
Dear Editor and Reviewers, 

 

We are grateful to the reviewers for their helpful comments. We have made the modifications in response to their 

comments. Attached is a point-by-point response to the comments. We hope that you and the referees will find the 

changes satisfactory, and we look forward to hearing from you soon. 

 

RC1: 'Comment on egusphere-2024-558', Referee #1 

This study leverages advanced satellite measurements and machine learning techniques to estimate ground-level 

NO2 concentrations in China. The use of the GEMS measurements combined with a nested machine learning 

model marks an advanced approach to addressing the challenge of translating satellite-derived VCDs of NO2 into 

actionable ground-level concentration data. Incorporating the NMH into the prediction model not only 

demonstrates a methodological advancement but also highlights the crucial role of meteorological conditions in 

the dispersion of atmospheric pollutants. As the study achieves remarkable accuracy and provides comprehensive 

analyses of NO2 distribution patterns, I recommend the publication of this paper for Atmospheric Chemistry and 

Physics after minor revisions. 

Specific Comments: 

Comment 1: 

The planetary boundary layer (PBL), represented as NMH in this study, is identified as a significant factor 

influencing the conversion of VCDs of NO2 to ground-level concentrations. Due to its importance as illustrated 

in Figure 5, there should be more discussions on the relationship between PBL and surface air pollution. I also 

suggest the authors acknowledge the previous study investigating the Relationships between the PBL and surface 

pollutants over China, as well as the influencing factors. 

Response: Thank you for your valuable comments. We have added a new paragraph in the Introduction section 

(lines 89-103) and a new paragraph in the Discussion section (lines 485-505) to provide more elaboration on the 

impacts of the PBL on air pollution. 

“Numerous past studies have highlighted the importance of the boundary layer structure in governing the 

occurrence and evolution of extreme air pollution episodes (Shi et al., 2020). A significant relationship 

between a surge in surface air pollutant concentrations and a shallow PBLH has been extensively reported 

(Miao et al., 2019; Su et al., 2020). It has also been recognized that air pollutants aloft can play a core 

role in the evolution of surface extreme pollution episodes via vertical mixing (Zhang and Rao, 1999). 

When the top of the mixing layer reaches the aloft pollutant-rich layer during the daytime, air pollutants 

can be entrained downwards, which rapidly increases surface air pollutant concentrations (Zhang et al., 

2016). In addition to the vertical exchange, radiative absorption and scattering by pollutants can modify 

the boundary layer structure and consequently affect ground-level pollutant concentrations. For instance, 

high loadings of scattering pollutants can cool the air near the ground and result in a more stable boundary 

layer, which further worsens air quality (Li et al., 2017). As a result, the PBLH has been used as a proxy 

of the NMH because of its ability to regulate near-surface pollution levels. However, as NO2 may not be 

uniformly distributed within the planetary boundary layer, a significant difference may exist between the 

PBLH and NMH. It is important to develop a conversion model that directly considers the impacts of the 

NMH, which paves the way to refine the processes of converting satellite-derived columnar 

measurements into ground-level NO2 concentrations (Ahmad et al., 2024).” 

“PBL characteristics are pivotal in regulating the vertical dispersion and horizontal transport of 

atmospheric pollutants, subsequently determining the vertical variations of NO2 and its concentration at 

the Earth's surface (Akther et al., 2023; Xiang et al., 2019). Results in this study highlight the key role of 

the mixing height of NO2 in linking satellite-derived VCDs of NO2 with ground-level concentrations. To 

convert the VCDs of NO2 into ground-level NO2 concentrations, previous conversion models have used 

PBLH as a proxy of the NMH, because of its ability to regulate ground-level pollution levels. For 

example, within a stable PBL, pollutants like NO2 from ground sources mainly accumulate near the 



ground surface (Levi et al., 2020). Intense solar heating can induce elevated temperatures, fostering an 

unstable PBL that is conducive to the upward dispersion of air pollutants including NO2 (Kalmus et al., 

