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List of changes in the revised paper: 

This document explains the changes made in the revised manuscript in order to 
address comments raised by the reviewers. Reviewers’ comments are marked in black; 
authors’ response is shown in blue; while the changes in the revised manuscript are 
marked in red. 

 

Response to Reviewers Reviewer #1 

In the study “Integrating multi-hazard susceptibility and building exposure: A case study 
for Quang Nam province, Vietnam”, the authors use an established set of machine 
learning models to estimate the susceptibility of the Quang Nam province, Vietnam, to 
floods and wildfires. By creating a comprehensive geospatial database including various 
historic flood and wildfire events, topographical, geological, hydrological, and climatic 
features, along with land use and building data, the authors have developed a robust 
basis for susceptibility mapping regarding the floods and wildfires and offer interesting 
insights regarding exposure assessment. By combining susceptibility categories for 
wildfires and floods the study offers a more nuanced perspective on what type of 
spatially co-occuring multi-hazard events could be expected in different areas of the 
study region. 

The study presents relevant insights into susceptibility factors for floods and wildfires. 
However, there are several major aspects that require clarification: 

Response: Thank you for your helpful and detailed comments and suggestions. They 
have pushed us to improve the manuscript, and we have tried to incorporate it into our 
revised version. We have carefully read and addressed all comments, point by point, 
below. 

Specific comment 1: The authors use the term multi-hazard repeatedly in their study. 
They introduce the term in line 49 to 51 and indicate that “Multi-hazard susceptibility 
assessment provides insights into the spatial co-occurrence of multi-hazard” (line 53). 
Further specification in what type of multi-hazard interactions are relevant for the 
selected hazard pair of floods and wildfires is not provided. Yet, the study would 
significantly benefit from such a clarification. For instance, the study could benefit from 
discussing the dynamic interplay between flood probability in wet seasons and wildfire 
likelihood in dry seasons. Based on previous studies looking at wildfire-flood 
interactions, most emphasis has been put on the reduction of infiltration/storage 
capacity in natural systems that have been burnt (see e.g. Mueller et al. 2018). 
Similarly, it seems physically plausible that a flood might even reduce the risk of 
wildfires due to the large-scale wetting of vegetation. I am thus wondering whether the 
current set-up of this study would rather serve the purpose of multiple hazard 
susceptibility mapping as it neglects the hazard interaction dynamics that are of critical 
importance for multi-hazard events? This is particularly critical, since the authors want 
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to make the step from susceptibility mapping towards exposure mapping. But due to 
(temporal) dynamics of multi-hazard events, an assumption of constant exposure might 
be worth discussing. 

Mueller, M., Lima, R. E., Springer, A. E., & Schiefer, E. (2018). Using matching methods 
to estimate impacts of wildfire and post wildfire flooding on house prices. Water 
Resources Research, 54, 6189–6201. https://doi.org/10.1029/2017WR022195 

Response: Thanks for your comment. We agree that a multi-hazard analysis is not 
considered in the sense of interactions between hazards. However, the analysis of the 
two hazards (floods and fires) in our study is the first step towards a fully multi-hazard 
risk assessment by looking at where there is a spatial overlap. We explained the 
dynamic interplay between flood probability in wet seasons and wildfire likelihood in dry 
seasons in Section 1. Introduction, as follows: 

