Venegas (1997) describes X† ·X as the temporal covariance, and X ·X† as the spatial covariance of the

observation dataset X.

In the present case, ntime ≪ mspace ⇒ nEOF = ntime. Therefore, the principal component matrix A is a square matrix of rank

nEOF and the eigenvector matrix EOF has dimensions [mspace ×nEOF]. The SVD decomposition is therefore equivalent to Eq.

(A13), where X is decomposed as the product of 2 orthogonal matrices: EOF′ ∼=A is a ntime square matrix, A′ ∼=EOF a405

[mspace × ntime] matrix.

Eq. (A13) demonstrates the role of [ntime × mspace] versus [mspace × ntime] conventions for the definition of the covariance

matrix. The goal of the present study is the spatial covariance in observation dataset X, therefore we choose to exhibit the

eigenvalues of covariance matrix S′ =X ·X†, a square matrix of rank ntime. Given that ntime ≪ mspace, the covariance matrix

S′ has a smaller rank than S. This is advantage for estimating Ŝ′ from the “gappy” observation matrix X⋆
ori (containing missing410

values).
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A4 EOF degeneracy

Wilks (2006) suggest several methods to assess the EOF degeneracy, by retaining significant eigenvalues (and respective

eigenvectors, principal components).

Kaiser’s rule, where T is a threshold constant (T = 1 according to Kaiser, T = 0.7 according to Joliffe).415

λm >
T

nEOF

nEOF∑
i=1

var(−→xj) (A14)

The “broken stick model” is based on the expected length of the nth longest piece of a randomly broken unit segment length.

The threshold parameter T = T (n) is defined as:

T (n) =
1

nEOF

nEOF∑
i=n

1

i
(A15)

The threshold parameter T = T (n) thus varies for each truncation level n. The retained truncation level is retained as the420

smallest n for which Eq. (A14) is satisfied.

North et al. (1982) proposes a rule-of-thumb: if the sampling error in the eigenvalue λi is comparable to the distance to

a nearby eigenvalue λj , then the sampling error for eigenvector −→ei will be comparable to the nearby eigenvector −→ej . n′
EOF

represents the number of independent observations (i.e. effective sample size, or number of degrees of freedom).

∆λi ≈

√
2

n′
EOF

λi425

∆−̂→ei ≈
∆λi

λj −λi

−̂→ej (A16)

Thiébaux and Zwiers (1984) defines the effective sample size n′
EOF as a function of the auto-correlation function ρ(k),

computed from the kth principal component −̂→αk.

n′
EOF =

σ2

σ2
X

= nEOF

(
nEOF−1∑
k=1

(
1− k

nEOF

)
· ρ(k)

)−1

ρ(k) =
E
((−−−→

Xi+k −−→µ
)
·
(−→
Xi −−→µ

)∗)
σ2

(A17)430

Eq. (A17) and Eq. (A16) are combined to estimate the cutoff EOF number NEOF-cutoff that verifies Eq. (A18). NEOF-cutoff

hence represents the lowest eigenvalue λNEOF-cutoff with a multiplicity of 1, i.e. non-degenerate. Degenerate eigenvalues (i.e. with

a multiplicity > 1) limit the physical interpretation of individual EOFs, since physical patterns in general are not orthogonal.
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∆λi

λj −λi
< 1⇔

√
2

n′
EOF

· λi

λj −λi
< 1 (A18)

Hannachi et al. (2007) defines the 95% confidence interval for eigenvalue λk as:435

∆λi

λi
≈ 1±

√
2

n′
EOF

(A19)

Appendix B: Mathematical notations

The list below summarises the mathematical notations used in this study, in accordance with Storch and Zwiers (1999).

– The notation
−→
X represents (row) vectors, and X denotes matrices.

– X⋆ denotes a “gappy” matrix (i.e. with missing values), X◦ a complete matrix.440

– −→
1n = [1, . . . ,1] represents a n-dimension (row) unit-vector, In the identity matrix of rank n.

– The complex conjugate of a complex number a is noted a∗: ∀a ∈ C, a∗ = ℜ(a)− i · ℑ(a).

– The transpose of a vector or matrix A is noted AT, defined as ∀(i, j) ∈ ([[1,n]], [[1,m]]), AT
i,j =Aj,i.

– The conjugate transpose of a matrix or vector A is noted A† =AT∗ =A∗T

– For real vectors or matrices, the notation can be simplified: ∀A ∈ R(n,m),A=A∗,AT =A†445

– The dot product (also scalar or inner product) of two vectors is noted ⟨−→a ,
−→
b ⟩=

−→
b †−→a =

∑
aib

∗
i .

– The norm of vector −→a is noted ∥−→a ∥=
√
⟨−→a ,−→a ⟩

– For “gappy” observation datasets X⋆, D represents ensemble of elements non-missing values. The matrix D (with same

dimension as X⋆) is represented as a collection of vectors D =
[−→
D1, . . . ,

−−−→
Dnyear

]†
where

−→
Di represents all non-missing

time-steps ti, ∀[[1,nyear at location xyj . |
−→
Di| represents the number of elements in

−→
Di.

−→
Di∩

−→
Dj represents the intersection450

of
−→
Di and

−→
Dj , i.e. where the subset where non-missing elements in columns i and j.

– The expectation of n-element vector
−→
X is noted E

(−→
X
)
= 1

n

n∑
i=1

xi

– δi,j represents the Kronecker symbol, defined as ∀i= j, δi,j = 1, ∀i ̸= j, δi,j = 0.
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