Supplement of:

Measurement Report: Size-resolved secondary organic aerosol formation modulated by aerosol water uptake in wintertime haze

Jing Duan¹, Ru-Jin Huang^{1,2}, Ying Wang¹, Wei Xu³, Haobin Zhong⁴, Chunshui Lin¹, Wei, Huang¹, Yifang Gu¹, Jurgita Ovadnevaite⁵, Darius Ceburnis⁵, Colin O'Dowd⁵

¹State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China

⁴School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, China
 ⁵School of Physics and Centre for Climate and Air Pollution Studies, Ryan Institute, University of Galway, University Road, Galway, H91CF50, Ireland

Correspondence: Ru-Jin Huang (rujin.huang@ieecas.cn)

Bin number	Size (nm)	
Bin1	80-112	
Bin2	112-159	
Bin3	159-225	
Bin4	225-317	
Bin5	317-447	
Bin6	447-631	
Bin7	631-890	
Bin8	890-1256	
Bin9	1256-1772	
Bin10	1772-2500	

Table S1 A summary of size ranges of 10 bins in the range of 80 - 2500 nm.

 Table S2 Evaluation of random forest regression model.

campaign	Size (nm)	RMSE ^a	\mathbb{R}^{2b}
winter 2013-2014	112-159	0.126	0.01
	159-225	0.034	0.63
	225-317	0.036	0.60
	317-447	0.049	0.73
	447-631	0.043	0.74
	631-890	0.068	0.69
	890-1256	0.052	0.67
	1256-1772	0.076	0.36
winter 2018-2019	112-159	0.196	0.09
	159-225	0.108	0.30
	225-317	0.075	0.54
	317-447	0.075	0.53
	447-631	0.066	0.61
	631-890	0.057	0.71
	890-1256	0.053	0.80
	1256-1772	0.074	0.75

^{*a*} RMSE (Root mean square error) is the square root of the expected squared difference between the predicted and observed values.

 ${}^{b}R^{2}$ is the correlation between the observed and random forest predicted SOA%.

Figure S1. Mass spectra of (a1-h1) POA, (a2-h2) SOA under different size ranges of 112-159 nm, 159-225 nm, 225-317 nm, 317-447 nm, 447-631 nm, 631-890 nm, 890-1256 nm, and 1256-1772 nm, respectively, in winter 2013-2014 in Xi'an.

Figure S2. Mass spectra of (a1-h1) FFOA, (a2-h2) BBOA, and (a3-h3) SOA under different size ranges of 112-159 nm, 159-225 nm, 225-317 nm, 317-447 nm, 447-631 nm, 631-890 nm, 890-1256 nm, and 1256-1772 nm, respectively, in winter 2018-2019 in Xi'an.

Figure S3. Size distribution of ALWC between winter 2013-2014 and winter 2018-2019 in Xi'an.

Figure S4. Distribution frequency of RH between winter 2013-2014 and winter 2018-2019 in Xi'an.

Figure S5. Mass composition of inorganic species under different size ranges and RH ranges between winter 2013-2014 (a) and winter 2018-2019 (b).

Figure S6. Relative changes of mass fraction of NO_3^- , SO_4^{2-} , NH_4^+ , and Cl^- in total inorganic aerosol in winter 2018-2019, compared to winter 2013-2014 under different size ranges.