“The term “multi-hazard” refers to the fact that hazards often interact in complex ways, 
and their combined impact might be greater than the sum of individual hazards (Wing et 
al. 2018). The dynamic interplay between flood probability in wet seasons and wildfire 
likelihood in dry seasons can be influenced by various factors, including environmental 
conditions, climatic patterns, topography, vegetation cover, and land use patterns 
(Skilodimou et al. 2021; Bountzouklis et al. 2022). Wildfires can significantly impact 
landscape hydrology by destroying vegetation cover and disrupting soil structure, 
reducing infiltration rates and heightening surface runoff during subsequent rain events 
(Mueller et al. 2018). Floods can reduce the formation and expansion of wildfire risks by 
wetting vegetation and soil, temporarily mitigating the likelihood of ignition and fire 
spread (Moody and Ebel 2012; Papaioannou et al. 2023). However, flood events can 
disrupt natural drainage patterns, saturate soils, and promote vegetation development, 
fueling forest fires in dry seasons (Eisenbies et al. 2007). In general, the formation of 
multi-hazard events often results from dynamic spatial and temporal interactions among 
various factors (De Angeli et al. 2022); significantly, floods and wildfires can exacerbate 
each other’s impacts depending on seasonal fluctuations, environmental conditions or 
extreme climatic variability (Yu et al. 2023). Broadening the assessment framework for 
these dynamic interactions can lead to a more comprehensive and accurate risk 
evaluation (De Angeli et al. 2022). Thus, multi-hazard susceptibility and exposure 
assessments are required for efficient disaster risk management (Zhou et al. 2015). 
Multi-hazard susceptibility assessment provides insights into the spatial co-occurrence 
of different hazard types (Rusk et al. 2022). Multi-hazard exposure assessment enables 
the evaluation of the potential impact of multi-hazards on people, buildings, and critical 
facilities in a given location (De Angeli et al. 2022). This information is invaluable for 
emergency response planning, resource allocation, and the development of robust 
evacuation strategies (Kappes et al. 2012).” 

Specific comment 2: While the authors do a great job to explain the significance of 
each of the single-hazard risks in the study area, the importance of the multi-hazard 
event remains unclear. Also unclear remains, what type of floods the authors are 

https://doi.org/10.1029/2017WR022195
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referring to. In the introduction multiple floods including coastal floods are mentioned. 
The remainder of this study seems to focus on riverine floods. 

Response: You are right; the importance of the multi-hazard events requires more 
complex hydrological modelling to consider the interactions of these two hazards at the 
catchment scale. We added this limitation to the discussion section.  

The flood hazards in the study area are mainly riverine floods. The research area is in 
Vu Gia-Thu Bon river basin, one of the largest river basins in Vietnam. We revised the 
manuscript and also explained this problem in Section 1. Introduction, according to your 
comment as follows:  

“Flooding is a common natural hazard in many coastal and low-lying areas worldwide 
that can be caused by various factors, including heavy rainfall, snowmelt, storm surges, 
or the breaching of dams and levees (Viglione and Rogger 2015). Quang Nam province 
is characterized by a coastal and low-lying topography and faces high flood risks due to 
heavy rainfall, typhoons, and potential breaches of dams and levees (Luu et al. 2018). 
The province has two large river systems, including the Vu Gia - Thu Bon and Tam Ky 
rivers. Due to the steep, hilly terrain and prolonged heavy rainfall, the river network of 
this province is quite dense, and as a result, this province faces riverine floods every 
year in the lowland area and along the coast. This issue holds particular significance for 
the Quang Nam province because flood events pose a direct threat to human lives and 
cause significant damage to its infrastructure, education, economic development, and 
health-related services (Lee et al. 2020)”. 

Specific comment 3: The authors provide a comprehensive list of study aims. 
However, I am not sure how targets 1 and 4 are covered in this study. The authors 
describe well the process of deriving the susceptibility maps, yet there’s a lack of 
evidence considering spatially or temporally co-occurring events where hazard 
dynamics are relevant. Coming back to the previous comment, multi-hazard events are 
significant because of their interactions which lead to non-linearly altered impacts. It is 
also unclear how the outputs of the workflow are assessed to determine whether it is a 
useful assessment tool and provides decision-support (for what exactly?) regarding risk 
reduction and management. 

