
1 
 

Estimation of Ground-Level NO2 and its Spatiotemporal 

Variations in China Using GEMS Measurements and a Nested 

Machine Learning Model 

Naveed Ahmad1, Changqing Lin1,*, Alexis K.H. Lau,1,2 Jhoon Kim3, Tianshu Zhang,4,5 Fangqun 

Yu6, Chengcai Li7, Ying Li8, Jimmy C.H. Fung1,9, Xiang Qian Lao10 5 

1Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, 

Hong Kong, China 

2Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear 

Water Bay, Hong Kong, China 

3Department of Atmospheric Sciences, Yonsei University, Seoul, 03722, Korea 10 

4Institute of Environment, Hefei comprehensive national science center, Hefei 230000, China 

5Key Laboratory of Environment Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese 

Academy of Sciences, Hefei 230000, China 

6Atmospheric Sciences Research Center, State University of New York at Albany, Albany, NY 12226, US 

7Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing 100871, China 15 

8Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, 

China 

9Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 

China 

10Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China 20 

Correspondence to: Changqing Lin (cqlin@ust.hk) 

Abstract. The major link between satellite-derived vertical column densities (VCDs) of nitrogen dioxide (NO2) and 

ground-level concentrations is theoretically the NO2 mixing height (NMH). Various meteorological parameters have 

been used as a proxy for NMH in existing studies. This study developed a nested XGBoost machine learning model 

to convert VCDs of NO2 into ground-level NO2 concentrations across China using Geostationary Environmental 25 

Monitoring Spectrometer (GEMS) measurements. This nested model was designed to directly incorporate NMH into 

the methodological framework to estimate satellite derived ground-level NO2 concentrations. The inner machine 

learning model predicted the NMH from meteorological parameters, which were then input into the main XGBoost 

machine learning model to predict the ground-level NO2 concentrations from its VCDs. The inclusion of NMH 
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significantly enhanced the accuracy of ground-level NO2 concentration estimates, i.e., the R² values were improved 30 

from 0.73 to 0.93 in 10-fold cross-validation and from 0.88 to 0.99 in the fully trained model. Furthermore, NMH was 

identified as the second most important predictor variable, following the VCDs of NO2. Subsequently, the satellite-

derived ground-level NO2 data were analyzed across subregions with varying geographic locations and urbanization 

levels. Highly populated areas typically experienced peak NO2 concentrations during the early morning rush hours, 

whereas areas categorized as lightly populated observed a slight increase in NO2 levels one or two hours later, likely 35 

due to regional pollutant dispersion from urban sources. This study underscores the importance of incorporating NMH 

in estimating ground-level NO2 from satellite column measurements and highlights the significant advantages of 

geostationary satellites in providing detailed air pollution information at an hourly resolution. 

1 Introduction 

Nitrogen dioxide (NO2) is a pivotal trace gas within the atmosphere, exerting substantial influence on the ecological 40 

environment, air quality, and climate change (Myhre et al., 2013). This significance is underscored by its role as a 

prominent air pollutant with inhalable characteristics that pose potential health risks (Xue et al., 2023). Additionally, 

it serves as an essential precursor to the formation of secondary particles and ozone (Li et al., 2019). The origins of 

NO2 are multifarious and intricate, stemming from diverse sources such as fossil-fuel-fired power plants, vehicular 

emissions, industrial activities, biofuel combustion, and residential cooking (Jion et al., 2023). Natural sources 45 

encompass wildfires, soil emissions, and lightning discharges (Li et al., 2022). Concerted efforts, including the 

implementation of stringent emission control policies in China, have resulted in a gradual reduction of NO2 

concentrations (Fan et al., 2020). Despite these positive trends, severe NO2 pollution issues persist due to the heavy 

emissions associated with China's rapid economic development, particularly in urban agglomerations (Meng et al., 

2018). The polluted regions in China continue to exhibit NO2 concentrations that surpass the safety standard set by 50 

the World Health Organization (WHO) Air Quality Guidelines (AQG) (Chi et al., 2022). 

While ground-based monitoring excels in accurately capturing NO2 concentrations, the challenge lies in the low 

density and scattered distribution of observation stations (Wei et al., 2022). The inherent limitations in the geographical 

coverage of these stations, coupled with the elevated costs, render it challenging to effectively fulfill the requirements 

for monitoring ground-level NO2 concentrations across extensive regions (Kong et al., 2021). This spatial limitation 55 

introduces substantial uncertainties when endeavoring to assess the levels of exposure on a large scale (Chi et al., 

2022). Satellite instruments offer continuous air quality monitoring with broad spatial coverage (Li & Managi, 2022). 

Satellite-retrieved vertical column densities (VCDs) of NO2 have been extensively utilized to identify variations in 

NO2 pollution and emissions of nitrogen oxides (NOx) across various regions (Cui et al., 2021; Iqbal et al., 2022; Park 

et al., 2021). However, the official satellite products provide only the column amount of NO2, not the ground-level 60 

concentrations (Lamsal et al., 2014). Consequently, there has been a discernible surge in scientific research focused 

on deriving ground-level NO2 concentrations through satellite data analyses. 

The NO2 columns have been measured through polar sun-synchronous low-Earth-orbiting (LEO) satellite instruments 

(Yang et al., 2023). These LEO satellite instruments have a daily overpass time at exact locations. However, NO2 
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pollution may vary significantly during different times of the day, driven by emissions, meteorology, and atmospheric 65 

chemistry (Shen et al., 2023). The single measurement per day from the LEO satellite instruments, typically taken 

around noon or in the afternoon, may lead to an underestimation of annual mean values (Qin et al., 2017). Previous 

studies have explored the diurnal variations of NO2 by leveraging the differences in overpass times among these LEO 

satellite instruments (Boersma et al., 2008; Lin et al., 2010). However, these analyses are largely affected by the varied 

performance of on-board monitoring sensors and unstable data pairing (Hilboll et al., 2013). This highlights the 70 

importance of using a quantitatively uniform air quality dataset with a much higher temporal resolution from a single 

suite of on-board monitoring sensors to provide new insights into the diurnal variation of air pollution. 

The Geostationary Environment Monitoring Spectrometer (GEMS) stands as the inaugural satellite instrument 

launched for the explicit purpose of monitoring both gaseous and aerosol pollutants from a geostationary Earth orbit 

(GEO) over Asia (Kim et al., 2020). It was launched successfully by the Republic of Korea on February 19, 2020, and 75 

entered its intended orbit on March 6, 2020. The primary objective of the GEMS mission is to provide hourly columnar 

measurements of critical air quality parameters, including NO2, ozone, and aerosols, across the Asian region. Unlike 

traditional LEO satellite instruments, the GEO-based GEMS provides more frequent monitoring of the columnar 

concentration of air pollutants, thereby enhancing our comprehension of the diurnal variations of NO2 over Asia (Yang 

et al., 2023). Additionally, the data acquired through GEMS measurements show a significant improvement in spatial 80 

resolution compared to most existing LEO measurements. 

Various studies have been conducted to estimate ground-level NO2 concentrations from satellite measurements, 

leveraging their ability to cover a large spatial extent (Fan et al., 2021; Qin et al., 2020; Wu et al., 2021). The major 

bridge linking the VCDs of NO2 with the ground-level concentration is theoretically the NO2 mixing height (NMH). 

