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Abstract. Natural hazards have serious impacts worldwide on society, economy and environment. In Vietnam, throughout 15 

the years, natural hazards have caused significant loss of lives as well as severe devastation to houses, crops, and 

transportation. This research presents a new approach for multi-hazard (floods and wildfires) exposure estimates using 

machine learning models, Google Earth Engine, and spatial analysis tools for a typical case study, Quang Nam province in 

Central Vietnam. A geospatial database is built for multiple hazard modelling, including an inventory of climate-related 

hazards (floods and wildfires), topography, geology, hydrology, climate features (temperature, rainfall, wind), land use, and 20 

building data for exposure assessment. The susceptibility of each hazard is first modelled and then integrated into a multi-

hazard exposure matrix to demonstrate a hazard profiling approach for multi-hazard risk assessment. The results are 

explicitly illustrated for floods and wildfire hazards and the exposure of buildings. Susceptibility models using the random 

forest approach provide model accuracy of AUC = 0.882 and 0.884 for floods and wildfires, respectively. The flood and 

wildfire hazards are combined within a semi-quantitative matrix to assess the building exposure to different hazards. Digital 25 

multi-hazard exposure maps of floods and wildfires aid the identification of areas exposed to climate-related hazards and the 

potential impacts of hazards. This approach can be used to inform communities and regulatory authorities on where to 

develop and implement long-term adaptation solutions. 

1 Introduction 

Different geographic areas worldwide, including mountainous, delta, and coastal regions, are facing distinct hazards and 30 

combinations of hazards (Rentschler et al., 2022). These challenges are intensified by population growth, urbanization, 
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globalization, and climate change-induced shifts in extreme weather patterns, amplifying their adverse effects (Khatakho et 

al., 2021; Bangalore et al., 2018). While floods and storms represent the main hazards affecting Asian countries, risks from 

other hazards, such as landslides and wildfires, are also exacerbated by more extreme climate patterns, land-use changes, and 

population expansion in these nations (Ipcc, 2022). People who depend on natural resources lose their livelihoods and 35 

become more vulnerable (Balica et al., 2015). 

Global South countries are more exposed to and affected by the impacts of natural hazards (Ibarrarán et al., 2009). Due 

to its geographical location and unique natural conditions, Vietnam is exposed to various natural hazards: floods, landslides, 

droughts, and wildfires, further exacerbated by human activities combined with extreme weather conditions (Gan et al., 

2021). The central region of Vietnam, particularly Quang Nam province, is highly vulnerable to natural hazards, making 40 

sustainable development tasks very challenging (Nguyen et al., 2023). Floods associated with tropical storms during the 

monsoon season (Luu et al., 2021) and wildfires exacerbated by dry seasons and high temperatures pose frequent threats and 

require comprehensive assessments of multi-hazard susceptibility and exposure in Quang Nam province (Du et al., 2018). 

The impacts of these natural hazards hinder local development initiatives and exacerbate socio-economic disparities (Khan et 

al., 2020). Disrupted agricultural activities, damaged infrastructure, and compromised access to essential services hinder the 45 

region’s progress, while the loss of lives and properties deepens the social and economic burdens (Skilodimou et al., 2019). 

Notwithstanding these longstanding issues with floods and wildfires in the Quang Nam province of Vietnam, limited studies 

have focused on multi-hazard susceptibility and exposure assessments. 

Quang Nam province is characterized by a coastal region with low-lying topography facing high flood risks due to 

heavy rainfall, typhoons, and potential breaches of dams and levees (Chau et al., 2014). The province has two large river 50 

catchment: the Vu Gia - Thu Bon and Tam Ky rivers. Away from the coast, the province is characterized by steep hilly 

terrains and dense river network. The prolonged heavy rainfall of the monsoon season in this dissected landscape results in 

yearly riverine floods in the lowland area and along the coast. This issue holds particular significance for the Quang Nam 

province because flood events pose a direct threat to human lives and cause significant damage to its infrastructure, 

education, economic development, and health-related services (Lee et al., 2020). 55 

Wildfires are also a natural hazard with devastating consequences, posing a severe threat to the environment and human 

communities (Tedim et al., 2015). Wildfires often occur due to a complex interplay of dry weather conditions, high 

temperatures, low humidity, flammable vegetation, and other geo-environmental factors (Kalantar et al., 2020). Vietnam is 

particularly prone to fire events, especially in the northern part (Trang et al., 2022) and the Central region (Nguyen et al., 

2023). According to the statistical data from the Global Forest Watch, Vietnam has had a total of 674,612 forest wildfire 60 

alerts since 2012 and ranked sixth in Southeast Asia regarding forest wildfires in the last two decades (Ansori, 2021). 