Response: Thank you for your comments; we revised the target 1 and removed the 
target 4. The reviewer is right in saying that we model each hazard separately and then 
look at spatial co-occurrence (combining two different susceptibility maps). We added 
the limitations into Section 5. Discussion:  

“In this study, we have only considered spatially co-occurring multi-hazard events and 
neglected the dynamic interaction of these hazard events. The obtained exposure maps 
also need further analysis into the impacts of multi-hazard events to provide more useful 
information for risk assessment and effectively implement disaster risk management 
within the study area. A more significant limitation of this research lies in the absence of 
consideration for stakeholder engagement and feedback while developing and applying 
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the multi-hazard exposure estimation model. Interaction with stakeholders in charge of 
risk management would help to identify further the challenges posed by exposure to 
multi-hazard, validate the modelling approach proposed in this research and specify 
how the result of such model can best contribute to strengthening the effectiveness of 
risk management strategies.”. 

Specific comment 4: The method section could benefit from some streamlining. While 
the overall workflow as presented in Figure 2 is clear and straightforward. Aligning the 
subsection sequence (and subsection titles) with the workflow presented in Figure 2 
would reduce redundancy and improve clarity. Specifically, sections such as 3.3.3 could 
be embedded in the overall flow (first check multicollinearity, then apply ML model?).  
Another suggestion would be to present GEE already as part of the methodology 
flowchart as the overarching framework in which data are combined, the models are set 
up, tested, and used etc. 

Response: Thank you for your suggestions. We adjusted the subsection sequence 
more clearly according to your suggestions. 

Specific comment 5: The process of combining data for the flood and wildfire 
inventories could benefit from further elaboration (either in the main text or in a 
supplement). Regarding floods: a) it seems that the flood events point data and map 
data were combined. How was this done? How were the points prepared for the 
combination with the maps for the training? To determine the non-flood points, how 
were the flood markers considered? b) A specification what made the three flood events 
historic would be interesting. Are those all the same flood type (e.g. fluvial floods)? For 
wildfires: a) Which period was considered to determine the 1,911 wildfire locations? 
Was it just within the last year or the past decade or…? B) When selecting non-wildfire 
locations, it was assumed that built environments cannot burn. However, when it comes 
to exposure, to wildfires we would assume that the built environment must be exposed 
to these fires somehow. It would be helpful if the authors could elaborate in this section 
(or in the section when describing the built environment), how the choice that built 
environments are non-wildfire locations influence the outcomes of the machine learning 
training to spot fires that endanger built environment. Also, it would be interesting to 
learn whether there are any multi-hazard events in the dataset of historic events 
(potentially to be added to the supplement?)? 

Response: We thank the reviewer for the excellent comments. We agree with the 
reviewer that this is a bit weird and can lead to reducing the estimated exposure of 
build-up area to burn. We explained as follows: 

* Regarding floods: 

We combined the flood locations from 2 sources:  

1) 847 historical flood marks of 2007, 2009, and 2013 floods. This data was investigated 
by the Quang Nam Provincial Steering Committee of Natural Disaster Prevention and 



5 
 

Control in 2013 and JICA in 2007 and 2009. These points were recorded with specific 
measurements of flood depth. 

2) 47 new flood locations were detected from Sentinel 1 during 2017-2021. We get 47 
points at the centroid of 47 flood area polygons. In reviewing your comments, we have 
checked all 2007, 2009 and 2013 flood points, and they are also within the 2017-2021 
flood zone. Additionally, the non-flood points were determined by overlaying all flood 
inventory onto the study area. We explained these problems quite clearly in Subsection 
3.2.1. Inventories of floods and wildfires are as follows:  

“The development of a reusable and accurate flood inventory is a crucial element in the 
susceptibility mapping of floods (Ahmadlou et al., 2018). In this study, the flood marker 
points recorded for all floods from 2007 to 2023 were considered. This data was 
obtained from the Quang Nam Provincial Steering Committee of Natural Disaster 
Prevention and Control. Data cleaning to remove duplicates resulted in 847 historical 
flood marks, corresponding mainly to the major floods of 2007, 2009, and 2013. Each 
flood mark comprises a unique identifier, geographical coordinates (longitude and 
latitude), flood depth, and provider information. A second source of information was 
derived from mapping flood extent on SAR data from Sentinel 1 for 2017 to 2023, which 
we compare with official reports from the Provincial Committee. We coded in Google 
Earth Engine to detect flood areas as in this study (Mai Sy et al., 2023). All inundation 
areas for several years were overlayered and compared with the flood mark locations to 
avoid duplicates. Forty-seven new flood areas were detected and integrated with 847 
historical flood marks for the inventory data. 