Various meteorological conditions can govern the variations in the NMH (Ahmad et al., 2024). For instance, increased 85 

temperature facilitates the vertical dispersion of NO2, leading to an increase in the NMH. To convert the VCDs of NO2 

into ground-level concentrations, studies have employed various techniques, such as air quality models, machine 

learning techniques, land-use regression, and geographically weighted regression (Chi et al., 2022; Lamsal et al., 2008; 

Wei et al., 2022; Xu et al., 2021). These conversion models have considered multiple meteorological factors, such as 

temperature, humidity, and wind, along with the planetary boundary layer height (PBLH) (Chi et al., 2022; Qin et al., 90 

2020; Wei et al., 2022). 

Numerous past studies have highlighted the importance of the boundary layer structure in governing the occurrence 

and evolution of extreme air pollution episodes (Shi et al., 2020). A significant relationship between a surge in surface 

air pollutant concentrations and a shallow PBLH has been extensively reported (Miao et al., 2019; Su et al., 2020). It 

has also been recognized that air pollutants aloft can play a core role in the evolution of surface extreme pollution 95 

episodes via vertical mixing (Zhang and Rao, 1999). When the top of the mixing layer reaches the aloft pollutant-rich 

layer during the daytime, air pollutants can be entrained downwards, which rapidly increases surface air pollutant 

concentrations (Zhang et al., 2016). In addition to the vertical exchange, radiative absorption and scattering by 

pollutants can modify the boundary layer structure and consequently affect ground-level pollutant concentrations. For 

instance, high loadings of scattering pollutants can cool the air near the ground and result in a more stable boundary 100 
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layer, which further worsens air quality (Li et al., 2017). As a result, the PBLH has been used as a proxy of the NMH 

because of its ability to regulate near-surface pollution levels. However, as NO2 may not be uniformly distributed 

within the planetary boundary layer, a significant difference may exist between the PBLH and NMH. It is important 

to develop a conversion model that directly considers the impacts of the NMH, which paves the way to refine the 

processes of converting satellite-derived columnar measurements into ground-level NO2 concentrations (Ahmad et al., 105 

2024). 

Based on the GEMS measurements, Ahmad et al. (2024) evaluated the impacts of meteorological factors on the 

variations in the NMH over China and applied a machine learning method to predict the NMH from the meteorological 

parameters. In the present study, we developed a nested machine-learning-based model to evaluate the effects of NMH 

on the conversion of columnar NO2 measurements to ground-level NO2 concentrations. The inner machine learning 110 

model predicted the NMH from the meteorological parameters. Subsequently, the predicted NMH was incorporated 

into the main machine-learning model to predict the ground-level NO2 concentrations from its VCDs. Furthermore, 

the satellite-derived ground-level NO2 data were analyzed for subregions with different geographic locations and 

urbanization levels. This study aims to enhance our understanding of the effects of NMH on the conversion of satellite-

based columnar measurements to ground-level NO2 concentrations. Additionally, it seeks to enrich the information on 115 

spatial and diurnal patterns of ground-level NO2 across China using the world's first geostationary environmental 

satellite. 

2 Study area, data, and methodology 

2.1 Study area 

This study investigated the spatial and temporal variations in ground-level NO2 concentrations using GEMS NO2 120 

VCDs and various ground measurements for 2021. The study area is illustrated in Fig. 1, covering most of China 

between 18°N-43°N and 103°E-123°E. Considering the varied characteristics of air pollution in different regions of 

China, we divided the study area into six subregions: North-western China (NWC, including Gansu, Ningxia, and 

Shaanxi); North China (NC, including Beijing, Tianjin, Hebei, Shanxi, and Inner Mongolia); Central China (CC, 

including Henan, Hubei, and Hunan); Eastern China (EC, including Shandong, Jiangsu, Anhui, Shanghai, Zhejiang, 125 

Jiangxi, Fujian, and Taiwan); South-western China (SWC, including Sichuan, Chongqing, Guizhou, and Yunnan); and 

South China (SC, including Guangdong, Guangxi, and Hainan). Satellite-derived ground-level NO2 data were 

analyzed across these subregions. 
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Figure 1: Study area and six subregions shown as different background colours. Blue circles show distributions of ground-130 
based NO2 monitoring stations. Yellow circles show the distributions of meteorological stations.  

2.2 GEMS NO2 VCDs 

The GEMS NO2 VCDs from its level 2 product were employed in this study. The NO2 VCDs retrieval algorithm is 

developed based on the differential optical absorption spectroscopy (DOAS) technique (Platt et al., 2008). It initially 

computes slant column densities (SCDs) of NO2 within the wavelength range of 432-450 nm. Subsequently, these 135 

SCDs are transformed into VCDs using hourly air mass factors (AMFs). The nominal detection limit for the NO2 

VCDs is 1 × 1014 molecules/cm2, with a retrieval accuracy of 1 × 1015 molecules/cm2. NO2 VCDs surpassing the 

GEMS detection limit of 1 × 1017 molecules/cm2 were considered noise and consequently excluded from further 

analysis. The nominal spatial resolution of the GEMS NO2 product was 7 km × 7.7 km, by binning two pixels of 3.5 

km × 7.7 km each (Ahmad et., 2024). Despite the irregular shape of satellite measurement pixels due to east-to-west 140 

scans, this study performed re-gridding, which standardized the VCDs of NO2 onto a regular grid of 0.2° × 0.4° by 

calculating the average of all the NO2 VCDs within the 0.2° × 0.4° grid from 8:00 AM to 3:00 PM local time in China. 

Data were excluded in the presence of cloudy conditions and solar zenith angles greater than 70°. Additional 

information on the GEMS mission and retrieval algorithms is available in the study by Kim et al. (2020). 

2.3 Population data 145 

We used the latest population data for 2021 from Oak Ridge National Laboratory's (ORNL) LandScan global product 

(https://landscan.ornl.gov). The LandScan population data is derived through an innovative methodology that 
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combines geographic information science, remote sensing technology, and machine learning algorithms. Operating at 

a remarkably fine resolution of approximately 1 km, LandScan represents the most detailed global population 

distribution data accessible. As the satellite NO2 measurements were on a regular grid of 0.2° × 0.4°, we re-gridded 150 

the LandScan population data onto a regular grid of 0.2° × 0.4°. The spatial distribution of population density (DP, 

people/km2) in the study area is shown in Fig. 2. Based on population density, we divided the study region into four 

categories: lightly populated (LP) if DP ≤ 200 people/km2; moderately populated (MP) if DP > 200 people/km2 but ≤ 

500 people/km2; highly populated (HP) if DP > 500 people/km2 but ≤ 1000 people/km2; and supremely highly 

populated (SHP) if DP > 1000 people/km2. Satellite-derived ground-level NO2 data were analyzed across subregions 155 

with varying urbanization levels. 

 

Figure 2: Spatial distribution of population density (DP, people/km2) within the study area. 

2.4 Ground-based NO2 and meteorological measurements 

In this study, we acquired hourly NO2 concentration data for 2021 from ground air quality monitoring networks 160 

situated within the study region. The spatial distribution of 856 ground-based NO2 stations, sourced from the China 

National Environmental Monitoring Center (http://www.cnemc.cn) and the Taiwan Environmental Protection 

Administration (http://210.69.101.63/taqm/en/default.aspx), is shown as blue circles in Fig. 1. Meteorological 

variables encompassing temperature (T), air pressure (P), wind speed (WS), relative humidity (RH), dew point (DP), 

visibility (VIS), and precipitation (PRECIP) were used in this study. These meteorological parameters were acquired 165 
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from the global telecommunications system of the World Meteorological Organization. The spatial distribution of 208 

meteorological stations is illustrated as yellow circles in Fig. 1.  