The term “multi-hazard” refers to the fact that hazards often interact in complex ways, and their combined impact might 

be greater than the sum of individual hazards (Wing et al., 2018). The dynamic interplay between flood probability in wet 

seasons and wildfire likelihood in dry seasons can be influenced by various factors, including environmental conditions, 

climatic patterns, topography, vegetation cover, and land use patterns (Skilodimou et al., 2021; Bountzouklis et al., 2022). 65 
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Wildfires can significantly impact landscape hydrology by destroying vegetation cover and disrupting soil structure, 

reducing infiltration rates and heightening surface runoff during subsequent rain events (Mueller et al., 2018). Floods can 

reduce the formation and expansion of wildfire risks by wetting vegetation and soil, temporarily mitigating the likelihood of 

ignition and fire spread (Papaioannou et al., 2023). However, flood events can disrupt natural drainage patterns, saturate 

soils, and promote vegetation development, fueling forest wildfires in dry seasons (Eisenbies et al., 2007). In general, the 70 

formation of multi-hazard events often results from dynamic spatial and temporal interactions among various factors (De 

Angeli et al., 2022); significantly, floods and wildfires can exacerbate or mitigate each other’s impacts depending on 

seasonal fluctuations, environmental conditions or extreme climatic variability (Yu et al., 2023). Broadening the assessment 

framework for these spatial and dynamic interactions can lead to a more comprehensive and accurate risk evaluation (De 

Angeli et al., 2022). Thus, multi-hazard susceptibility and exposure assessments are required for efficient disaster risk 75 

management (Zhou et al., 2015). Multi-hazard susceptibility assessment provides insights into the spatial co-occurrence of 

different hazard types (Rusk et al., 2022). Multi-hazard exposure assessment enables the evaluation of the potential impact of 

multi-hazards on people, buildings, and critical facilities, which supports disaster management activities (De Angeli et al., 

2022). 

Advanced technologies, such as Machine Learning (ML), remote sensing, and big data analytics, play a critical role in 80 

predicting, monitoring, and mitigating the impact of hazards (Velev and Zlateva, 2023). Currently, Google Earth Engine 

(GEE), a cloud-based geospatial processing platform developed by Google in 2010, offers an extensive and up-to-date 

archive of satellite imagery, robust analysis tools, custom ML algorithm development, and the capacity to integrate multiple 

data sources (Tamiminia et al., 2020). 

Various studies have applied ML algorithms, including Classification And Regression Tree (CART) and Random Forest 85 

(RF), in modelling natural hazard susceptibility and have proven the high performance and accuracy of these models (Chen 

et al., 2018; Kim et al., 2017). CART and RF have been used to build susceptibility maps for single hazards, e.g., forest fire 

(Pourtaghi et al., 2016) or landslide (Wu et al., 2022), but also in developing the multi-hazard (forest fires and droughts) 

susceptibility maps for the Gangwon-do region in Korea (Piao et al., 2022), or constructing the multi-hazard (flood, 

landslides, forest fire, and earthquake) susceptibility maps in Khuzestan Province, Iran (Pourghasemi et al., 2023). Most of 90 

these studies have indicated that ML models perform well in estimating multi-hazard susceptibility but have not mentioned 

multi-hazard exposure assessment. Meanwhile, multi-hazard exposure assessment can help recognize overlapping exposures 

and comprehend the intricate relationships between several hazards (Wang et al., 2020). 

Therefore, the study aims are (i) to present and apply a methodological approach to assess and map susceptibility of 

multiple- hazards for the Quang Nam province; (ii) to utilize two ML models, CART and RF, that have been implemented 95 

on the GEE platform to build the multi-hazard (flood and wildfire) susceptibility maps of flood and wildfire hazards for the 

Quang Nam province; and (iii) to integrate the multi-hazard-specific susceptibility maps with built environment data to 

assess the multi-hazard exposure. 
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2 Study area 

Quang Nam province is located in the central region of Vietnam, which has significant economic growth and huge tourism 100 

potential. Since the “economic reforms” and opening to foreign investment in 1986, Quang Nam province has seen 

significant socio-economic transformations, such as the development of industrial zones and tourism. However, this fast 

development presents several issues for the province in pursuing sustainable development, necessitating optimal use of 

natural and socio-cultural resources (Chau et al., 2014). Quang Nam had a total population of 1.84 million in 2019, with over 

73% of the population residing in the coastal plain, comprising just 25% of the total geographical area. The Kinh ethnic 105 

group comprises 92.3% of the population; the remainder consists of many ethnic minorities, including the Co Tu, Xo Dang, 

M’nong, Co, and Gie Trieng (Quang Nam Statistical Office, 2019). Agriculture, forestry, and fisheries accounted for 56 % of 

the total labour force, although their contribution to the GDP is only 21.4% (Quang Nam Statistical Office, 2019). 

Quang Nam encompasses a large topographic gradient, from a coastal plain to steep mountains, with a total area of 

10,438 km² (Figure 1). The complex topography due to the Annamite Range leads to strong separation in climate conditions 110 

and landscape characteristics. Terrain elevation gradually lowers from West to East, with mountainous areas (slope of 15° or 

more) concentrated mainly in the West following the Annamite Range and the flood plains running along the coastline. The 

tropical monsoon climate is characterized by two distinct weather seasons in a year: the dry season from March to August, 

associated with water shortages, leading to droughts, and the rainy season from September to February, often bringing excess 

water and leading to floods. Quang Nam has the highest annual rainfall in Vietnam, averaging 2,200 mm to 2,700 mm, with 115 

70% falling during the rainy season (https://quangnam.gov.vn/). The main hazards in Quang Nam province are floods, 

landslides, droughts and wildfires (Du et al., 2018). This study focuses on assessing and mapping flood and wildfire hazards 

in the province. 

https://quangnam.gov.vn/
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Figure 1. Elevation map of the study area, Quang Nam province in Vietnam (source: Shuttle Radar Topographic Mission Digital 120 
Elevation Model) 