The final flood inventory includes 894 flood locations: 70% of them (626 locations) were 
randomly selected to calibrate the flood susceptibility model, and the remaining 30% 
(268 locations) were designated for validating purposes (Figure 3). In addition, a total of 
894 non-flood locations were randomly selected across the study area using the “Create 
random point tool” in ArcGIS software. The non-flood points were determined by 
overlaying all flood inventory onto the study area map. Non-flood points were only 
selected in zones that were outside all flood maps. Additionally, we excluded steep 
slopes (>10°) or areas of positive relief (such as hilltops) from the selection of non-flood 
points, as these locations that can evidently not be associated with floods would 
artificially increase the accuracy of the susceptibility model. The non-flood points were 
then classified in a ratio of 70/30, mirroring the classification of the flood locations. This 
process was undertaken to create a comprehensive database for input into the GEE 
platform, which was utilized for modelling and validation.” 

* For wildfires: 
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In this study, 1,911 wildfire locations were collected from March to August 2020 to 2023 
and provided by the National Forest Protection Department (available at 
https://watch.pcccr.vn/thongKe/diemChay). The periods of data collection correspond to 
the study area’s dry season, from March to August every year. We added this 
information in Subsection 3.2.1. Inventories of floods and wildfires are as follows: 

“For the wildfire inventory, this study involved the collection of 1,911 wildfire locations 
from March to August 2020 to 2023 (Figure 3), corresponding to the peak of the dry 
season, from the National Forest Protection Department's website (available at 
https://watch.pcccr.vn/thongKe/diemChay). This agency utilizes data from many 
satellites (AQUA, J1, SUOMI, and TERRA) that are regularly received at the TerraScan 
receiving station located at the Forest Protection Department. The use of near-infrared 
bands from many satellites helps to identify the presence of heat associated with active 
fires on the ground (Giglio et al. 2008). Changes in temperature and environment 
(humidity, wind direction) on the ground on the same day have been determined and 
duplicated at one fire location based on near-infrared bands of types of satellites to 
identify fire hotspots. Normally, these changes are observed on the same day and then 
matched with data from near-infrared bands on specific types of satellites to identify 
active fire hotspots (Kharyutkina et al. 2022; Marinho et al. 2021). The National Forest 
Protection Department website database was checked and filtered to avoid duplicated 
wildfire locations, dates, and commune data field conditions. The wildfire location data 
represents the specific fire sites captured by one type of satellite inside a particular 
commune at a given time. The area criterion is also important for obtaining accurate 
natural fire locations and eliminating human-made ones. We used a filtering method to 
find wildfire spots that were larger than 2 hectares, using information noted in the 
statistical data provided by the National Forest Protection Department. To determine the 
non-fire point, we randomly selected points within the zones with forested and natural 
vegetation land cover, which were not identified as wildfires in the inventory. We 
excluded residential areas, water systems, and crop areas from the selection of non-fire 
points, as these cannot be associated with wildfires corresponding to the criteria 
selected in this study and would artificially increase the accuracy of our susceptibility 
model. 

We agree with you that although built environments are not typically considered burn 
points, they can still be exposed to wildfires in various ways. However, Quang Nam is a 
central coastal province of Vietnam; the population is concentrated in the coastal plain, 
along National Highway 1A, Vu Gia Thu Bon and Tam Ky plains. In addition, the 
selected non-fire points have been verified and confirmed through field surveys and 
local authorities. 