2.5 Locations matching between different datasets  

Satellite measurements, characterized by their extensive spatial coverage, stand in contrast to the localized nature of 

ground measurements available at specific locations. To establish a correspondence between satellite measurements 170 

and ground air quality monitoring networks, the satellite NO2 data specific to the geographical coordinates 

corresponding to ground stations were meticulously extracted. Notably, the locations of meteorological stations may 

differ from those of air quality monitoring stations. Therefore, meteorological data were assigned to air quality 

monitoring stations situated within a 50 km radius of the meteorological station. The filtering process for model 

training involved the selection of stations with valid observations for all meteorological and air quality variables. 175 

These station-based datasets were used to train the machine-learning model. For predicting ground-level NO2 

concentrations from satellite measurements, all meteorological variables were mapped onto a regular grid of 0.2° × 

0.4° using the bilinear interpolation method. The spatial interpolation results of these meteorological parameters, 

together with the satellite measurements on the same regular grid, were employed to estimate ground-level NO2 

concentration at a resolution of 0.2° × 0.4°. 180 

2.6 Nested machine learning model to consider the effects of NMH 

Machine learning models have been successfully employed in estimating ground-level NO2 concentrations using 

satellite data, typically following a two-fold procedural framework. Initializing this process involves the construction 

of a regression model, which is conventionally utilized to establish the overarching relationship between ground-

measured NO2 and its influencing factors (Chen et al., 2019; Chi et al., 2022). In this phase, the sample data undergoes 185 

division into a training dataset and a test dataset for model training and subsequent verification, respectively. The 

attainment of an optimal regression model is facilitated through parameter optimization techniques. Subsequently, the 

second phase entails the application of the regression model, where relevant data is inputted for application analysis 

to estimate the results. 

Within machine learning studies, the ensemble learning paradigm emerges as a prevailing methodology to amalgamate 190 

diverse learning algorithms into a cohesive regression model characterized by robust performance across multifaceted 

domains. Owing to the disparate methodologies employed in the generation of individual learners, ensemble learning 

bifurcates into two principal categories: the sequential instantiation of individual learners, as encapsulated by the 

boosting approach, and the concurrent instantiation of individual learners, exemplified by bagging and Random Forest 

(Friedman et al., 2000; Prasad et al., 2006). The boosting algorithm, a variant of the lifting technique, is instrumental 195 

in diminishing variance in supervised learning scenarios, wherein distinct models are formed through the employment 

of disparate loss functions. XGBoost leverages both first-order and second-order derivatives to enhance the precision 

of model loss, a strategy that proves instrumental in achieving higher accuracy. Notably, during the process of selecting 

the optimal splitting point, XGBoost facilitates parallel optimization. This concurrent optimization significantly 

mitigates computational complexity, thereby effectively curtailing overfitting tendencies in the model. XGBoost 200 
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stands out as a notably efficient end-to-end gradient boosting tree framework, adept at transforming numerous weak 

learners into robust ones through boosting. This framework frequently demonstrates reduced computational overhead 

and enhanced predictive accuracy when compared with alternative ensemble tree models (Chen and Guestrin, 2016). 

Moreover, XGBoost exhibits a lower susceptibility to overfitting by mitigating the bias within the context of bias-

variance decomposition. XGBoost has been empirically demonstrated to adeptly capture nonlinear relationships 205 

between predictions and predictors, yielding precise estimations through its regularized boosting methodology. This 

approach constructs the ultimate model by iteratively refining simpler and weaker models, each subsequent tree 

learning from its predecessors and updating residual errors via gradient descent to optimize the loss function. Within 

the XGBoost framework, an augmented penalty term is incorporated into the error function to fine-tune the objective 

function, thereby smoothing the final learned weights and mitigating overfitting tendencies. Additionally, to further 210 

mitigate overfitting, feature sub-sampling and shrinkage techniques are integrated (Liu 2021). The study by Van et al. 

(2022) also demonstrated the XGBoost algorithm as the most suitable lightweight algorithm based on the comparative 

analysis of three machine learning models, i.e., XGBoost, Decision Tree, and Random Forest. The XGBoost algorithm 

has proven to be useful in various air quality studies, including those focusing on the conversion between satellite-

based column measurements and ground-level concentrations (Shao et al., 2023; Zhao et al., 2023). More details on 215 

the XGBoost regression model can be found in Chi et al. (2022).  

In this study, a nested XGBoost machine learning model was developed to incorporate the NMH to convert columnar 

measurements into ground-level NO2 concentrations. The schematic illustration of the nested XGBoost machine 

learning model implemented in this study is depicted in Fig. 3. Firstly, an inner machine learning model (i.e., random 

forest) was applied to predict the NMH using meteorological variables as input parameters. The evaluation of the 220 

predicted NMH showed a good agreement with the measurement-based results, with respective coefficient of 

determination (R2) values of 0.84 and 0.96 for the 10-fold cross-validation and fully trained model (Ahmad et al., 

2024). The NMH dataset was then mapped onto a regular grid of 0.2o × 0.4o and incorporated into the main machine 

learning model (i.e., XGBoost regression) to estimate ground-level NO2 concentrations. The main XGBoost machine 

learning model employed eleven input parameters, including GEMS NO2 VCDs, NMH, two temporal variables (i.e., 225 

month of the year and hour of the day ranging from 8 AM to 3:00 PM), and seven meteorological parameters (i.e., T, 

P, WS, RH, DP, VIS, and PRECIP). The months are numbered from 1 to 12, corresponding to January through 

December, exactly as per the real months of the observations. All common meteorological variables available from 

the ground monitoring network were used in this study. The ability of these meteorological variables to regulate near-

surface NO2 levels is ranked by feature importance in the machine learning model. In our previous study, these 230 

meteorological parameters were shown to impact the vertical mixing of NO2 to varying extents (Ahmad et al., 2024). 

For instance, elevated temperatures are conducive to the upward mixing of air pollutants. Increased wind speed is 

associated with an unstable atmosphere and can impact NO2 levels by modifying the vertical dispersion and horizontal 

transport of air pollutants. Increased surface air pressure often leads to large-scale sinking air motion, which suppresses 

the vertical dispersion of NO2. In this study, all input parameters were filtered based on available satellite observations 235 

for the year 2021. To reveal the impacts of the NMH, we compared the performance of the basic XGBoost machine 
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learning model without considering the NMH (Model I) and the nested XGBoost machine learning model after 

considering the NMH (Model II). 

To avoid overfitting and assess the efficacy of the model, the 10-fold cross-validation methodology was employed. 

The dataset was partitioned into 10 groups of comparable size, with nine folds utilized for model fitting. The remaining 240 

fold served as a validation set to gauge model performance. This iterative process was repeated ten times, with each 

fold serving as the validation set, to evaluate the model's performance across all folds comprehensively. A set of widely 

recognized statistical metrics, including R2, root mean squared error (RMSE), mean deviation (MD), and mean 

absolute percentage error (MAPE), were adopted to quantify the model's performance. In addition to the cross-

validation, the XGBoost regression model was trained using the entire dataset of input parameters to predict the 245 

ground-level NO2 concentrations on a regular grid of 0.2o × 0.4o across the study region for the year 2021. The fully 

trained model was assessed using the same statistical indicators to evaluate its predictive performance 

comprehensively. 

 



10 
 

Figure 3: Schematic diagram of the nested XGBoost machine learning model, including an inner model to predict the NMH 250 
from meteorological values and main XGBoost regression model to convert the column measurements into ground-level 

NO2 concentrations. The basic XGBoost model (Model I) does not consider NMH from the inner model and utilizes only 

ten input variables for testing and training, namely: satellite NO2, two temporal variables, and seven meteorological 

variables. The nested XGBoost model (Model II) considers the NMH from the inner model as an additional input variable, 

along with the other ten input variables used for the basic model. Therefore, the nested model utilizes eleven input variables 255 
for testing and training: satellite NO2, two temporal variables, seven meteorological variables, and the NMH predictions 

from the inner model. 