2022; Su et al., 2020). The wind pattern is connected to atmospheric stability and can impact NO2 levels 

by modifying pollutants' dispersion and horizontal transport (Yin et al., 2019). High surface air pressure 

often leads to large-scale sinking air motion, resulting in the limited vertical diffusion of NO2 (Chow et 

al., 2018). Elevated relative humidity levels act as a suppressive factor, constraining the PBLH and 

exacerbating the accumulation of pollutants near the ground (Xiang et al., 2019). Therefore, different 

meteorological factors significantly impact the vertical distribution of NO2 in the atmosphere (Huang et 

al., 2021). This study developed a conversion model that directly considers the impacts of the NMH. The 

predictions of NMH from the inner model directly incorporated the impacts of meteorological parameters 

(T, P, WS, RH, DP, VIS, and PRECIP). It was found that temperature, wind speed, dew point, and 

visibility were positively correlated with NMH, while relative humidity and air pressure mainly 

demonstrated an inverse relationship (Ahmad et al., 2024). The atmosphere's dynamic and 

thermodynamic aspects played crucial roles in developing the vertical structure of NO2. The 

incorporation of the NMH in the model paved the way to refine the processes of converting satellite-

derived columnar measurements into ground-level NO2 concentrations.” 

Comment 2: 

Section 2.6 is the key section for this paper, since it present the details of machine learning model for this study. 

While the nested machine learning model demonstrates superior performance in estimating ground-level NO2 

concentrations, the methodology section could benefit from a more clear discussion of the advantage of XGBoost 

regression model, as well as feature selection process, and the rationale behind choosing specific meteorological 

parameters as predictors.  

Response: Thanks for your comments. The XGBoost algorithm has proven to be useful in various air quality 

studies, including those focusing on the conversion between satellite-based column measurements and ground-

level concentrations (Shao et al., 2023; Zhao et al., 2023). We have added a new paragraph to discuss the 

advantages of the XGBoost regression model in lines 197-214. 

“XGBoost stands out as a notably efficient end-to-end gradient boosting tree framework, adept at 

transforming numerous weak learners into robust ones through boosting. This framework frequently 

demonstrates reduced computational overhead and enhanced predictive accuracy when compared with 

alternative ensemble tree models (Chen and Guestrin, 2016). Moreover, XGBoost exhibits a lower 

susceptibility to overfitting by mitigating the bias within the context of bias-variance decomposition. 

XGBoost has been empirically demonstrated to adeptly capture nonlinear relationships between 

predictions and predictors, yielding precise estimations through its regularized boosting methodology. 

This approach constructs the ultimate model by iteratively refining simpler and weaker models, each 

subsequent tree learning from its predecessors and updating residual errors via gradient descent to 

optimize the loss function. Within the XGBoost framework, an augmented penalty term is incorporated 

into the error function to fine-tune the objective function, thereby smoothing the final learned weights 

and mitigating overfitting tendencies. Additionally, to further mitigate overfitting, feature sub-sampling 

and shrinkage techniques are integrated (Liu 2021). The study by Van et al. (2022) also demonstrated the 

XGBoost algorithm as the most suitable lightweight algorithm based on the comparative analysis of three 

machine learning models, i.e., XGBoost, Decision Tree, and Random Forest. The XGBoost algorithm 

has proven to be useful in various air quality studies, including those focusing on the conversion between 

satellite-based column measurements and ground-level concentrations (Shao et al., 2023; Zhao et al., 

2023). More details on the XGBoost regression model can be found in Chi et al. (2022). The XGBoost 

model was implemented in this study to convert columnar measurements into ground-level NO2 

concentrations.” 

All common meteorological variables that are available from the ground monitoring network were used in this 

study. Therefore, we did not choose specific meteorological factors. The abilities of these meteorological variables 



to regulate near-surface NO2 levels are ranked as the feature importance in the XGBoost regression model. We 

clarified the use of meteorological variables in lines 225-232: 

“All common meteorological variables available from the ground monitoring network were used in this 

study. The ability of these meteorological variables to regulate near-surface NO2 levels is ranked by 

feature importance in the XGBoost regression model. In our previous study, these meteorological 

parameters were shown to impact the vertical mixing of NO2 to varying extents (Ahmad et al., 2024). 

