Supplementary Material

Predicting the Risk of Glacial Lake Outburst Floods in Karakorum

5

Nazir Ahmed Bazai ^{1,2}, Paul A. Carling ^{3*}, Peng Cui ^{2,4*}, Hao Wang ^{2,4}, Zhang Guotao ⁴, Liu Dingzhu ^{4,5},⁶, Javed Hassan

¹Key Laboratory of Mountain Hazards and Earth Surface Process/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (CAS), Chengdu, China

10 ² China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences and HEC, Islamabad, Pakistan.

³ Geography and Environmental Science, University of Southampton, Southampton SO17 1BJ, UK

⁴ Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China

⁵ Earth Surface Process Modelling, German Research Centre for Geosciences (GFZ), Potsdam, Germany

⁶ National Disaster Reduction Centre of China, Ministry of Emergency Management, Beijing, China

⁷ DTU Space, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Correspondence to: Paul A. Carling: p.a.carling@soton.ac.uk and Peng Cui: pengcui@imde.ac.cn

Contents of this file

20 Figure S1

Tables S1 to S2

Fig. S1: The locations of mountain ranges and ice-dammed lakes around the world. The images used here are sourced from © Google Earth.

Table S1. Sources for the remote sensing data and spatial resolution employed in the present study for capturing the Glacial lakes and surge movements of glaciers from 1970 to 2022

Satellite	Sensor	Total used	Launch	No. of MS bands (Nominal	Panchromatic resolution	Thermal band
		Scene	Year	resolution)	(nominal) (m)	resolution
Landsat 1	MSS	17	1972	80 m (band 4)	-	-
Landsat 2	MSS	66	1975	80 m (band 4)	-	-
Landsat 3	MSS	17	1978	80 m (band 4)	-	-
Landsat 4	MSS	152	1982	30 m (band 6)	-	120 m (1)
Landsat 5	MSS		1984		-	
Landsat 7	ETM+	106	1999	30 m (band 6)	15m	60 m (1)
Landsat 8 and 9	ETM+	232	2013	30 m (band 8)	15m	100 m (2)
Sentinel-2	Multispectral	45	2015	60 m (Band 1, 9, 10)	10 m (Band 2, 3, 4, 8)	-
	Instrument					
ASTER	state-of-the-art	55	1999	30 m (Band 4-9)	15 m (Band 1-3b)	90 m (Band 10-14)
	instrument					
Gaofen-1 (GF-1)		12	2013	8 m	2 m	-
Gaofen-2 (GF-2)	RTD	23	2014	3.2 m	0.8 m	-
SPOT 6 and 7	NAOMI	11	2012	1.5 m	1.5 m	-
			2014			
Global Planet	EO	5	2013 and	-	3 m	-
imagery			2014			

S.No.	Satellite/Sensor	Resolution (m)	Resample	Glacier Sites	Source
1	UAV	0.6311	-	Shishper and Khurdopin	Generated from the field data
2	SRTM	90	30		https://lta.cr.usgs.gov/ SRTM1Arc
3	ASTER	30	30		https://asterweb.jpl.nasa.gov/gdem.asp
4	PALSAR-DEM	30	30		http://www.eorc.jaxa.jp/ALOS/en/aw3d30/
5	KH-9	0.61			http://earthexplorer.usgs.gov/

 Table S2. Sources of the list of Digital elevation models used in this study