2.7 Hourly, seasonal, and annual correction factors 

There was some missing data for satellite NO2 VCDs due to cloudy conditions between 8:00 AM and 3:00 PM for 

2021. Therefore, we applied the correction factors, representing the ratio between the average NO2 from all ground 260 

measurements and the average ground NO2 measurements when satellite data was available (Eq. 1). These correction 

factors were used to obtain a bias-corrected estimation of satellite-derived ground-level NO2 concentrations for each 

hour from 8:00 AM to 3:00 PM. 

𝐹(𝑘) =

1
𝑚

∑ 𝐶𝑔(𝑖, 𝑘)𝑚
𝑖=1

1
𝑛

∑ 𝐶𝑔(𝑖, 𝑘)𝑛
𝑖=1

                                                                                                                                             (1) 

Here, 𝐹(𝑘) represents the correction factor for hour k (each hour from 8:00 AM to 3:00 PM), Cg represents ground-265 

measured NO2 concentrations, m shows all ground measurements of NO2, and n corresponds to ground measurements 

of NO2 only when the satellite data was available. For a specific hour, the maximum possible value of m index in Eq. 

1 is 365 for one year. The station-based spatial distributions of correction factors for each hour from 8:00 AM to 3:00 

PM are shown in Fig. S1. As the predicted NO2 concentrations in the study region were on a regular grid of 0.2o × 

0.4o, the bilinear interpolation was applied to map the correction factors for each hour from 8:00 AM to 3:00 PM on 270 

the same regular grid of 0.2o × 0.4 o (Fig. S2). The bias-corrected ground-level NO2 concentrations for each hour from 

8:00 AM to 3:00 PM were then estimated using Eq. 2. 

𝐶𝑠(𝑘) = 𝐶𝑠,0(𝑘) × 𝐹(𝑘)                                                                                                                                          (2)                                               

where 𝐶𝑠(𝑘) represents the bias-corrected satellite-estimated ground-level NO2 concentrations for the hour k, 𝐶𝑠,0(𝑘) 

represents initial predicted NO2 concentrations. 275 

Further, as the satellite data was available only during the daytime from 8:00 AM to 3:00 PM, there was also missing 

satellite data for nighttime and other hours of the day beyond 8:00 AM and 3:00 PM. Therefore, for seasonal correction 

factors, we calculated the ratio between the seasonal average of all available ground-measured NO2 concentrations for 

24 hours and the seasonal average of ground-measured NO2 when the satellite data was available. The station-based 

and interpolated spatial distributions of correction factors for each season (i.e., spring, summer, fall, and winter) are 280 

presented in Fig. S3. Subsequently, Eq. 2 was used to calculate the bias-corrected ground-level NO2 concentrations 

for each season. Similarly, to obtain the annual correction factor, we estimated the ratio between the annual average 

of all available ground-measured NO2 concentrations for 24 hours and the annual average of ground-measured NO2 

when the satellite data was available (Eq. 3).  
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                         𝐹 =

1
𝑗

∑ 𝐶𝑔(𝑖)𝑗
𝑖=1

1
𝑝

∑ 𝐶𝑔(𝑖)𝑝
𝑖=1

                                                                                                                                          (3) 285 

Here, 𝐹  represents the annual correction factor, Cg represents ground-measured NO2 concentrations, j shows all 

ground measurements of NO2, and p corresponds to ground measurements of NO2 only when the satellite data was 

available. For the annual correction factor, the maximum possible value of j index in Eq. 3 is 8760 for one year. The 

spatial distributions of station-based and interpolated annual correction factors are shown in Figs. S4. Then, Eq. 2 was 

used for the bias correction of annual ground-level NO2 concentrations. 290 

3 Results 

3.1 Evaluations of the nested XGBoost machine learning model and its feature contribution 

The basic XGBoost model, referred to as Model I, was trained and evaluated by considering GEMS NO2 VCDs 

together with temporal and meteorological variables as input parameters. Then, the nested XGBoost model, referred 

to as Model II, was trained and evaluated by considering the NMH as input parameters in addition to the input 295 

parameters of Model I. Fig. 4a shows the 10-fold cross-validation of Model I. It depicts a value of 0.73 for R2, while 

the RMSE, MD, and MAPE were 8.06 μg/m3, 0.09 μg/m3, and 39.68%, respectively. The 10-fold cross-validation of 

Model II after considering the NMH is revealed in Fig. 4c, which shows an improved R2 value of 0.93 and a lower 

RMSE of 4.19 μg/m3, MD of 0.01 μg/m3, and MAPE of 14.78%. Further, we trained Model I and Model II on the 

entire dataset of the input parameters for the year 2021. The evaluations of the fully trained Model I and Model II are 300 

presented in Fig. 4b and Fig. 4d, respectively. Again, Model II shows a lower bias and an improved R2 value after 

considering the influences of NMH (e.g., R2 increases from 0.88 to 0.99). These results clearly demonstrate that the 

inclusion of NMH has a great influence on the model's performance. By adding NMH as an input parameter to the 

machine learning model, it can better capture the vertical distributions of NO2 and hence can predict the ground-level 

NO2 concentrations with higher accuracy and lower bias. Given the superior performance of Model II in accurately 305 

predicting ground-level NO2 concentrations, we used the predictions from Model II for further analysis in this study. 
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Figure 4: The 10-fold cross-validation (a) and the validation of a fully trained model (b) for satellite-estimated ground-level 

NO2 concentrations from basic Model I without considering the NMH. The 10-fold cross-validation (c) and the validation 

of a fully trained model (d) for satellite-estimated ground-level NO2 concentrations from nested Model II after considering 310 
the NMH. The red dotted line represents a 1:1 relationship. The solid black line is the line of best fit between the ground-

measured NO2 and the satellite-estimated NO2. The scattered dots represent the individual NO2 values for each ground 

measurement and satellite-based estimation. The color scale ranging from red to blue represents the density of the NO2 

values, with red indicating high density and blue representing low density. 

A total of 11 features were involved in the predictions of ground-level NO2. These features include GEMS NO2 VCDs, 315 

NMH, two temporal variables (hour of the day and month of the year), and seven meteorological variables (T, P, WS, 

RH, VIS, DP, and PRECIP). Based on the XGBoost machine learning model, the feature contribution of input 

parameters in descending order is presented in Fig. 5. GEMS NO2 VCDs were identified as the top predictor variable 

with a feature importance of 54.98 %. The second important predictor was NMH, with a contribution of 25.64 %. The 

temporal variables were ranked third and fourth, with an importance of 3.23 % and 3.21 % for the month of the year 320 

and hour of the day, respectively. They were followed by the meteorological parameters with a contribution of 2.45 % 

from temperature, 2.23 % from visibility, 2.01 % from relative humidity, 1.86 % from pressure, 1.84 % from wind 

(a) 

(d) (c) 

(b) 
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speed, 1.63 % from precipitation, and 0.92 % from dew point. Among the predictors, the dominant contributors to the 

predictions were GEMS NO2 VCDs and NMH, accounting for 80.62% of the predictive power. Temporal variables 

made a modest contribution of 6.44 %, while meteorological parameters contributed only 12.94 % to the overall 325 

prediction accuracy. 

 

Figure 5: Relative importance of individual input features (i.e., GEMS NO2 VCDs, NMH, temporal variables, and 

meteorological parameters) in the XGBoost machine learning model. 