3 Methodology 

3.1 Methodology flowchart 

The multi-hazard exposure assessment process comprises seven main stages, as follows: (1) Inventory maps of each hazard 

were created based on historical data collection; (2) Factors potentially influencing the spatial distribution of floods and 125 

wildfire were collected, including topography, geology, hydrology, climate (temperature, wetness, wind), and land use based 

on their relevance and data availability (Luu et al., 2018; Pham et al., 2021); (3) The influencing factors of each hazard were 

tested for multicollinearity to enhance the reliability and stability of the model’s predictions, (4) CART and RF models were 

developed on the GEE cloud computing platform to construct susceptibility maps of floods and wildfires separately, (5) The 

Area Under the ROC Curve (hereafter, AUC) was utilized to assess the predictive performance of the susceptibility maps to 130 

choose the best model for each hazard and validate it, (6) The flood susceptibility map and the wildfire susceptibility map 

were combined to build a multi-hazard susceptibility map for multi-hazard co-occurence, and (7) this multi-hazard 

susceptibility map was overlaid with the building data to create a multi-hazard exposure map for the study area (Figure 2). 
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Figure 2. Methodology flowchart for multi-hazard exposure assessment and mapping in this study. 135 

3.2 Data used 

3.2.1 Inventories of floods and wildfires 

Developing accurate hazard inventories is crucial for susceptibility mapping (Bui et al., 2022). In this study, the flood marker 

points recorded for all flood events from 2007 to 2023 were considered, as reported by the Quang Nam Provincial Steering 

Committee of Natural Disaster Prevention and Control. We removed duplicate flood points. A total of 847 historical flood 140 

marks were obtained from this database – these correspond mainly to the 2007, 2009, and 2013 flood events with the largest 

spatial extent. Each flood mark comprises a unique identifier, geographical coordinates (longitude and latitude), flood depth, 

and provider information. A second source of information was derived from mapping flood extent on SAR data from 

Sentinel 1 for 2017 to 2023, which we compare with official reports from the Provincial Committee. The flood detection 

algorithm described in Mai Sy et al. (2023) was implemented in Google Earth Engine. Inundation areas detected on the 145 

different Sentinel 1 scenes were overlayed and compared with the flood mark locations to avoid duplicates. 47 new flood 

sites were detected and integrated as additional points (using the centroid of the flood site), with 847 historical flood marks 

for the inventory data. 

The final flood inventory includes 894 flood locations: 70% of them (626 locations) were randomly selected to calibrate 

the flood susceptibility model, and the remaining 30% (268 locations) were designated for validating purposes (Figure 3). In 150 
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addition, 894 non-flood locations were randomly selected across the study area using the “Create random point tool” in 

ArcGIS software. Non-flood points were chosen only in zones outside the flood-affected zones in our inventory. 

Additionally, we excluded steep slopes (>10°) or areas of positive relief (such as hilltops) from the selection of non-flood 

points, as these locations that can not be associated with floods would artificially increase the accuracy of the susceptibility 

model. The non-flood points were then classified in a ratio of 70/30, mirroring the classification of the flood locations. This 155 

process was undertaken to create a comprehensive database for input into the GEE platform, which was utilized for 

modelling and validation. 

For the wildfire inventory, this study involved the collection of 1,911 wildfire locations recorded during the dry season 

(March to August) from 2020 to 2023 (Figure 3), from the National Forest Protection Department’s website (available at 

https://watch.pcccr.vn/thongKe/diemChay). This agency utilizes data from many satellites (AQUA, J1, SUOMI, and 160 

TERRA) that are regularly received at the TerraScan receiving station located at the National Forest Protection Department. 

The use of near-infrared bands from many satellites helps to identify the presence of heat associated with active wildfires on 

the ground (Giglio et al., 2008). The website database was checked and filtered to avoid duplicated wildfire locations, dates, 

and commune data field conditions. The wildfire location data (points) represent the specific fire sites captured by one type 

of satellite inside a particular commune at a given time. We filtered the database of the National Forest Protection 165 

Department to retain only wildfire spots exceeding a minimum size threshold of 2 hectares, as smaller fire areas should be 

considered human-induced. To determine the non-fire points, we randomly selected points within the zones with forested 

and natural vegetation land cover, which were not identified as wildfires in the inventory. We excluded residential areas, 

water, and crop areas from the selection of non-fire points, as these cannot be associated with wildfires corresponding to the 

criteria selected in this study and would artificially increase the accuracy of our susceptibility model. 170 

 

 

Figure 3. Inventory maps of flood (left) and wildfire (right) points in Quang Nam province. 

https://watch.pcccr.vn/thongKe/diemChay
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3.2.2 Influencing factors 

Susceptibility modelling relies on multiple influencing factors that determine the likelihood of landslides a hazard in a given 175 

area. Elevation is critical, as higher elevations are often more prone to instability (Komolafe et al., 2020). Slope angle is 

another vital factor, with steeper slopes being more susceptible to landslides due to gravitational forces (Pourghasemi et al., 

2020). Aspect, or the direction a slope faces, influences moisture and sunlight exposure, affecting soil cohesion (Vasilakos et 

al., 2009). Curvature of the slope can indicate concave or convex forms, which affect water accumulation and slope stability 