For instance, elevated temperatures are conducive to the upward mixing of air pollutants. Increased wind 

speed is associated with an unstable atmosphere and can impact NO2 levels by modifying the vertical 

dispersion and horizontal transport of air pollutants. Increased surface air pressure often leads to large-

scale sinking air motion, which suppresses the vertical dispersion of NO2.” 

Comment 3: 

The study mentions the challenges posed by cloudy conditions and the lack of nighttime data in interpreting 

GEMS measurements. While correction factors were applied to mitigate these issues, a more detailed discussion 

on the limitations and potential biases introduced by these factors would be beneficial. This discussion of 

limitations can be also included or mentioned in the conclusion section. 

Response: Thank you very much for your comments. The correction factors were applied to mitigate the issues of 

missing data. We created a new section (Section 2.7) to summarize the calculation of correction factors. The 

correction factors are only based on the ground NO2 measurements, which results in reduced and minimized biases 

associated with them. However, some limitations still exist, as these correction factors rely on an ancillary data 

source with a low spatial resolution. Spatially, the spatial distributions of the correction factors were obtained 

from interpolation of the ground monitoring data. We made the assumption that the correction factors vary 

smoothly in the areas between different stations. However, the atmospheric conditions and NO2 emissions can 

vary significantly across different regions at different times of the day. Additionally, we applied a constant 

correction factor for seasonal and annual averages, which may not be able to correct the detailed bias from hour 

to hour. We add the limitations for the correction factors in lines 602-611: 

“The lack of nighttime data and cloudy conditions leads to skewness in the GEMS measurements, 

especially for phenomena that exhibit diurnal variations. To align the satellite-estimated NO2 with 

ground-measured NO2, correction factors were applied for hourly, seasonal, and annual averages (see 

Sec. 2.7). These correction factors are based solely on the ground NO2 measurements, which results in 

reduced and minimized biases associated with them. However, some limitations still exist, as these 

correction factors rely on an ancillary data source with low spatial resolution. Spatially, the spatial 

distributions of the correction factors were obtained by interpolating the ground monitoring data. We 

made the assumption that the correction factors vary smoothly in the areas between different stations. 

However, atmospheric conditions and NO2 emissions can vary significantly across different regions at 

different times of the day. Additionally, we applied a constant correction factor for seasonal and annual 

averages, which may not be able to correct the detailed bias from hour to hour.” 

We also included this limitation in the conclusion (lines 645-647): 

“Some limitations still exist, as these correction factors rely on an ancillary data source with low spatial 

resolution. Additionally, we applied a constant correction factor for seasonal and annual averages, which 

may not be able to correct the detailed bias that occurs from hour to hour.” 

 

RC2: 'Comment on egusphere-2024-558', Referee #2 

Overview: 

This paper introduced a machine learning model to estimate ground-level NO2 concentrations from geostationary 

satellite-derived NO2 vertical column densities (VCDs). The overall conclusions are that utilizing NO2 mixing 



height (NMH) can improve the accuracy of ground-level NO2 concentration estimates, and that satellite-derived 

ground-level NO2 concentration presents a population-based gradient. 

Although this manuscript provides a few pieces of information that I believe are suitable for publication, it is 

riddled with grammar and technical issues and requires major revisions. Extensive simple grammar corrections 

should not be on the peer reviewers to fix at this stage, and such issues did make it difficult to understand the 

authors’ justification behind their conclusions. I also found the present document more like a technical report 

rather than a research paper, as plenty of scientific discussions are missing. 

Major Comments: 

Comment 1: 

The weakest point in the manuscript is the discussion of the results. More than two-thirds of the ‘Discussions’ 

section repeats what have already been presented in the ‘Results’ section. The authors should expand more on the 

scientific principles underlying the results in the ‘Discussions’ section. 

Response: Thanks for your valuable comments. We have made efforts to improve the grammar throughout the 

manuscript. Additionally, we have thoroughly revised the Discussion section. Specifically, we have added a 

paragraph at the beginning of the Discussion section to summarize the scientific contributions of this study (lines 

472-484). 