The Shapley additive explanations (SHAP) values presented in Fig. 6 were estimated from the XGBoost machine 330 

learning model to understand the impacts of individual input variables on the model's predictions. The analysis reveals 

that higher values of GEMS NO2 VCDs correspond to higher predictions of ground-level NO2 concentrations. In 

comparison, lower values of GEMS NO2 VCDs result in lower predicted levels of ground-level NO2. Conversely, 

lower NMH values are associated with higher predicted ground-level NO2 concentrations, whereas higher NMH 

values are linked to lower predicted ground-level NO2 concentrations. For temporal variables, the month of the year 335 

indicates the intra-annual pattern of ground-level NO2, with lower concentrations observed in warm seasons and higher 

concentrations in cold seasons. On the other hand, the hour of the day indicates the diurnal variations of ground-level 

NO2 values, with higher concentrations occurring during the morning and lower values during the afternoon. However, 

it is noted that the SHAP values for the meteorological variables, including temperature, are all small, clustered around 

zero, and have limited influence on the prediction results. The major and distinct impact on the model’s performance 340 

for predicting ground-level NO2 concentrations is observed for GEMS NO2 VCDs and NMH. 
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Figure 6: Shapley additive explanations (SHAP) values from the XGBoost machine learning model to explain the impacts 

of individual input variables on the model's prediction of ground-level NO2 concentrations. 

3.2 Spatial distributions of ground-level NO2 concentrations 345 
Based on the satellite-derived ground-level NO2 concentrations (mentioned as ground-level NO2 concentrations from 

hereon), Fig. 7 shows an example of the spatial distributions of ground-level NO2 concentrations for each hour from 

8:00 AM to 3:00 PM on September 29, 2021. The figure depicts a notable diurnal pattern of ground-level NO2, with 

the highest values observed at 8:00 AM and lowest values observed at 3:00 PM, following a decreasing trend from 

8:00 AM to 3:00 PM. A few GEMS NO2 VCDs were missing due to high cloud fractions during some hours. 350 

Additionally, it should be noted that satellite measurements are only available during the daytime. We employed 

correction factors based on ground measurements to address the data missing issues resulting from clouds and 

temporal gaps (see Sec. 2.7). 
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Figure 7: Spatial distributions of the satellite-derived hourly ground-level NO2 concentrations on September 29, 2021, for 355 
each hour from 8:00 AM to 3:00 PM. 

The bias-corrected ground-level NO2 concentrations were applied in the further analyses. Figure 8 shows the spatial 

distributions of the annual average ground-level NO2 concentrations for the year 2021 across the study region, 

including four urban agglomerations: Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta 

(PRD), and Sichuan Basin (SCB). Most urban agglomerations depicted ground-level NO2 concentrations around 40 360 

μg/m3 or even higher. The highest ground-level NO2 concentrations were observed in the BTH region, with a spatial 

distribution characterized by higher values in the region's central, southern, and southeast parts, and lower 

concentrations in the northern and southwestern parts. In the YRD region, elevated values were observed over 

Shanghai, the southern part of Jiangsu, and the northern part of Zhejiang. The PRD region exhibited the highest 

ground-level NO2 concentrations in its central region, along with Guangdong's coast and central areas. In the SCB, 365 

the western part of Chongqing depicted the highest ground-level NO2 concentrations, which can be attributed to its 

large population and higher emissions. The presence of a few scattered clusters of NO2 pollution in the SCB could be 

attributed to economic factors and the influence of topography (Li et al., 2023). These spatial patterns are in good 

agreement with previous studies conducted using LEO satellite instruments (Chi et al., 2022; Qin et al., 2020; Wei et 

al., 2022; Wu et al., 2021; Xu et al., 2021). 370 
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Figure 8: Spatial distributions of annual average ground-level NO2 concentrations for 2021 derived from satellite 

measurements in the study region (left panel) and in the four major urban agglomerations in China (right panel): Beijing-

Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan Basin (SCB). This annual average 

concentration represents the 24-hour average throughout the year of 2021 after the bias correction for the missing data 375 
issue. 

Considering the human health risks associated with NO2, we evaluated the population exposure levels for different 

provinces in the study region. The provincial-level NO2 concentrations were estimated from the annual average 

ground-level NO2 concentrations. Figure 9 compares the spatial mean and population-weighted mean of NO2 

concentrations for individual provinces in descending order by the population-weighted mean. The population-380 

weighted mean NO2 concentrations were consistently higher than the spatial mean NO2 concentrations, indicating that 

relying solely on the spatial mean may underestimate the population exposure level. The underestimation of population 

exposure levels using the spatial mean was more pronounced in provinces with centralized populations (e.g., Hebei 

and Guangdong).  

The population in Tianjin province was exposed to the highest levels of NO2, with a population-weighted NO2 mean 385 

of 40.26 μg/m3. This level of exposure is close to the WHO Interim Target 1 (IT-1) of 40 μg/m3. The NO2 exposure 

level of people living in Hebei, Shanghai, Shandong, and Jiangsu exceeded the IT-2 levels of 30 μg/m3. The NO2 

exposure levels for Beijing and Zhejiang were slightly under the IT-2 levels, with population-weighted means of 28.86 

μg/m3 and 28.25 μg/m3, respectively. Residents in Henan, Anhui, Shanxi, Hubei, Sichuan, Hunan, and Jiangxi 

provinces were exposed to NO2 levels exceeding the IT-3 levels of 20 μg/m3. All provinces depicted population 390 

exposure levels of NO2 exceeding the Air Quality Guidelines (AQG) levels of 10 μg/m3. Hainan Province had the 
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lowest population-weighted mean NO2 concentrations of 10.57 μg/m3, which closely approached the levels set by the 

AQG. 

 

Figure 9: Spatial mean and population-weighted mean ground-level NO2 concentrations for 2021 in different provinces of 395 
China in the study region. 

The annual average ground-level NO2 concentrations were further evaluated for all subregions with different 

geolocations and urbanization levels. Results are presented in Fig. 10. Overall, the highest NO2 concentrations were 

observed in NC, followed by EC, CC, NWC, SWC, and SC. Additionally, compared to lightly populated areas, the 

highly populated areas exhibited higher NO2 concentration levels, primarily due to increased emissions and a more 400 

developed economy (Qiu et al., 2023). Among all subregions, the highest NO2 concentrations for highly populated 

and supremely highly populated areas were found in the NC region, while the highest NO2 concentrations for lightly 

populated areas were observed in the EC region. In the highly populated areas in the NC region, NO2 concentrations 



18 
 

exceeded IT-2 levels and were nearly double the concentrations of lightly populated areas. NO2 concentrations in 

highly populated areas of NWC, NC, CC, SWC, and SC exceeded the IT-3 levels. Only NC, CC, and EC exceeded 405 

the IT-3 level for moderately populated areas. Furthermore, all the subregions and their urbanization categories, 

including the lightly populated areas, depicted their NO2 values higher than the AQG level.  

 

Figure 10: Annual mean ground-level NO2 concentrations for 2021 in subregions with different geolocations (e.g., NWC, 

NC, CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). The vertical bars represent one sigma 410 
standard deviation. 