(Minár et al., 2020). The Topographic Wetness Index (TWI) assesses potential water saturation in the soil, influencing 180 

landslide risk (Meles et al., 2020). Similarly, the Stream Power Index (SPI) measures the erosive power of flowing water, 

which can destabilize slopes. The Normalized Difference Vegetation Index (NDVI) provides insights into vegetation cover, 

which can stabilize soil and add weight to slopes (Bhandari et al., 2012). Distance to roads and distance to rivers increase 

susceptibility due to human activity and water erosion, respectively (Yousefi et al., 2020). Land cover types influence 

susceptibility through varying degrees of vegetation and development (Agus et al., 2020). Lithology, or the study of rock 185 

types, is crucial as different rocks have varying stability under stress (Gray et al., 2016). Geohydrology examines the 

movement of groundwater, impacting soil moisture levels and stability (Orellana et al., 2012). Rainfall patterns significantly 

contribute to landslides by saturating the soil, while temperature variations can cause freeze-thaw cycles that weaken soil and 

rock structures (Stoof et al., 2012). These factors provide a comprehensive understanding of landslide risks, enabling more 

effective prediction modelling.Several factors significantly influence flood and wildfire occurrences. Low-lying areas are 190 

prone to flooding, while elevated regions can hinder fires (Pourtaghi et al., 2016; Bui et al., 2022). Slope, slope aspect, and 

curvature affect water flow, erosion, and fire spread, with steeper slopes either mitigating or accelerating these hazards 

(Dottori et al., 2018; Trang et al., 2022). The Topographic Wetness Index (TWI) and Stream Power Index (SPI) help 

quantify water accumulation and erosion risks. Vegetation density, assessed using the Normalized Difference Vegetation 

Index (NDVI), impacts both flood absorption and fire fuel availability (Abedi Gheshlaghi et al., 2021; Gonzalez-Arqueros et 195 

al., 2018). Road and river proximity also influence flood and fire dynamics, while land cover, lithology, and geohydrology 

influence water retention and fire susceptibility (Ha et al., 2023; Hosseini and Lim, 2022). Rainfall patterns and 

temperatures, particularly during dry seasons, further contribute to both flood and wildfire risks (Abram et al., 2021; 

Ahmadlou et al., 2018). These factors are modeled using data from satellite imagery, DEMs, and long-term climate records. 

3.2.3 Built environment data 200 

In this study, we use the building data to assess the potential impact of multi-hazards of floods and wildfire hazardss on 

building infrastructure, considering housing/building a key livelihood asset. Spatial data on the building infrastructure of 

Quang Nam province is extracted from the Open Building dataset of Google (https://developers.google.com/earth-

engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons). The collection contains information about each 

building, including a polygon representation of its footprint on the ground and a confidence score showing the level of 205 

https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_Research_open-buildings_v3_polygons
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certainty about its classification as a building (Sirko et al., 2021). We filtered the data with a confidence level of more than 

80% and an area larger than 30m for accurate data on buildings (assuming the minimum size for a residential building). The 

data is created from high-resolution satellite photography with a resolution of 50 centimetres. The selected data was checked 

visually against Google Earth and was shown to represent the large majority of buildings properly. 

This study focusesd on buildings in terms of elements exposed to a hazardsas the main exposure layer, considering their 210 

importance as critical economic assets and reflections of population distribution (Askar et al., 2021). Buildings are essential 

components of community infrastructure, and damage to them may have big social and economic effects, making them a 

crucial riskexposure indicator for risk assessmentdisasters (Carreño et al., 2007). In addition, buildings often accommodate 

individuals and vital services; thus, their vulnerability to dangersexposure to hazards and susceptibility to damage is directly 

linkedcontrol to the possibility of human fatalities and disturbance to everyday activities. In terms of vulnerability, buildings 215 

are not equally at risk from all hazards; their susceptibility varies depending on the hazard type and the structural 

characteristics of the building, although vulnerability is not considered explicitly in this study (Schneiderbauer and Ehrlich, 

2004). 

3.3 Methods 

3.3.1 Multicollinearity 220 

Variance Inflation Factors (VIF) and Tolerance are critical statistical measures in detecting the presence of multicollinearity 

among input variables (Arabameri et al., 2018). VIF quantifies how much the variance of an estimated regression coefficient 

increases due to multicollinearity (Ma et al., 2020). Tolerance is the reciprocal of VIF and reflects the proportion of variance 

in a predictor that is not forecasted by a combination of other predictors (Bui et al., 2023). Significant multicollinearity 

among input variables is detected if the VIF value surpasses 10 or the Tolerance value drops below 0.1 (Miao et al., 2023). 225 

Variables found to be multicollinear will be deleted from the model, and the model will be run to check for multicollinearity 

again. 

3.3.2 Machine learning approach for hazard susceptibility modelling 

This study has developed two ML models, including CART and RF, on the GEE workspace to construct the multi-hazard 

(flood and wildfire) susceptibility maps for the Quang Nam province. 230 

The CART was first introduced by Breiman et al. (1984). It is an algorithm used for both classification and regression 

tasks. CART builds binary trees recursively by splitting the dataset into subsets based on the feature values (Tang and 

Zhang, 2020). Mathematically, this algorithm can be summarised as follows (Ahmadlou et al., 2022): 

1. Input a training dataset 𝐷 =  (𝑋𝑠, 𝑌) where 𝑋𝑠 are the feature variable and 𝑌 is the target variable (class labels for 

classification, numerical values for regression). 235 
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2. For the classification issue, the CART algorithm uses the Gini impurity coefficient on these subsets to measure the 

disorder or impurity of an input dataset. The Gini impurity coefficient is determined using the following equation: 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑃𝑖(1 − 𝑃𝑖) = ∑ 𝑃𝑖 − ∑ 𝑃𝑖
2

𝐽

𝑖=1

= 1 −

𝐽

𝑖=1

∑ 𝑃𝑖
2

𝐽

𝑖=1

𝐽𝑁

𝑖=1

 

(41) 

where 𝐺𝑖𝑛𝑖(𝐷) is the Gini impurity coefficient of the input dataset D, N J represents the number of classes in the input 

dataset, and 𝑃𝑖  denotes the probability of class i in dataset D. 