Specific comment 6: The authors comprehensively describe what influencing factors 
are considered. For some of the influencing factors with temporal and/or spatial 
variability (e.g. precipitation, temperature) it is unclear how the collected data are further 
processed. For example, precipitation are collected for a period of 10 years, while the 

https://watch.pcccr.vn/thongKe/diemChay
https://watch.pcccr.vn/thongKe/diemChay
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considered flood marker cover the periods 2007, 2009, 2013 and 2017-2021. The same 
applies for the temperature data where data were available only for 3 years. How were 
the influencing factors considered for wildfires that took place outside of this period 
(assuming that this is the case, since no specification is made with regards to the time 
horizon over which the wildfire locations were collected). Same holds for the NDVI 
index, where it is not clear when this imagery has been produced. Additionally, it would 
be valuable if the authors could reflect on the interpolation method used to 
inter/extrapolate between the gauge stations. Are the gauges distributed sufficiently well 
and do the elevation/similarity characteristics allow for the application of the chosen 
method? 

Response: For some of the influencing factors with temporal and/or spatial variability 
(e.g. precipitation, temperature), we used the IDW interpolation method to extract the 
rainfall and temperature for the study area. In the manuscript, we explained the 
collected time and processing technique for these data: 

“Daily rainfall data was recorded from 2003 to 2023 and collected from 33 rain gauge 
stations in Quang Nam province. This study used the Inverse Distance Weighted 
technique to separately generate average yearly cumulated rainfall maps for the rainy 
and dry seasons.”  

and  

“The daily temperature data were collected from March to August between 2020 and 
2023 (dry seasons) at https://power.larc.nasa.gov/data-access-viewer/. This research 
used the Inverse Distance Weighted approach to produce a temperature map 
specifically for dry seasons (March to August).”.  

In this study, the historical flood marker points have been considered continuously from 
2007 to 2023. However, we collected, synthesized, and removed duplicate flood points, 
so there were 847 historical flood marks of 2007, 2009, and 2013 historical flood events 
obtained from the Quang Nam Provincial Steering Committee of Natural Disaster 
Prevention and Control and 47 flood points explored from Sentinel 1 for 2017 to 2023. 
We added the information into Subsection 3.2.1 Inventories of floods and wildfires: 

“In this study, the flood marker points were considered for all flood events from 2007 to 
2023 as reported by the Quang Nam Provincial Steering Committee of Natural Disaster 
Prevention and Control. We removed duplicate flood points. A total of 847 historical 
flood marks were obtained from this database – these correspond mainly to the  2007, 
2009, and 2013 flood events with the largest spatial extent. Each flood mark comprises 
a unique identifier, geographical coordinates (longitude and latitude), flood depth, and 
provider information. A second source of information was derived from mapping flood 
extent on SAR data from Sentinel 1 for 2017 to 2023, which we compare with official 
reports from the Provincial Committee. We coded in Google Earth Engine to detect 
flood areas as in this study (Mai Sy et al. 2023). After that, the inundation areas of many 
years were overlayed and compared with the flood mark locations to avoid duplicates. 
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47 new flood sites were detected and integrated with 847 historical flood marks for the 
inventory data.”. 

We also explained the NDVI calculation for this research: “This study calculated the 
NDVI index from the Landsat 8 imagery. The NDVI index is the average value for the 
rainy and dry seasons separately from 2020 to 2023 – the same period over which the 
fire dataset is available.”. 

We revised the NDVI index for flood hazard and wildfire hazard modelling. The NDVI for 
flood hazard is from September to February (rainy season), and wildfire hazard is from 
March to August (dry season) as follows: 

  
 

Specific comment 7: While the authors do well in qualitatively describing the algorithm 
and underlying principles, key information regarding the hyperparameter tuning (and 
final chosen ones) and pruning techniques are not provided. As such it is difficult to 
reproduce the results. The results of the tests for the hyperparameter tuning could be 
useful additions as supplemental information. On a similar note, further quantitative 
information regarding the bootstrapping (e.g. number of bootstrapped samples) could 
be relevant as well. Furthermore, it would be helpful for readers less familiar with ML 
methodology (like me) to link the parameters used in the equations to the inputs used in 
this specific study. For example, what are D, N, X and Y in the CART? 