3.3 Seasonal variations of ground-level NO2 concentrations 

Similar to the annual average, the estimation of seasonal average NO2 incorporated correction factors to address the 

data missing issues resulting from clouds and in the nighttime. Based on the bias-corrected NO2 data, the seasonal 

averages NO2 concentrations for lightly populated, moderately populated, highly populated, and supremely highly 415 

populated areas are shown in Fig. 11. Among all subregions, the ground-level NO2 concentrations were highest in 

winter. This can be attributed to the more stable atmospheric structure and lower precipitation during this season, 

which creates less favourable conditions for the dispersion and deposition of ground-level NO2. Additionally, the 

reduced photolysis rate of NO2 due to low temperatures in winter leads to an increased residence time of NO2 in the 

atmosphere (Xu et al., 2021). The temperature inversion in winter can further prolong the lifetime of the ground-level 420 

NO2, leading to higher accumulations near the ground. Furthermore, the elevated concentrations in winter can be 

attributed to increased energy consumption for heating purposes.  

Among the six subregions, NC and EC depicted the highest NO2 concentrations, reaching levels close to IT-1 (40 

μg/m3) in winter for highly populated areas. Conversely, the lowest ground-level NO2 concentrations were observed 

during summer for all six subregions. During this season, the increased precipitation coupled with the monsoon-425 

induced atmospheric convection fosters wet deposition and dispersion of ground-level NO2. Additionally, abundant 

sunlight promotes the decomposition of NO2. Furthermore, the NO2 emissions are generally lower in summer than in 

winter (Bhattarai et al., 2021; Fan et al., 2020; Tian et al., 2019). Considering the different population densities in the 
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subregions, the NO2 pollution levels were lowest in lightly populated areas and highest in highly populated areas for 

all seasons. In lightly populated areas, the average NO2 concentrations were approximately 50 % of those observed in 430 

highly populated areas. 

 

Figure 11: Seasonal variations in ground-level NO2 concentrations for 2021 in subregions with different geolocations (e.g., 

NWC, NC, CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). The vertical bars represent one 

sigma standard deviation. 435 

3.4 Diurnal variations of ground-level NO2 concentrations 

The estimations of hourly averaged ground-level NO2 concentrations incorporated correction factors to address data 

gaps caused by clouds. Based on the bias-corrected NO2 data, Fig. 12 shows the spatial distribution of average ground-

level NO2 concentrations for each hour between 8:00 AM and 3:00 PM in 2021. Consistent spatial patterns were 

observed during this time range, with higher ground-level NO2 concentrations in highly populated urban areas 440 

characterized by elevated NOx emissions. In the morning, clear indications of high ground-level NO2 concentrations 

were noticed over urban centres, reflecting NOx emissions related to traffic. The spatial gradients of ground-level NO2 

concentrations were notably pronounced from urban centres to the outskirts during this time. However, these spatial 

gradients were less pronounced during noon and afternoon hours. Compared to the highly populated urban areas, 

ground-level NO2 distributions in lightly populated areas displayed lower diurnal variability. These variations in 445 
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ground-level NO2 distributions can be attributed to changes in NOx emission patterns, meteorological conditions, and 

photochemistry throughout different times of the day (Shen et al., 2023). For instance, Xu et al. (2023) observed the 

minimum NO2 lifetime at noon, which can be attributed to higher photochemical reaction rates resulting from 

increased temperature and ultraviolet radiation (Gao et al., 2023). 

 450 
Figure 12: Spatial distributions of the average ground-level NO2 concentrations for each hour between 8:00 AM and 3:00 

PM in 2021. 

The diurnal variations of ground-level NO2 concentrations for the subregions are illustrated in Fig. 13. In most 

subregions, the peak of ground-level NO2 was observed between 8:00 AM and 9:00 AM in highly populated areas. 

Additionally, a slight increase in NO2 concentrations was observed in the late afternoon (i.e., 3:00 PM). In lightly 455 

populated and moderately populated areas, NWC and NC depicted a decreasing trend from 8:00 AM to 1:00 PM, 

followed by a slight increase at 2:00 PM and 3:00 PM. Lightly populated areas of CC showed an increasing trend 

from 8:00 AM to 10:00 AM, followed by a nearly constant value. However, moderately populated areas of CC showed 

a decreasing trend from 8:00 AM to 1:00 PM and then displayed an increasing trend at 2:00 PM and 3:00 PM. EC 

exhibited increasing values from 8:00 AM to 9:00 AM, followed by a decreasing trend until 2:00 PM, and again 460 

increased until 3:00 PM for both lightly populated and moderately populated areas. In lightly populated and 

moderately populated areas of SWC, NO2 concentrations showed an increasing trend from 8:00 AM to 10:00 AM, 

followed by a decreasing trend throughout the afternoon. For the SC region, NO2 concentrations remained relatively 

consistent from 8:00 AM to 10:00 AM, followed by a decreasing trend in both lightly populated and moderately 

populated areas. 465 
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Overall, highly populated areas exhibited peak ground-level NO2 concentrations during the early morning rush hours 

(8:00 AM - 9:00 AM), followed by a decreasing trend. The minimum NO2 levels were observed at 1:00 PM - 2:00 

PM, with a slight increase observed at 3:00 PM. This diurnal pattern of ground-level NO2 concentrations aligns with 

the findings of Zhang et al. (2023). The decrease in NO2 levels from early morning to afternoon can be attributed to 

reduced traffic emissions, increased photochemical consumption, and higher NMH levels (Ahmad et al., 2024; Xie et 470 

al., 2016). In lightly populated and moderately populated areas, a slight morning peak was observed around 9:00 AM 

or 10:00 AM, occurring later than the peak observed in urban areas. This delayed morning peak in these areas can be 

attributed to regional dispersions originating from urban sources. The diurnal pattern of ground-level NO2 

concentrations observed in this study is consistent with previous studies using ground-based air quality monitoring 

stations (Shen et al., 2023; Yu et al., 2020; Zhao et al., 2016). 475 

 

Figure 13: Diurnal variations in ground-level NO2 concentrations from 8:00 AM to 3:00 PM for 2021 in subregions with 

different geolocations (e.g., NWC, NC, CC, EC, SWC, and SC) and urbanization levels (e.g., LP, MP, HP, and SHP). The 

vertical bars represent one sigma standard deviation. 

4 Discussion 480 
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The scientific contributions of this study are summarized as follows. First, the results of this study have contributed 

to enriching our scientific understanding of the relationship between columnar NO2 and ground-level NO2. We have 

proven that the mixing height of NO2 plays a key role in linking satellite-derived VCDs of NO2 with ground-level 

concentrations, though the impacts of NMH were rarely considered in a direct manner in previous studies. Secondly, 

the analyses in this study have improved our understanding of the spatiotemporal variations of NO2, particularly the 485 

diurnal variations that cannot be obtained from common polar-orbiting satellite measurements. The diurnal variations 

in NO2 concentration differ between urban and rural areas, resulting from the different emission sources and pollutant 

dispersion characteristics. Thirdly, the analyses of NO2 variation have policy implications for air pollution control. It 

was found that the spatial coincidence between NO2 concentrations and population density increased overall 

population exposure and the associated health impacts. This suggests that for more effective reduction of overall 490 

population exposure and better protection of public health, control efforts should be further targeted at highly 

populated and highly polluted areas. Additionally, land-use and city planning should encourage population 

redistribution away from the most heavily polluted regions. 

PBL characteristics are pivotal in regulating the vertical dispersion and horizontal transport of atmospheric pollutants, 

subsequently determining the vertical variations of NO2 and its concentration at the Earth's surface (Akther et al., 2023; 495 

Xiang et al., 2019). Results in this study highlight the key role of the mixing height of NO2 in linking satellite-derived 

VCDs of NO2 with ground-level concentrations. To convert the VCDs of NO2 into ground-level NO2 concentrations, 

previous conversion models have used PBLH as a proxy of the NMH, because of its ability to regulate ground-level 

pollution levels. For example, within a stable PBL, pollutants like NO2 from ground sources mainly accumulate near 

the ground surface (Levi et al., 2020). Intense solar heating can induce elevated temperatures, fostering an unstable 500 

PBL that is conducive to the upward dispersion of air pollutants including NO2 (Kalmus et al., 2022; Su et al., 2020). 