The CART continues seeking the best feature and threshold recursively until a stopping criterion, such as maximum tree 240 

depth (max_depth) or minimum samples in a leaf (min_samples_leaf). After that, the resulting tree can be used to classify 

new datasets. 

Like all decision tree algorithms, CART is prone to overfitting, especially when the tree becomes too deep. To mitigate 

this, pruning techniques and hyperparameter tuning are often applied to optimize the tree’s structure, ensuring 

generalizability to unseen data (Ahmadlou et al., 2022). 245 

The RF is a widely used ML algorithm developed by Breiman (2001), which combines the output of multiple decision 

trees to reach a single result (Naghibi et al., 2016). It is used for both classification and regression tasks (Genuer et al., 2010). 

The content of this technique can be described as follows (Breiman, 2001): 

1. Input a training dataset 𝐷 of 𝑁 bootstrap samples, 𝐷 =  (𝑋𝑠, 𝑌) where 𝑋𝑠 is the feature variable and 𝑌 is the target 

variable (class labels for classification, numerical values for regression). The RF technique creates multiple decision trees 250 

using bootstrapped subsets of the training data D. Each tree is constructed using N samples drawn with replacement 

(bootstrap sampling). 

2. For each tree and at each split, a subset of features (m) is randomly selected from the total number of features in the 

training dataset (M) to ensure diversity among the trees. 

3. Each tree in the RF algorithm is built using the selected bootstrap sample and features in the first and second steps. 255 

The tree is developed by recursively dividing the dataset based on the selected features and splitting criteria. 

4. The RF technique combines these predictions (multiple decision trees) due to the specific tasks. The prediction mode 

from individual trees is the final classification task prediction. 

3.3.3 Model validation and comparison 

This study used the ROC curve and AUC to validate the predictive performance of each hazard susceptibility model, 260 

including CART and RF models. The ROC curve is generated by plotting the true positive rate (sensitivity) against the false 

positive rate (1-specificity) for different threshold values (Carter et al., 2016). Sensitivity quantifies the ability of the model 

to correctly identify susceptible areas, while specificity measures the capability to identify non-susceptible areas correctly 

(Meghanadh et al. 2022). The AUC is calculated to quantify the quality of the predictive model. The AUC values vary from 
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0 to 1, where AUC values of 0.5–0.6 reflect a low predictive performance, 0.7-0.8 is interpreted as a medium predictive 265 

performance, 0.8-0.9 indicates good predictive performance, and 0.9-1.0 denotes excellent predictive performance. 

3.4 Experimental process  

This study employed the GEE cloud computing platform for the pixel-based CART and RF algorithms to build susceptibility 

maps for flood and wildfire hazards separately. The input data was collected from various sources and formats. First, we pre-

processed and converted these data into raster format with 30-meter spatial resolution in a GIS environment. Then, these data 270 

were uploaded into the GEE platform. Hyperparameter tuning technique was used to optimize the performance of ML 

algorithms, as they significantly affect the accuracy, efficiency, and generalization ability of ML models (Schratz et al., 

2019). Various hyperparameter tuning methods have been used in landslide studies, such asinclude grid search, random 

search, gradient-based optimization, and Bayesian optimization (Sameen et al., 2020; Rong et al., 2021; Abbas et al., 2023; 

Sun et al., 2024; Ma et al., 2023). This hyperparameter tuning process of grid search was used for the modelling in this 275 

study, including the following steps: 

1. Set up the environment: install Python packages in the Google Earth Engine (GEE) Application Programming 

Interface (API) to handle geospatial data and scikit-learn to develop ML models. 

2. Data preparation: upload fifteen landslide-affecting factors to the GEE environment to build the flood and wildfire 

landslide susceptibility maps. The training and testing datasets have also been uploaded to this platform. 280 

3. Hyperparameter tuning: use scikit-learn to develop various ML models (CART and RF) and define the 

hyperparameter search spaces for a grid search. This step involves setting reasonable value ranges for each 

hyperparameter in each model, for CART model (max_Nodes, minLeafPopulation) and RF model (numberOfTrees, 

variablesPerSplit, minLeafPopulation, bagFraction, max_Nodes, seed), described in Table 1. Then, scikit-

optimize’s grid search performs iterative assessments using the training data to select the hyperparameter 285 

combination that optimizes a chosen performance metric (ROC and AUC) on the validation testing dataset. The best 

hyperparameter combinations for each model are determined based on these performance metrics. 

4. Model assessment: optionally, the final evaluation involves retraining the predictive models with the chosen 

hyperparameters on the training data. The performance of these retrained models is then assessed using the ROC 

curve and AUC value on the validation dataset to gauge their effectiveness. 290 

Table. 1  The hyperparameter values in the optimization process. 

Model Optimized Explanation Lower and upper limits Established 
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Hyperparameter Optimal 

value 

CART 

max_Nodes     
The maximum number of leaf 

nodes in each tree. 

Integer, default: 12-500 150 

minLeafPopulation      

Only create nodes whose training 

set contains at least this many 

points. 

1-10Integer, default: 1 2 

RF 

numberOfTrees 
The number of decision trees to 

create. 