Response: We thank the reviewer’s comment. We explained the used parameters in 
the equations in Subsection 3.3.2 Machine learning approach for hazard susceptibility 
modelling. Additionally, we also explained key information regarding the bootstrapping, 
the hyperparameter tuning (and final chosen ones), and pruning techniques in 
Subsection 3.4 Experimental process, as follows:  

3.4 Experimental process  
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This study employed the GEE cloud computing platform for the pixel-based CART and 
RF algorithms to build susceptibility maps for flood and wildfire hazards separately. The 
input data was collected from various sources and formats. First, we pre-processed and 
converted these data into raster format with 30-meter spatial resolution in a GIS 
environment. Then, these data were uploaded into the GEE platform. The following 
processing steps were followed: 

1. Data preparation: All thematic maps were uploaded, overlaid, and gathered into each 
dataset for modelling flood and wildfire susceptibility. Inventory maps of floods and 
wildfires were uploaded and linked with the corresponding attributes. These inventory 
maps were classified into two datasets: the training dataset, with 70% inventory 
locations, and the testing dataset, with 30% remaining inventory locations.  

2. Hyperparameter tuning: The CART and RF models were developed to construct each 
hazard susceptibility map on the training dataset. The hyperparameter tuning process 
was carried out for both ML algorithms, in which the parameter space for each ML 
algorithm was identified (Table 1). The CART algorithm included factors like max depth, 
min samples split, min samples leaf, and criterion. The RF algorithm encompassed the 
number of trees (n_estimators), max features, max depth, min samples split, and min 
samples leaf. Hyperparameter tuning techniques such as grid or random search were 
applied to explore and evaluate different parameter combinations systematically. 

3. Model training: The obtained optimal hyperparameters from the tuning process were 
utilized to train the predictive models. 

4. Pruning techniques: Pruning techniques were employed to reduce overfitting by 
refining tree structures based on complexity measures or validation performance for the 
CART algorithm. For the RF algorithm, these techniques were applied to control 
hyperparameters like maximum tree depth and minimum samples per leaf, helping 
adjust model complexity. 

5. Model evaluation: The ROC curve and AUC value were applied to validate and 
compare the predictive performance of each hazard susceptibility model on the 
validation dataset to select the best predictive model for each hazard. 

Table 1 The parameters of running models in GEE. 

Parameter 
Model   

CART RF Legend 

Number of Trees Null 200 The number of decision trees to create. 

Variables per split Null Null 
The number of variables per split. If 
unspecified, uses the square root of the 
number of variables. 
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Min leaf population 1 1 Only create nodes whose training set 
contains at least this many points. 

Bag fraction Null 0.1 The fraction of input to bag per tree. 

Max nodes 150 null The maximum number of leaf nodes in 
each tree 

Seed Null 23 The randomization seed 

 

Specific comment 8: The discussion section could benefit from some critical reflection 
on the decisions made in this study set-up and discuss some of the limitations that 
come with it. This is particularly critical since the authors claim, that this workflow could 
be extended by including different hazards and applied in different regions. For 
example, with reference to Line 458: Both in terms of inputs as well as in terms of how 
multi-hazard has been defined and conceptualized. The aspect of dynamics has been 
neglected and it has mostly been looked at spatially co-occurring (without temporal 
memory) hazard events. Or with reference to Line 489: From the results it seemed that 
multi-hazard seems to be a less prominent problem (both in terms of susceptibility as 
well as the exposure). So, a planner could also read the results as mentioned by the 
authors: “flood risk is much more of a problem, we should focus on that!”. I would 
suggest specifying that with these exposure maps, further analysis into the impacts of 
multi-hazard events can be made that ultimately can inform multi-hazard risk 
assessment and thus effective DRM. 

