Supporting Information for "On the atmospheric budget of ethylene dichloride and its impact on stratospheric chlorine and ozone (2002-2020)"

Ryan Hossaini¹, David Sherry², Zihao Wang^{3,4}, Martyn P. Chipperfield^{3,5}, Wuhu Feng^{3,6}, David E.
Oram^{7,8}, Karina E. Adcock⁸, Stephen A. Montzka⁹, Isobel J. Simpson¹⁰, Andrea Mazzeo¹, Amber A. Leeson¹, Elliot Atlas¹¹, and Charles C.-K Chou¹²

¹Lancaster Environment Centre, Lancaster University, Lancaster, UK. ²Nolan Sherry and Associates (NSA), London, UK. ³School of Earth and Environment, University of Leeds, Leeds, UK.

- ⁴Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen, China.
 ⁵National Centre for Earth Observation, University of Leeds, Leeds, UK.
 ⁶National Centre for Atmospheric Science, University of Leeds, Leeds, UK.
 ⁷National Centre for Atmospheric Science, University of East Anglia, Norwich, UK.
 ⁸School of Environmental Sciences, University of East Anglia, Norwich, UK.
- ⁹NOAA Global Monitoring Laboratory (GML), Boulder, CO, USA.
 ¹⁰Department of Chemistry, University of California-Irvine, Irvine, CA, USA.
 ¹¹Department of Atmospheric Sciences, RSMAS, University of Miami, Miami, Florida, USA.
 ¹²Research Center for Environmental Changes, Academia Sinica, Taipei, 11529, Taiwan.

Correspondence to: Ryan Hossaini (r.hossaini@lancaster.ac.uk)

Table S1.	Summary	statistics	(mean	and	median)	of	observed	and	modelled	EDC	at	Bachok	and
Taiwan. M	odel data is	s shown fo	or the sc	enari	io sc05 (o	$\iota_1 =$	0.5/1.5%)).					

		Sampling	#	Measured ED	C (ppt)	Modelled EDC (ppt)		
Site	Year	months	obs.	Mean (±1 s.d)	Median	Mean (±1 s.d)	Median	
Bachok	2014	Jan/Feb	16	46.2 (±28)	50.7	34.1 (±13.0)	32.4	
Bachok	2015	Nov/Dec	24	24.9 (±20)	16.1	14.3 (±7.0)	11.6	
Bachok	2016	Jan	17	20.9 (±15)	14.0	12.2 (±5.3)	10.2	
Bachok	2017	Jan/Feb/Mar/Apr	41	18.8 (±10)	16.8	24.8 (±12.9)	22.1	
Bachok	2018	Dec	2	25.6 (±14)	35.5	6.4 (±7.2)	11.5	
Bachok	2019	Jan/Feb	26	44.4 (±48)	28.7	25.0 (±16.0)	19.8	
Bachok	2020	Dec/Jan/Feb	17	44.2 (±41)	33.5	29.7 (±17.0)	26.3	
Taiwan	2014	Mar/Apr	24	137.5 (±190)	82.8	120.5 (±12.7)	121.0	
Taiwan	2015	Mar/Apr	23	84.3 (±83)	59.0	131.4 (±20.8)	128.5	
Taiwan	2016	Mar/Apr	0	-	-	125.1 (±19.5)	121.4	
Taiwan	2017	Apr/May	31	83.5 (±69)	58.4	131.2 (±21.6)	128.5	
Taiwan	2018	Apr/May/Jun	28	146.7 (±137)	103.2	154.9 (±21.5)	149.4	
Taiwan	2019	Mar/May	52	143.5 (±127)	116.9	140.2 (±19.5)	139.2	
Taiwan	2020	Apr/May	40	102.0 (±85)	63.1	136.3 (±15.8)	141.8	

Table S2. Observed and modelled EDC abundance (ppt) averaged in 1 km altitude bins during KORUS-AQ. n denotes the number of measurements in each bin. Median EDC is reported with values in square brackets denoting the 25th and 75th percentile. The mean bias (MB, model minus observation) is given for each bin. Model results are based on scenario sc05 ($\alpha_1 = 0.5/1.5\%$).

Altitude bin	KORUS-AQ campaign							
centre (km)	n	Observed EDC (ppt)	Modelled EDC (ppt)	MB (ppt)				
0.5	1323	68.9 [33.9, 126.6]	52.7 [38.7, 71.2]	-16.2				
1.5	573	37.2 [22.5, 73.9]	45.4 [33.8, 57.7]	8.2				
2.5	256	22.0 [17.5, 36.4]	27.7 [20.8, 44.1]	5.7				
3.5	155	18.1 [15.7, 23.7]	16.6 [15.4, 18.8]	-1.5				
4.5	119	16.0 [14.2, 18.8]	15.9 [14.8, 17.0]	-0.1				
5.5	94	15.1 [14.0, 18.3]	15.5 [14.6, 16.4]	0.4				
6.5	104	15.1 [13.5, 16.7]	15.4 [13.9, 17.3]	0.3				
7.5	160	14.7 [12.9, 18.2]	14.6 [13.4, 15.7]	-0.1				

Table S3. Comparison of EDC emission estimates (Gg/yr) for parts of East Asia from this work (scenario sc05) and previous studies.

Study	Region	Emission estimate (Gg/yr)	For year	Method
Wang et al. (2014)	China	121.6 (±89)	2010	Tracer ratio
Oram et al. (2017)	China	203 (±9)	2015	Tracer ratio
This work, $\alpha_1 = 0.5/1.5\%$	China+Taiwan	89 (73-106)	2010	Bottom-up (see main text Sect. 2)
This work. $\alpha_1 = 0.5/1.5\%$	China+Taiwan	107 (87-127)	2015	Bottom-up (see main text Sect. 2)

Figure S1. Tropical (± 20 °N/S) mean EDC profiles (ppt) observed during (a) HIPPO and (b) ATom averaged in 1 km altitude bins ($\pm 1.s.d$). The corresponding model profiles are shown for emission scenario sc05.

Figure S2. Modelled annual mean stratospheric chlorine SGI, PGI and total (SGI + PGI) due to EDC (ppt Cl) diagnosed at the tropical tropopause. Solid lines represent results from emission scenario sc05 with shading or dotted lines denoting the range from scenarios sc04 and sc06.

Figure S3. EDC mole fraction (ppt) vs potential temperature observed during the AMA-17 campaign (Adcock et al., 2021) and corresponding model estimates for emission scenario sc05. The horizontal dashed lines denote the tropopause region (355-375 K).