The wind pattern is connected to atmospheric stability and can impact NO2 levels by modifying pollutants' dispersion 

and horizontal transport (Yin et al., 2019). High surface air pressure often leads to large-scale sinking air motion, 

resulting in the limited vertical diffusion of NO2 (Chow et al., 2018). Elevated relative humidity levels act as a 

suppressive factor, constraining the PBLH and exacerbating the accumulation of pollutants near the ground (Xiang et 505 

al., 2019). Therefore, different meteorological factors significantly impact the vertical distribution of NO2 in the 

atmosphere (Huang et al., 2021). This study developed a conversion model that directly considers the impacts of the 

NMH. The predictions of NMH from the inner model directly incorporated the impacts of meteorological parameters 

(T, P, WS, RH, DP, VIS, and PRECIP). It was found that temperature, wind speed, dew point, and visibility were 

positively correlated with NMH, while relative humidity and air pressure mainly demonstrated an inverse relationship 510 

(Ahmad et al., 2024). The atmosphere's dynamic and thermodynamic aspects played crucial roles in developing the 

vertical structure of NO2. The incorporation of the NMH in the model paved the way to refine the processes of 

converting satellite-derived columnar measurements into ground-level NO2 concentrations. 

Two models were tested and trained: Model I, which did not consider NMH, and a nested Model II, which incorporated 

NMH. The validation results demonstrated that nested Model II exhibited more promising outcomes than Model I, 515 

suggesting that including NMH significantly influenced the model's performance. Including NMH as an input 
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parameter in the machine learning model could better capture the vertical distributions of NO2 and thus predict ground-

level NO2 concentrations with improved accuracy and performance. Additionally, the hour-by-hour 10-fold cross-

validation depicted a distinct improvement in the ground-level NO2 estimations for nested Model II considering NMH 

as an input parameter (Fig. S5 for Model I without NMH and Fig. S6 for nested Model II with NMH). The R2 values 520 

for Model I without NMH were 0.63 for 8:00 AM, 0.70 for 9:00 AM, 0.69 for 10:00 AM to 1:00 PM, 0.55 for 2:00 

PM, and 0.39 for 3:00 PM. The improved R2 values for nested Model II, which includes NMH, were 0.85 for 8:00 

AM, 0.90 for 9:00 to 11:00 AM, 0.91 for 12:00 PM, 0.93 for 1:00 PM, 0.89 for 2:00 PM, and 0.85 for 3:00 PM. 

Similarly, nested Model II, considering the NMH, depicted significantly reduced biases compared to Model I without 

NMH. The ground-level NO2 estimations for all hours were significantly improved when considering NMH, as it 525 

directly incorporates the vertical distributions of NO2. During the early morning hours, most of the NO2 is distributed 

near the ground. However, as the day progresses, NMH increases, and the ground-level NO2 tends to be mixed 

vertically. Further, the improvements in ground-level NO2 estimations were assessed using 10-fold cross-validation 

for different population categories, i.e., lightly populated, moderately populated, highly populated, and supremely 

highly populated. The nested Model II, considering NMH, depicted notable improvements compared to Model I 530 

without NMH (Fig. S7). The improved R2 values for nested Model II considering NMH were 0.91 for lightly populated 

areas and 0.92 for the other three population categories compared to Model I without NMH, which depicted an R2 

value of 0.63 for lightly populated, 0.73 for moderately populated, 0.77 for highly populated, and 0.74 for supremely 

highly populated areas. The RMSE for nested Model II considering NMH was improved and observed below 5 μg/m3 

for all population categories compared to Model I without NMH, which depicted RMSE values around 8-9 μg/m3 for 535 

different population categories. The MAPE for nested Model II considering NMH was also improved for all population 

categories, and around 15 % and lower values were observed. These improvements depict that nested Model II 

considering NMH effectively captures the spatial distributions of vertical mixing of ground-level NO2 across all 

population categories. The spatiotemporal distributions and diurnal patterns of NMH are previously described by 

Ahmad et al. (2024). Compared to Model I without NMH, the performance of the ground-level NO2 estimations 540 

through nested Model II considering NMH showed significant improvement at the grid points where ground-based 

observations were available (Fig. S8). The correlation coefficients for grid-based 10-fold cross-validation were 

improved to 0.8-1.0 for nested Model II considering NMH compared to Model I without NMH, which depicted lower 

correlation coefficients. Furthermore, nested Model II considering NMH also depicted lower RMSE values for grid-

based estimations. 545 

GEMS, the world's first GEO-based environmental satellite instrument, offers a new opportunity for monitoring air 

quality across extensive regions, providing unprecedented spatial and temporal resolution. The quality of GEMS NO2 

VCDs, obtained from the level 2 product, has been evaluated using ground-based instruments in various regions. 

Encouragingly, a good agreement has been observed between the GEMS NO2 VCDs and measurements from various 

ground-based instruments (Ahmad et al., 2024; Kim et al., 2023; Li et al., 2023). The results presented in this study 550 

emphasize the significant advantage of geostationary satellites in providing air pollution information at an hourly 

resolution. They enable the assessment of diurnal variations in air pollution across different areas, ranging from lightly 

populated to supremely highly populated regions. This represents a substantial improvement over traditional LEO-
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based satellite instruments. Furthermore, these GEO-based measurements are valuable supplements to traditional 

measurements from ground-based air quality monitoring networks, primarily concentrated in urban areas, leaving vast 555 

rural regions without observations. 

The diurnal variations of ground-level NO2 concentrations across China depicted distinct gradients across all 

subregions and population categories. This gradient reflects regional disparities in industrialization, urbanization, and 

transportation infrastructure of Chinese megacities and rural areas. Highly populated areas depicted the highest 

concentrations of ground-level NO2 during the early morning hours, attributed to intensified vehicular traffic in the 560 

early morning hours and higher industrial emissions. In contrast, lightly populated areas exhibited lower ground-level 

NO2 concentrations and a delayed peak of around one to two hours, indicating lesser anthropogenic influence and 

more contribution from regional transport contributed by the NO2 emissions from highly populated areas. Various 

driving factors influence these diurnal variations in ground-level NO2 concentrations, each contributing differently 

across different regions. For instance, anthropogenic emissions dominate in highly populated urban and suburban 565 

areas, characterized by traffic emissions peaking in the morning and late afternoon (Liu et al., 2018; Naiudomthum et 

al., 2022). This phenomenon is particularly pronounced in highly populated areas with high traffic density. As morning 

rush hours subside, reduced vehicular traffic activities in highly populated areas lead to a gradual decline in NO2 

emissions. However, atmospheric processes such as higher mixing height of NO2, more dispersion, and dilution also 

come into play, resulting in reduced ground-level NO2 concentrations. Increased turbulent mixing in the lower 570 

atmosphere helps disperse pollutants from their sources in highly populated areas, gradually decreasing ground-level 

NO2 concentrations. Additionally, photochemistry also influences the diurnal variations of NO2 concentrations. The 

ratio of NO2 to NO is influenced by radiation, ozone, and peroxyl radicals. During the daytime, NOx undergoes 

oxidation through radical-mediated reactions, forming nitric acid and organic nitrates, with their levels depending on 

radiation, ozone, and volatile organic compounds. As a result, the lifetime of NO2 reaches its lowest point around noon, 575 

typically lasting a few hours during summer. Furthermore, atmospheric transport contributes to the diurnal variation 

of NO2, particularly in highly populated areas and their surrounding regions (Zhang et al., 2023). The hourly ground-

level NO2 concentration results presented in this study provide high-resolution information on the diurnal variations 

in ground-level NO2 pollution levels across different regions and demographic patterns. 