Response: We thank the reviewer’s comment, we agree that this research still lacks 
evidence of interactions between forest fires and floods in the study region. We cannot 
confirm that there have been more floods in the years with many wildfires or in the 
catchments that have experienced large fires. One issue overlooked so far is that 
wildfires and floods do not have to occur at the same location to interact - burned areas 
can happen in the upland and generate/influence floods in the lower basins.  We added 
the limitations of this research in Section 5. As per your advice, the discussion follows: 

 “Considering the spatial occurrence of hazards and the associated exposure to build-up 
environment enables highlighting which areas and which proportion of buildings are 
exposed to one specific hazard or both, which can already be relevant for risk 
management. To consider temporal relationships between hazards (i.e. fire during the 
dry season inducing flood in the next rain season) or non-local dynamic interactions (i.e. 
wildfire in upper catchment increasing flood occurrence downstream) would require 
more process-oriented hazard modelling at a more local scale. A more significant 
limitation lies in the absence of consideration for stakeholder engagement and feedback 
while developing and applying the multi-hazard exposure estimation model. This 
engagement process would validate our model, foster a more comprehensive 
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understanding of multi-hazard exposure, and strengthen the effectiveness of risk 
management strategies in real-world scenarios.”. 

Specific comment 9: Have the authors considered to deposit input data maps, 
algorithms, and model code in FAIR-aligned repositories/archives in alignment with the 
ambition of NHESS to support open data? 

Response: Thanks for your comment. We will provide input data maps, algorithms, and 
model code supporting the findings of this study according to your comment. 

 

Specific comment 10: Minor comments 

1. The introduction generally includes all relevant elements. The overall story for the 
introduction could be refined, e.g. by avoiding duplication (compare lines 91 to 99 
with lines 32 to 45). Similarly, lines 60 to 88 provide in depth introduction to the 
ML and previous practice. At the same time, the authors mention multiple 
information which are quite interesting, but seem to be not relevant for this study 
(e.g. line 61 to 63; 63 to 65; 68 to 70). I would also suggest trying to integrate 
lines 60 to 77 with the current practice described in lines 78 to 88). 

Response: We improved paragraphs in the Introduction section to avoid duplication. 

2. The methodological flow is described nicely. However, it seems that there is a lot 
of overlap in lines 135 to 139 compared to line 139 to 147. Streamlining the text 
could help the reader. 

Response: We rewrote the text in the Subsection 3.1 Methodology flowchart to avoid 
duplication. 

3. Figure 2: The flowchart is very nice. Couple of questions: 
- What is the importance of different colors used in this figure? I tried to 

understand why certain boxes were colored in different colors (e.g. flood 
influencing factors vs floods, same colors for e.g. ML vs Testing…). If there is 
a reason for specific colors, I would suggest making it clearer (e.g. explaining 
in the figure description) or otherwise reduce the number of colors used. 

- I was expecting that the susceptibility maps would be built after the validation 
exercise. The flow suggest that they were created directly from the training 
dataset? 

Response: We reduced the number of colors used in the flowchart and adjusted the 
order to build susceptibility maps. 

4. Line 174 to 175: I don’t understand this sentence. Is that the method to 
determine whether a wildfire has occurred? 
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Response: That is the method to determine whether a wildfire has occurred in the 
Quang Nam province by the National Forest Protection Department (available at 
https://watch.pcccr.vn/thongKe/diemChay) 

5. Line 176 to 177: This sentence seems unclear to me. What filter has been 
applied to filter what? 

Response: A file with the Excel format was explored and downloaded from the website 
of the National Forest Protection Department (available at 
https://watch.pcccr.vn/thongKe/diemChay), which is collected from many satellite image 
sources, so it was necessary to check and filter to avoid duplicated wildfire locations, 
dates, and positions.  