“The scientific contributions of this study are summarized as follows. First, the results of this study have 

contributed to enriching our scientific understanding of the relationship between columnar NO2 and 

ground-level NO2. We have proven that the mixing height of NO2 plays a key role in linking satellite-

derived VCDs of NO2 with ground-level concentrations, though the impacts of NMH were rarely 

considered in a direct manner in previous studies. Secondly, the analyses in this study have improved our 

understanding of the spatiotemporal variations of NO2, particularly the diurnal variations that cannot be 

obtained from common polar-orbiting satellite measurements. The diurnal variations in NO2 

concentration differ between urban and rural areas, resulting from the different emission sources and 

pollutant dispersion characteristics. Thirdly, the analyses of NO2 variation have policy implications for 

air pollution control. It was found that the spatial coincidence between NO2 concentrations and 

population density increased overall population exposure and the associated health impacts. This 

suggests that for more effective reduction of overall population exposure and better protection of public 

health, control efforts should be further targeted at highly populated and highly polluted areas. 

Additionally, land-use and city planning should encourage population redistribution away from the most 

heavily polluted regions.” 

Following the comments from the reviewers, we have expanded the discussions on the scientific principles 

underlying the results, focusing on the three key aspects mentioned above. First, we discussed the impacts of the 

mixing height of NO2 (lines 485-537): 

“PBL characteristics are pivotal in regulating the vertical dispersion and horizontal transport of 

atmospheric pollutants, subsequently determining the vertical variations of NO2 and its concentration at 

the Earth's surface (Akther et al., 2023; Xiang et al., 2019). Results in this study highlight the key role of 

the mixing height of NO2 in linking satellite-derived VCDs of NO2 with ground-level concentrations. To 

convert the VCDs of NO2 into ground-level NO2 concentrations, previous conversion models have used 

PBLH as a proxy of the NMH, because of its ability to regulate ground-level pollution levels. For 

example, within a stable PBL, pollutants like NO2 from ground sources mainly accumulate near the 

ground surface (Levi et al., 2020). Intense solar heating can induce elevated temperatures, fostering an 

unstable PBL that is conducive to the upward dispersion of air pollutants including NO2 (Kalmus et al., 

2022; Su et al., 2020). The wind pattern is connected to atmospheric stability and can impact NO2 levels 

by modifying pollutants' dispersion and horizontal transport (Yin et al., 2019). High surface air pressure 

often leads to large-scale sinking air motion, resulting in the limited vertical diffusion of NO2 (Chow et 

al., 2018). Elevated relative humidity levels act as a suppressive factor, constraining the PBLH and 

exacerbating the accumulation of pollutants near the ground (Xiang et al., 2019). Therefore, different 



meteorological factors significantly impact the vertical distribution of NO2 in the atmosphere (Huang et 

al., 2021). This study developed a conversion model that directly considers the impacts of the NMH. The 

predictions of NMH from the inner model directly incorporated the impacts of meteorological parameters 

(T, P, WS, RH, DP, VIS, and PRECIP). It was found that temperature, wind speed, dew point, and 

visibility were positively correlated with NMH, while relative humidity and air pressure mainly 

demonstrated an inverse relationship (Ahmad et al., 2024). The atmosphere's dynamic and 

thermodynamic aspects played crucial roles in developing the vertical structure of NO2. The 

incorporation of the NMH in the model paved the way to refine the processes of converting satellite-

derived columnar measurements into ground-level NO2 concentrations. 

Two models were tested and trained: Model I, which did not consider NMH, and a nested Model II, 

which incorporated NMH. The validation results demonstrated that nested Model II exhibited more 

promising outcomes than Model I, suggesting that including NMH significantly influenced the model's 

performance. Including NMH as an input parameter in the machine learning model could better capture 

the vertical distributions of NO2 and thus predict ground-level NO2 concentrations with improved 

accuracy and performance. Additionally, the hour-by-hour 10-fold cross-validation depicted a distinct 

improvement in the ground-level NO2 estimations for nested Model II considering NMH as an input 

parameter (Fig. S5 for Model I without NMH and Fig. S6 for nested Model II with NMH). The R2 values 

for Model I without NMH were 0.63 for 08:00 AM, 0.70 for 09:00 AM, 0.69 for 10:00 AM to 01:00 PM, 