100 – 1000Integer 200 

variablesPerSplit 

The number of variables per split. 

If unspecified, use the square root 

of the number of variables. 

Integer, default: null null 

minLeafPopulation 

Only create nodes whose training 

set contains at least this many 

points. 

1-10Integer, default: 1 1 

bagFraction 
The fraction of input to bag per 

tree. 

0.1 – 1.0Float, default: 

0.5 

0.7 

Mmax_Nodes 

The maximum number of leaf 

nodes in each tree. If unspecified, 

defaults to no limit. 

Integer, default: null null 

seed The randomization seed. 0 - 42Integer, default: 0 23 

4 Results 

4.1 Assessment of multicollinearity and variable importance 

In this research, the VIF and tolerance values of influencing factors for flood and wildfire susceptibility modelling are 

satisfactory, so all input factors are selected to develop hazard susceptibility maps (Table 2). In natural hazard susceptibility 295 

modelling, each input variable may influence the occurrences of each hazard in various ways (Pourghasemi et al., 2020). 

Variable importance assessment can identify which factors have the most significant impact on the hazard formations 

(Javidan et al., 2021). RF is one of the most popular ML algorithms for evaluating variable importance by measuring how 

much they contribute to the model’s accuracy (Fox et al., 2017). Thus, this technique was applied to assess the significance 

of all input variables. The results show that rainfall (weight = 0.1742), distance from rivers (weight = 0.1620), NDVI (weight 300 

= 0.1330), and land cover (weight = 0.1159) are the indicators that significantly contribute to control the spatial distribution 

of flood events within the study area. 

Table 2 Assessment of multicollinearity and variable importance to flood influencing factors. 

Factors  Flood 

Tolerance VIF Variable importance Rank 

Rainfall 0.832 1.225 0.1742 1 

Distance from rivers  0.945 1.204 0.1620 2 

NDVI 0.759 1.774 0.1330 3 
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LULC 0.582 2.160 0.1159 4 

Aspect 0.98 1.019 0.1095 5 

TWI 0.725 1.676 0.0753 6 

Distance from roads 0.600 3.241 0.0709 7 

Plan Curvature 0.798 3.669 0.0695 8 

Profile Curvature 0.876 1.418 0.0320 9 

Elevation 0.777 1.259 0.0300 10 

Slope 0.748 2.106 0.0270 11 

SPI 0.948 1.117 0.0007 12 

 

The results presented in Table 3 demonstrate that temperature (weight = 0.1784), distance from rivers (weight = 305 

0.1112), NDVI (weight = 0.1089), and distance from roads (weight = 0.1065) are the parameters that have a significant 

impact on the formation of wildfire events within the study area.  

Table 3 Assessment of multicollinearity and variable importance to wildfire influencing factors. 

Factors  Wildfire 

Tolerance VIF Variable importance Rank 

Temperature 0.643 1.555 0.1784 1 

Distance from rivers  0.697 1.435 0.1112 2 

NDVI 0.835 1.198 0.1089 3 

Distance from roads 0.472 2.118 0.1065 4 

Slope 0.512 1.954 0.0953 5 

Rainfall in dry season 0.384 2.603 0.0739 6 

LULC 0.737 1.356 0.0613 7 

Profile Curvature 0.786 1.273 0.0538 8 

Elevation 0.524 1.909 0.0500 9 

Plan Curvature 0.715 1.398 0.0481 10 

Aspect 0.513 1.948 0.0473 11 

Lithology 0.551 1.816 0.0420 12 

GeoHydrology 0.636 1.572 0.0233 13 

 

4.2 Flood susceptibility map and model validation 310 

For flood susceptibility models, the ROC curve analysis on the training dataset signifies that the CART model has the 

highest value of AUC (0.934), and the RF model has a lower AUC (0.921). The ROC curve analysis on the validation 

dataset reveals that the AUC value of the RF model (0.882) is higher than that of the CART model (0.845). This result 

demonstrates that the RF model has the best predictive performance for flood susceptibility mapping (Figure 4). 
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Since the RF shows good predictive performance, it is selected to generate the flood susceptibility map for the research 315 

area with the training dataset. The flood susceptibility map delineates the different geographical zones with increasing levels 

of susceptibility to flood events. We use the quantile method for classifying the susceptibility values with low (0-40%), 

moderate (40-70), high (70-90%), and very high (90-100%) classes and set the green-blue-yellow colour scheme for flood 

susceptibility (Figure 5). The high and very high susceptibility areas are along the main river and the coastal zone, 

consistent with the flood inventory shown in Figure 3. 320 

 

Figure 4. ROC curve and AUC analysis result from flood susceptibility modelling with training and validation datasets 

(Note: Se stands for standard error) 
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Figure 5. The flood susceptibility map derived using the RF model for Quang Nam province. 325 

4.3 Wildfire susceptibility map and model validation 

The ROC curve analysis on the training dataset for wildfire susceptibility models denotes that both the CART and RF 

models have the same AUC value (0.905). In contrast, the ROC curve analysis on the validation dataset reveals that the AUC 

value of the CART model (0.846) is lower than that of the RF model (0.884). This result reflects that the RF model is the 

best forecast model for wildfire susceptibility mapping (Figure 6). 330 

Given the satisfactory predictive performance shown by the RF model, it has been chosen as the preferred method for 

generating fire susceptibility maps for the study area using the provided training dataset. The wildfire susceptibility map 

demarcates the diverse levels of susceptibility to fire occurrences. The same quantile approach is used to categorize 

susceptibility values. A green-yellow-red colour scheme represents wildfire susceptibility (Figure 7). The areas highly prone 
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to wildfire hazards are in the middle highland, not the high mountainous or lowland areas, and are in agreement with the 335 

distribution of the wildfire mapped in Figure 3. 