6. Line 180: it is not clear whether areas larger than 2 ha were assumed to be 
human caused. 

Response: Wildfire areas smaller than 2 ha were interpreted as induced by human 
activity based on annotations provided in the statistical data of the National Forest 
Protection Department. This information was represented in our manuscript as follows: 

“We used a filtration process only to retain wildfire spots that exceed a minimum size 
threshold of 2 hectares, as smaller fire areas should be considered human-induced 
according to the National Forest Protection Department.” 

7. Figure 4: I would suggest to either add a bit more text to explain the different 
maps as part of the influencing factors or place Figure 4 in the appendix. In the 
appendix, individual plots could also be resized so that legends are better 
readable. 

Response: We moved Figure 4 to the appendix. 

8. Line 188: How was this set of influencing factors determined? For flooding, 
proximity to coast could also be a determinant of (coastal) flooding? 

Response: The set of influencing factors was determined based on their relevance and 
the data availability within the research area. In this study, we mentioned riverine floods 
in the Quang Nam province, so we did not use the proximity to the coast.  

9. Line 301 to 302: What does these choices of filtering for confidence interval 
mean? What type of buildings are more likely to be disregarded with the chosen 
confidence intervals? 

Response: The type of building and confidence intervals are presented in the study of  
Sirko et al. (2021) (https://arxiv.org/abs/2107.12283). We cited this work in the 
manuscript. We also based on the province population to find the appropriate 
confidence intervals for the research area. The population is 1.5 million, and the total 
buildings with 80% confidence intervals are 442,220. Assume that about 3-4 people per 

https://watch.pcccr.vn/thongKe/diemChay
https://watch.pcccr.vn/thongKe/diemChay
https://arxiv.org/abs/2107.12283
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building on average is realistic. We also randomly manually check building accuracy on 
Google Earth for the appropriate confidence intervals. 

10. Line 354 to 366: This section seems almost identical with the workflow presented 
and discussed alongside figure 2. I would suggest streamlining the method 
section and remove Section 3.2.2 and add relevant information in previous 
sections. For example, the information that CART and RF work cell-based is 
quite a relevant information given that the flood and wildfire inventories are point 
information. 

Response: We agree with you. We removed Subsection 3.2.2 and added relevant 
information to explain how CART and RF models work. 

11. Line 386: Can the authors explain how the importance sampling can inform 
which factors have the highest impact on multi-hazard formations? The algorithm 
used is applied to single hazards (either floods or droughts) but not the multi-
hazards? 

Response: This is the relative importance of variables in modelling single-hazard and 
not multiple-hazards. 

12. Figure 5: Aligning terminology (either testing or validating dataset) would help the 
readability. Also, what does the Se stand for? 

Response: We fixed all texts with training and testing datasets. We added the note in 
the figures that ‘‘Se’’ term stands for standard error. 

13. Line 453 to 455: Can the authors clarify what they mean when they claim that 
floods and wildfires have ‘similar spatial extent’ and frequency? 

Response: In this study, we synthesized and collected flood and wildfire inventory 
based on historical data, satellite imagery, and reports from relevant authorities. While 
the frequency of floods and wildfires occurs separately, the occurrence of both hazards 
depends on the season or year. 

14. Line 483 to 485: How is this finding affected by the choice to define built-up areas 
as non-wildfire areas when creating the training data set? It seems that seeing 
less fires in built up areas could also be influenced by the fact that the ML 
algorithms were taught that wildfires just don’t occur in more densely populated 
areas? 

Response: We agree with you. We do NOT select non-fire points in the build up 
environment.  

15. Line 486: How do the authors derive the claim, that the chosen method works 
well with recurring hazard events? The applied methods seemed not to account 
for the changes in the physical system induced by either floods or wildfires. 
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Response: We thank the reviewer for your excellent comment. We added this limitation 
into Section 5. Discussion: “Our findings suggest that ML models such as CART and RF 
should be used to analyze multi-hazard exposure for various geographical areas 
particularly susceptible to recurring incidents of wildfire and floods. Our data has shown 
these tools to model risk and exposure effectively. However, the applied methods in this 
study did not account for the changes in the physical system induced by either floods or 
wildfires.”. 
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