0.55 for 02:00 PM, and 0.39 for 03:00 PM. The improved R2 values for nested Model II, which includes 

NMH, were 0.85 for 08:00 AM, 0.90 for 09:00 to 11:00 AM, 0.91 for 12:00 PM, 0.93 for 01:00 PM, 0.89 

for 02:00 PM, and 0.85 for 03:00 PM. Similarly, nested Model II, considering the NMH, depicted 

significantly reduced biases compared to Model I without NMH. The ground-level NO2 estimations for 

all hours were significantly improved when considering NMH, as it directly incorporates the vertical 

distributions of NO2. During the early morning hours, most of the NO2 is distributed near the ground. 

However, as the day progresses, NMH increases, and the ground-level NO2 tends to be mixed vertically. 

Further, the improvements in ground-level NO2 estimations were assessed using 10-fold cross-validation 

for different population categories, i.e., lightly populated, moderately populated, highly populated, and 

supremely highly populated. The nested Model II, considering NMH, depicted notable improvements 

compared to Model I without NMH (Fig. S7). The improved R2 values for nested Model II considering 

NMH were 0.91 for lightly populated areas and 0.92 for the other three population categories compared 

to Model I without NMH, which depicted an R2 value of 0.63 for lightly populated, 0.73 for moderately 

populated, 0.77 for highly populated, and 0.74 for supremely highly populated areas. The RMSE for 

nested Model II considering NMH was improved and observed below 5 μg/m3 for all population 

categories compared to Model I without NMH, which depicted RMSE values around 8-9 μg/m3 for 

different population categories. The MAPE for nested Model II considering NMH was also improved for 

all population categories, and around 15 % and lower values were observed. These improvements depict 

that nested Model II considering NMH effectively captures the spatial distributions of vertical mixing of 

ground-level NO2 across all population categories. The spatiotemporal distributions and diurnal patterns 

of NMH are previously described by Ahmad et al. (2024). Compared to Model I without NMH, the 

performance of the ground-level NO2 estimations through nested Model II considering NMH showed 

significant improvement at the grid points where ground-based observations were available (Fig. S8). 

The correlation coefficients for grid-based 10-fold cross-validation were improved to 0.8-1.0 for nested 

Model II considering NMH compared to Model I without NMH, which depicted lower correlation 

coefficients. Furthermore, nested Model II considering NMH also depicted lower RMSE values for grid-

based estimations.” 

Subsequently, we discussed the contribution of the new-generation geostationary satellite in improving our 

understanding of the spatiotemporal variations of air pollution, particularly the diurnal variations that cannot be 

obtained from common polar-orbiting satellite measurements (lines 538-571). 

“GEMS, the world's first GEO-based environmental satellite instrument, offers a new opportunity for 

monitoring air quality across extensive regions, providing unprecedented spatial and temporal resolution. 

The quality of GEMS NO2 VCDs, obtained from the level 2 product, has been evaluated using ground-



based instruments in various regions. Encouragingly, a good agreement has been observed between the 

GEMS NO2 VCDs and measurements from various ground-based instruments (Ahmad et al., 2024; Kim 

et al., 2023; Li et al., 2023). The results presented in this study emphasize the significant advantage of 

geostationary satellites in providing air pollution information at an hourly resolution. They enable the 

assessment of diurnal variations in air pollution across different areas, ranging from lightly populated to 

supremely highly populated regions. This represents a substantial improvement over traditional LEO-

based satellite instruments. Furthermore, these GEO-based measurements are valuable supplements to 

traditional measurements from ground-based air quality monitoring networks, primarily concentrated in 

urban areas, leaving vast rural regions without observations. 