 

Figure 6. ROC curve and AUC analysis result from wildfire susceptibility modelling with training and testing datasets 

(Note: Se stands for standard error) 
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 340 

Figure 7. The wildfire susceptibility map was derived using the RF model for Quang Nam province. 

4.4 Multi-hazard susceptibility and exposure mapping 

The multi-hazard susceptibility map for hazard co-occurence for Quang Nam province was generated by examining the 

spatial interplay between wildfire and floods. The map depicts a matrix-based classification which enables the definition of 

new susceptibility classes (low, moderate, high, very high) of combined hazards and provides a unique multi-hazard profile 345 

for each location (Figure 8). In the matrix, not all combinations of hazards are represented, as there is no area with high 

susceptibility to floods and high susceptibility to wildfires. Combining the multi-hazards through a matrix gives a good 

visual overview of multi-hazards for the large scale of the whole province. The multi-hazard susceptibility map shows that 

the areas with very high wildfire susceptibility have low flood susceptibility and vice versa. The lowland coastal area is 

characterized by moderate to very high flood hazards but limited fire hazards (categories 2, 3, 4). The mid-altitude slopes are 350 

categorized by low flood but high to very high fire hazards (categories 9-10, 13), except for possible floods along the main 

valleys, and the upland slopes are associated with moderate to low levels of the two hazards (categories 1, 2, 5). 
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Figure 8. Integrated multi-hazard susceptibility classification combining flood and wildfire using random forest for Quang 

Nam province. 355 

Our analysis examines the optimal sequence for integrating the two hazards, followed by assessing the exposure of 

buildings. The matrix of the number of buildings and area affected by each hazard level is converted into the percentage of 

total buildings in each cell of multi-hazard levels. We can compare the two in Table 4. It is highlighted that the proportion of 

buildings in the very high flood-low fire susceptibility category is much larger than the area of this category. In contrast, the 

proportion of buildings in category 13 (low flood - very high fire susceptibility) is much smaller than the area fraction. This 360 

highlights that measures to limit the impact on buildings (and so on people) to limit flood are much more important than for 

fire. 

Table 4  Statistics of the percentage of buildings affected and the percentage of area represented in each cell by flood and wildfire 

hazard in Quang Nam province. 

Buildings affected 
(%) 

Flood 

Low Moderate High Very high 

WildFire Low 16.375 33.159 32.894 8.155 
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Moderate 6.554 0.549 0.077 0.004 

High 2.037 0.033 0.001  

Very high 0.162 0   

      

Area affected (%) 
Flood 

Low Moderate High Very high 

WildFire 

Low 9.605 8.353 3.920 1.010 

Moderate 38.587 0.559 0.021 0.000 

High 29.966 0.118 0.000  

Very high 7.859 0.002   

5 Discussion 365 

Multi-hazard Assessing susceptibility and exposure to several spatially co-occurring hazardsassessments are is crucial and 

multifaceted in disaster management and community resilience (Menoni et al., 2012). In this study, floods and wildfires are 

examples of two hazards with different spatial patterns but quite similar spatial extent and frequency: assessment of the 

combined exposure to both hazards highlights that they have a very different impact on build-up infrastructure. Additional 

hazards, such as landslides or droughts, should be added to the scheme, with a multi-dimension hazard matrix/profiling of 370 

each zone. This would help define the hazard profile for each zone and identify which areas are indeed affected by multiple 

and maybe combining hazards (Yousefi et al., 2020). 

ML models have been extensively used in diverse hazard evaluations, such as floods, landslides, and wildfire 

susceptibility (Bui et al., 2022; Ha et al., 2022; Pourtaghi et al., 2016). These techniques are advantageous in evaluating the 

efficacy of different models under comparable circumstances, considering similar influencing elements. This approach 375 

ensures a fair and unbiased determination of the most appropriate model for addressing a specific danger within a particular 

location. The modelling and mapping of multi-hazard susceptibility often rely on a system of multifaceted and multi-scaled 

natural factors, encompassing topography, geo-hydrology, environment, and hydro-meteorology conditions within the 

research area (Tavakkoli Piralilou et al., 2022).  

Our research analyzed the combined exposure of buildings to flood and wildfire hazards in Quang Nam province, 380 

Vietnam. Utilizing ML models  (CART and RF) to assess the multi-hazard susceptibility of multiple hazards, we can show 

that the RF model exhibited comparable levels of accuracy for both flood and wildfire hazards. Additionally, both models 

demonstrated good performance for flood and wildfire susceptibility maps, aligning with earlier research findings 

(Hasanzadeh Nafari et al., 2016; Nachappa et al., 2020). The accuracy of a model is dependent on the selection of the 

influencing elements used in mapping natural hazard susceptibility (Pourtaghi et al., 2016). This study carefully checked 385 

multicollinearity for influential factors and variable importance was measured to find the most suitable factors for the 
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modelling input. In addition, the selection of the non-hazard points is also thoroughly carried out with the specific standards, 

contributing to better modelling performance. 