The spatial distribution of ground-level NO2 concentrations in the study region revealed significant regional disparities, 580 

with higher levels observed in urban agglomerations with high population densities (e.g., BTH, YRD, and PRD regions) 

than in lightly populated areas (e.g., western China). Even within the NC region, the highly populated urban areas had 

NO2 concentrations nearly double those of lightly populated rural areas. These spatial disparities are due to 

distributions of NO2 emission sources that vary with population densities, decreasing from highly populated to lightly 

populated areas. In highly populated urban areas in regions like BTH, YRD, and PRD, mobile NOx emissions from 585 

dense road networks contribute to pronounced increase in NO2 levels. Moreover, the short lifespan of NO2 due to 

atmospheric chemical reactions results in elevated concentrations near emission sources in highly populated areas, 

such as roadways, accompanied by rapid declines in NO2 concentrations with increasing distance from highly 

populated areas (Lee et al., 2018). Furthermore, the diverse terrains, land cover, and climates observed in subregions 
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with different population categories collectively influence vertical and horizontal airflows, rates of NO2 formation and 590 

deposition, and contribute to spatiotemporal variations in ground-level NO2 concentrations between the highly 

populated and lightly populated areas across China. Additionally, the population-weighted mean NO2 concentrations 

were consistently higher than the spatial mean NO2 concentrations in most provinces across China. This is due to the 

spatial coincidence between NO2 concentrations and population density. These results indicate that the use of simple 

spatial average concentrations can lead to a systematic underestimation of overall population exposure and the 595 

associated health impacts. It is important to use high-resolution NO2 data to accurately quantify true population 

exposure. Furthermore, the adverse impacts of high NO2 concentrations in highly populated urban areas suggest that 

for more effective reduction of overall population exposure and better protection of public health, control efforts 

should be further targeted at highly populated and highly polluted areas. Targeted control programs to reduce pollutant 

levels at population hotspots should be more cost-effective than trying to reduce pollutant concentrations everywhere. 600 

Additionally, control policies can be implemented by encouraging the public to relocate to less polluted areas through 

land-use development and urban planning. 

The GEMS measurements, while valuable, are subject to uncertainties and limitations. One of the primary challenges 

is the impact of cloudy conditions, which can affect the reliability of GEMS measurements. To address this issue, data 

with a cloud fraction exceeding 30 % were intentionally excluded from the analysis. This approach aimed to strike a 605 

balance between obtaining an adequate number of measurements and minimizing the influence of cloud-contaminated 

data. Additionally, data with a solar zenith angle exceeding 70° were excluded. Regions with a higher likelihood of 

cloud cover had more missing data, and there was a relatively small sample size available in the early morning due to 

the absence of solar radiation. Another inherent limitation of satellite measurements is the lack of data during nighttime. 

The lack of nighttime data and cloudy conditions leads to skewness in the GEMS measurements, especially for 610 

phenomena that exhibit diurnal variations. To align the satellite-estimated NO2 with ground-measured NO2, correction 

factors were applied for hourly, seasonal, and annual averages (see Sec. 2.7). These correction factors are based solely 

on the ground NO2 measurements, which results in reduced and minimized biases associated with them. However, 

some limitations still exist, as these correction factors rely on an ancillary data source with low spatial resolution. 

Spatially, the spatial distributions of the correction factors were obtained by interpolating the ground monitoring data. 615 

We made the assumption that the correction factors vary smoothly in the areas between different stations. However, 

atmospheric conditions and NO2 emissions can vary significantly across different regions at different times of the day. 

Additionally, we applied a constant correction factor for seasonal and annual averages, which may not be able to 

correct the detailed bias from hour to hour. It is important to note that the data used in this study corresponds to version 

1 of the GEMS product. Ongoing efforts are being made to enhance the accuracy of GEMS products, and subsequent 620 

versions are expected to offer improved quality and reliability. 

Further, to explore the impact of missing GEMS NO2 VCDs and associated biases on estimating average ground-level 

NO2 concentrations between 8:00 AM and 3:00 PM, we calculated the difference between the average NO2 

concentrations derived from all ground measurements and the average ground-measured NO2 concentrations when 

satellite data was available. The hourly variations of these concentration differences for 2021 are presented in Fig. 14. 625 
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The issue of missing data consistently underestimated the average NO2 concentrations for each hour. The degree of 

underestimation was higher during hours with more missing data. For instance, at 3:00 PM, 2:00 PM, 1:00 PM, and 

8:00 AM, the mean underestimation was -6.27±2.38 μg/m3, -4.38±1.94 μg/m3, -2.60±2.50 μg/m3, and -1.57±1.19 

μg/m3, respectively. The underestimation gradually decreased for 12:00 PM, 11:00 AM, and 9:00 AM. Notably, the 

underestimation was at its minimum for 10:00 AM, with a value of -0.16±1.61 μg/m3. 630 

 

Figure 14: Difference between the average NO2 concentrations from all ground measurements and the average ground-

measured NO2 concentration when satellite data was available for each hour from 8:00 AM to 3:00 PM. The vertical bars 

represent whiskers that extend to the most extreme data points within 1.5 times the interquartile range from quartile 1 

(25th percentile of data) and quartile 3 (75th percentile of the data). 635 

5 Conclusion 

This study developed a nested machine learning model to incorporate the NMH as an input parameter in the 

methodological framework. The model's performance in predicting ground-level NO2 concentrations from satellite 

columnar measurements was then explored. Among the testing and training of the two models, the model that 

considered the NMH as one of the input parameters demonstrated more promising results. This suggests that the 640 

inclusion of the NMH significantly impacts the model's performance. Furthermore, the NMH was identified as the 

second most important predictor variable after the GEMS NO2 VCDs. The diurnal variations of satellite-derived 

ground-level NO2 concentrations exhibited a clear gradient across all subregions, ranging from highly populated to 

lightly populated areas. In highly populated areas, peak ground-level NO2 concentrations were observed during the 

early morning rush hours (8:00 AM - 9:00 AM). In areas categorized as lightly populated or moderately populated, a 645 

slight morning peak was observed around 9:00 AM or 10:00 AM, occurring later than in urban sites. In highly and 

supremely highly populated areas in northern China, NO2 concentrations still exceeded the WHO IT-2 standards and 

were double the levels observed in lightly populated regions. These satellite-derived ground-level NO2 concentrations 

provided high-resolution information on the diurnal variations of NO2 pollution levels across different regions and 
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levels of urbanization. It is important to note that the GEMS measurements, while valuable, are subject to uncertainties 650 

and limitations, particularly due to the impact of cloudy conditions and the absence of nighttime data. Correction 

factors were applied in this study to mitigate these issues and address the inherent challenges of satellite measurements. 

Some limitations still exist, as these correction factors rely on an ancillary data source with low spatial resolution. 

Additionally, we applied a constant correction factor for seasonal and annual averages, which may not be able to 

correct the detailed bias that occurs from hour to hour. Overall, the findings of this study enhance our understanding 655 

of the effects of the mixing height of NO2 on the conversion of satellite-based columnar measurements to ground-

level NO2 concentrations. They also provide valuable insights into the spatial and diurnal patterns of ground-level 

NO2 across China. 
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