The diurnal variations of ground-level NO2 concentrations across China depicted distinct gradients across 

all subregions and population categories. This gradient reflects regional disparities in industrialization, 

urbanization, and transportation infrastructure of Chinese megacities and rural areas. Highly populated 

areas depicted the highest concentrations of ground-level NO2 during the early morning hours, attributed 

to intensified vehicular traffic in the early morning hours and higher industrial emissions. In contrast, 

lightly populated areas exhibited lower ground-level NO2 concentrations and a delayed peak of around 

one to two hours, indicating lesser anthropogenic influence and more contribution from regional transport 

contributed by the NO2 emissions from highly populated areas. Various driving factors influence these 

diurnal variations in ground-level NO2 concentrations, each contributing differently across different 

regions. For instance, anthropogenic emissions dominate in highly populated urban and suburban areas, 

characterized by traffic emissions peaking in the morning and late afternoon (Liu et al., 2018; 

Naiudomthum et al., 2022). This phenomenon is particularly pronounced in highly populated areas with 

high traffic density. As morning rush hours subside, reduced vehicular traffic activities in highly 

populated areas lead to a gradual decline in NO2 emissions. However, atmospheric processes such as 

higher mixing height of NO2, more dispersion, and dilution also come into play, resulting in reduced 

ground-level NO2 concentrations. Increased turbulent mixing in the lower atmosphere helps disperse 

pollutants from their sources in highly populated areas, gradually decreasing ground-level NO2 

concentrations. Additionally, photochemistry also influences the diurnal variations of NO2 

concentrations. The ratio of NO2 to NO is influenced by radiation, ozone, and peroxyl radicals. During 

the daytime, NOx undergoes oxidation through radical-mediated reactions, forming nitric acid and 

organic nitrates, with their levels depending on radiation, ozone, and volatile organic compounds. As a 

result, the lifetime of NO2 reaches its lowest point around noon, typically lasting a few hours during 

summer. Furthermore, atmospheric transport contributes to the diurnal variation of NO2, particularly in 

highly populated areas and their surrounding regions (Zhang et al., 2023). The hourly ground-level NO2 

concentration results presented in this study provide high-resolution information on the diurnal variations 

in ground-level NO2 pollution levels across different regions and demographic patterns.” 

Then, policy implications for air pollution control are discussed (lines 572-594). 

“The spatial distribution of ground-level NO2 concentrations in the study region revealed significant 

regional disparities, with higher levels observed in urban agglomerations with high population densities 

(e.g., BTH, YRD, and PRD regions) than in lightly populated areas (e.g., western China). Even within 

the NC region, the highly populated urban areas had NO2 concentrations nearly double those of lightly 

populated rural areas. These spatial disparities are due to distributions of NO2 emission sources that vary 

with population densities, decreasing from highly populated to lightly populated areas. In highly 

populated urban areas in regions like BTH, YRD, and PRD, mobile NOx emissions from dense road 

networks contribute to pronounced increase in NO2 levels. Moreover, the short lifespan of NO2 due to 

atmospheric chemical reactions results in elevated concentrations near emission sources in highly 

populated areas, such as roadways, accompanied by rapid declines in NO2 concentrations with increasing 

distance from highly populated areas (Lee et al., 2018). Furthermore, the diverse terrains, land cover, and 

climates observed in subregions with different population categories collectively influence vertical and 

horizontal airflows, rates of NO2 formation and deposition, and contribute to spatiotemporal variations 

in ground-level NO2 concentrations between the highly populated and lightly populated areas across 

China. Additionally, the population-weighted mean NO2 concentrations were consistently higher than 



the spatial mean NO2 concentrations in most provinces across China. This is due to the spatial 

coincidence between NO2 concentrations and population density. These results indicate that the use of 

simple spatial average concentrations can lead to a systematic underestimation of overall population 

exposure and the associated health impacts. It is important to use high-resolution NO2 data to accurately 

quantify true population exposure. Furthermore, the adverse impacts of high NO2 concentrations in 

highly populated urban areas suggest that for more effective reduction of overall population exposure 

and better protection of public health, control efforts should be further targeted at highly populated and 

highly polluted areas. Targeted control programs to reduce pollutant levels at population hotspots should 

be more cost-effective than trying to reduce pollutant concentrations everywhere. Additionally, control 

policies can be implemented by encouraging the public to relocate to less polluted areas through land-

use development and urban planning.” 