The integration of the susceptibility maps of flood and wildfire hazards into a multi-hazards susceptibility matrix 

highlights that flood and wildfire events threaten different areas and proportions of the entire Quang Nam province. The 390 

multi-hazard map is built upon a susceptibility class matrix for flood and wildfire events instead of a simple summation of 

both susceptibility maps. Indeed,  the matrix enables the identification of regions with different combinations of hazard 

susceptibility for floods and wildfires. The exposure maps generated by combining the susceptibility map with the built 

environment data exhibit the total affected exposed housing for different susceptibility levels of each hazard and muti-

hazards. Creating a multi-hazard exposure map that effectively delineates regions susceptible to floods and landslides 395 

wildfires via the implementation of a matrix-based approach and combining the map with built environment data to assess 

the exposure elements of the hazards has not previously been attempted by other researchers. The combination with exposure 

highlights that different districts have to deal with different combinations of hazard susceptibility and that exposure to fire is 

much lower than flood hazards despite the broad spatial distribution of the wildfire susceptibility. This combination is an 

important step towards an integrated risk assessment of spatially co-occurring hazards; however, the contrasted vulnerability 400 

of buildings relative to different hazards, taking into account the specific attributes of the building, is also important in 

controlling the potential damage (Šakić Trogrlić et al., 2024). Such hazard-specific vulnerability functions for different 

building types still need to be constrained for the study area before a fully quantitative risk assessment can be completed.  

Verifying multi-hazard exposure assessments is essential for ensuring the accuracy and reliability of the analysis, as well 

as for facilitating effective risk management strategies (Skilodimou et al., 2019). The multi-hazard exposure can be verified 405 

by analyzing historical damage data or examining the observed damage to vulnerable assets such as buildings, infrastructure, 

and natural resources (Khan et al., 2020). The 2020 flood and storm events caused 46 deaths, more than 117,000 properties 

have been flooded and damaged, and widespread damage to farmland, roads, irrigation works, and other infrastructure 

(Vdma, 2020). In addition, according to statistics from the Forest Protection Department of Quang Nam province, over the 

past 5 years in Quang Nam, there have been 136 forest fires causing damage to more than 618 hectares of various types of 410 

forests (available at https://chicuckiemlam.snnptnt.quangnam.gov.vn/). These available statistics confirmed the larger 

exposure of buildings to flood than to wildfire, as highlighted in Table 4. However the lack of damage statistics per hazard 

type at a fine spatial resolution prevent the comparison of our multi-hazard exposure map with actual recorded damage. 

Considering the spatial occurrence of hazards and the associated exposure to build-up environment enables highlighting 

which areas and which proportion of buildings are exposed to one specific hazard or both, which can already be relevant for 415 

risk management. To consider temporal relationships between hazards (i.e. fire during the dry season inducing flood in the 

next rain season) or non-local dynamic interactions (i.e. wildfire in upper catchment increasing flood occurrence 

downstream) would require more process-oriented hazard modelling at a more local scale. A more complex physically-based 

model, typically at the scale of a smaller river catchment, would be required to investigate how the occurrence of one hazard 

influences the probability of occurrence of another hazard later in time and/or in the same or nearby location (Jenkins et al., 420 

https://chicuckiemlam.snnptnt.quangnam.gov.vn/
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2023). Another significant limitation of this research is the absence of consideration for stakeholder engagement and 

feedback while developing and applying the multi-hazard exposure estimation model. Interaction with stakeholders in charge 

of risk management would help to identify further the challenges posed by exposure to multi-hazard, validate the modelling 

approach proposed in this research and specify how the result of such model can best contribute to strengthening the 

effectiveness of risk management strategies. 425 

6 Conclusion 

This study produced an integrated approach to assess the climate hazards of floods and wildfires. We explored the 

assessment of several spatially co-occuringmulti- hazards and associated building exposure through an ML modelling 

approach. Through investigation of the flood and wildfire hazards and the impacts of those hazards on the built environment, 

our modelling approach consisted of collating a database of recorded hazard footprints, topography, climate, geology and 430 

environment data to input into our model and developing ML models for hazards modelling and coding in GEE to produce 

credible susceptibility and exposure maps. The susceptibility evaluation incorporated a matrix that combined hazards 

associated with flooding and wildfires. The integration of built environment data with the multi-hazard map facilitated an 

assessment of the potential exposure to multi-hazards across the region. Going forward, the potential for digitally-generated, 

multi-hazard and exposure maps for other climate-related hazards, such as landslides or drought, would further aid the 435 

identification of regions susceptible to these disasters and facilitate a rapid assessment of the consequences of these events. 

This research has demonstrated that effective maps can be developed using readily available and accessible data and ML 

tools that should help inform communities and regulatory authorities in Vietnam and beyond about the likelihood of risk and 

impacts from climate-related hazards. This research has the potential to provide clear information that will inform the 

development and implementation of long-term risk reduction and adaptation strategies. Our findings suggest that ML models 440 

such as CART and RF could be used to analyze multi-hazard exposure for various geographical areas particularly 

susceptible to recurring incidents of wildfire and floods. Our data has shown that these tools can model risk and exposure 

effectively. However, the applied methods in this study did not account for the changes in the physical system induced by 

either floods or wildfires. The multi-hazard exposure maps for Quang Nam province offer valuable insights to planners, 

disaster management specialists, and regional authorities, enabling them to adopt more effective management strategies for 445 

minimizing the many hazards present in the area. This approach may also facilitate the development of comprehensive 

strategies that address areas of high exposure to both hazards rather than focusing on individual hazards.  
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