Comment 2: 

The title and abstract indicate that this paper aims at improving ground-level NO2 estimation. However, the only 

figures that present such improvements are Figures 4 and 12. The manuscript also keeps talking about different 

patterns of ground-level NO2 concentration between highly and lightly populated areas. But how the 

improvements differ between these regions (and at different hours of the day)? How the estimates perform at the 

grid points where ground-based observations are available? 

Response: Thank you very much for your comments. In this study, we aimed to develop a nested model to improve 

the estimation of ground-level NO2 and enrich our understanding of the spatial and temporal variations in NO2 

concentration using measurements from new geostationary satellite. The title of the manuscript has been revised 

as: 

“Estimation of Ground-Level NO2 and its Spatiotemporal Variations in China Using GEMS Measurements 

and a Nested Machine Learning Model”. 

Additionally, the following part has been added to assess the improvements at different hours of the day, 

improvements between different regions and performance of estimates at grid points where ground-based 

observations are available (lines 506-537). 

“Two models were tested and trained: Model I, which did not consider NMH, and a nested Model II, which 

incorporated NMH. The validation results demonstrated that nested Model II exhibited more promising 

outcomes than Model I, suggesting that including NMH significantly influenced the model's performance. 

Including NMH as an input parameter in the machine learning model could better capture the vertical 

distributions of NO2 and thus predict ground-level NO2 concentrations with improved accuracy and 

performance. Additionally, the hour-by-hour 10-fold cross-validation depicted a distinct improvement in the 

ground-level NO2 estimations for nested Model II considering NMH as an input parameter (Fig. S5 for Model 

I without NMH and Fig. S6 for nested Model II with NMH). The R2 values for Model I without NMH were 

0.63 for 8:00 AM, 0.70 for 9:00 AM, 0.69 for 10:00 AM to 1:00 PM, 0.55 for 2:00 PM, and 0.39 for 3:00 PM. 

The improved R2 values for nested Model II, which includes NMH, were 0.85 for 8:00 AM, 0.90 for 9:00 to 

11:00 AM, 0.91 for 12:00 PM, 0.93 for 1:00 PM, 0.89 for 2:00 PM, and 0.85 for 3:00 PM. Similarly, nested 

Model II, considering the NMH, depicted significantly reduced biases compared to Model I without NMH. 

The ground-level NO2 estimations for all hours were significantly improved when considering NMH, as it 

directly incorporates the vertical distributions of NO2. During the early morning hours, most of the NO2 is 

distributed near the ground. However, as the day progresses, NMH increases, and the ground-level NO2 tends 

to be mixed vertically. Further, the improvements in ground-level NO2 estimations were assessed using 10-

fold cross-validation for different population categories, i.e., lightly populated, moderately populated, highly 

populated, and supremely highly populated. The nested Model II, considering NMH, depicted notable 

improvements compared to Model I without NMH (Fig. S7). The improved R2 values for nested Model II 

considering NMH were 0.91 for lightly populated areas and 0.92 for the other three population categories 

compared to Model I without NMH, which depicted an R2 value of 0.63 for lightly populated, 0.73 for 

moderately populated, 0.77 for highly populated, and 0.74 for supremely highly populated areas. The RMSE 

for nested Model II considering NMH was improved and observed below 5 μg/m3 for all population categories 



compared to Model I without NMH, which depicted RMSE values around 8-9 μg/m3 for different population 

categories. The MAPE for nested Model II considering NMH was also improved for all population categories, 

and around 15 % and lower values were observed. These improvements depict that nested Model II 

considering NMH effectively captures the spatial distributions of vertical mixing of ground-level NO2 across 

all population categories. The spatiotemporal distributions and diurnal patterns of NMH are previously 

described by Ahmad et al. (2024). Compared to Model I without NMH, the performance of the ground-level 

NO2 estimations through nested Model II considering NMH showed significant improvement at the grid 

points where ground-based observations were available (Fig. S8). The correlation coefficients for grid-based 

10-fold cross-validation were improved to 0.8-1.0 for nested Model II considering NMH compared to Model 

I without NMH, which depicted lower correlation coefficients. Furthermore, nested Model II considering 

NMH also depicted lower RMSE values for grid-based estimations.” 

 

Minor Comments: 

Comment: Line 122: What is the nominal spatial resolution of GEMS NO2 product used in this study? 

Response: Thanks for your comments. We clarified the spatial resolution of the GEMS data in lines 136-139: 

“The nominal spatial resolution of the GEMS NO2 product used in this study was 7 km × 7.7 km. Despite 

the irregular shape of satellite measurement pixels due to east-to-west scans, this study performed re-

gridding, which standardized the VCDs of NO2 onto a regular grid of 0.2° × 0.4° by calculating the 

average of all the NO2 VCDs within the 0.2° × 0.4° grid from 8:00 AM to 3:00 PM local time in China.” 

Comment: Line 124: Please provide some information on how NO2 VCDs are standardized. Line 160 mentioned 

bi-linear interpolation, but it is for meteorological variables. 

Response: Thank you very much for your comments. In this study, we standardized the VCDs of NO2 onto a 

regular grid of 0.2o × 0.4o by calculating the average of all the NO2 VCDs within the 0.2o × 0.4o grid. We clarified 

it in lines 136-139: 

“Despite the irregular shape of satellite measurement pixels due to east-to-west scans, this study 

performed re-gridding, which standardized the VCDs of NO2 onto a regular grid of 0.2° × 0.4° by 

calculating the average of all the NO2 VCDs within the 0.2° × 0.4° grid from 8:00 AM to 3:00 PM local 

time in China.” 

Comment: Line 135: … divided the study region into four areas … -> … divided the study area into four 

categories … 

Response: Thanks for your comments. We have revised it accordingly (lines 149-150). 

“Based on population density, we divided the study region into four categories.” 

Comment: Line 253: How is the month of the year numbered exactly? If 1 to 12 is used for January to December, 

then cold months would be around 12 to 2, which may affect SHAP values shown in Figure 6. 

Response: Thanks for your valuable comments. We used a common method to number the months. The months 

are numbered from 1 to 12, corresponding to January through December, exactly as per the real months of the 

observations. Using alternative numbering methods may increase the complexity. Additionally, the month variable 

has a relatively small contribution of only 3.23% to the model's performance. The month variable served mainly 

as an auxiliary factor, and the SHAP values were mostly clustered around zero. The major variables are GEMS 

NO2 VCDs and NMH. We clarified the numbering of the month variable in lines 225-226: 

“The months are numbered from 1 to 12, corresponding to January through December, exactly as per the 

real months of the observations.” 



Comment: Line 259: Figure 6 indicates that lower T corresponds to lower NO2. How does it relate to ‘worsened’ 

ground-level NO2 pollution? And your reasoning ‘air stagnation’ may be wrong here. 

Response: Thanks for your comments. When the feature values of temperature are large, the SHAP value is 

positive and may have a positive impact on the ground-level NO2 predictions, but the impact value is not large. 

Some values with smaller feature values also have a positive impact on the model. It is noted that the SHAP values 

for the meteorological variables, including temperature, are all small, clustered around zero, and have limited 

influence on the prediction results. The major and distinct impact on the model’s performance for predicting 

ground-level NO2 concentrations is observed for GEMS NO2 VCDs and NMH. We have rewritten the paragraph 

to highlight our focus (lines 330-333): 

“However, it is noted that the SHAP values for the meteorological variables, including temperature, are 

all small, clustered around zero, and have limited influence on the prediction results. The major and 

distinct impact on the model’s performance for predicting ground-level NO2 concentrations is observed 

for GEMS NO2 VCDs and NMH.” 

Comment: Line 260: Figure 6 does not indicate this pattern. Please either quantify the impact of RH and dew 

point explicitly or remove this sentence. 

Response: Thanks for your comments. We have removed the sentence. 

Comment: Line 265: In this and the following sections, are ground-level NO2 concentration from ground-based 

observations or satellite-based estimates? Please clarify. 

Response: Thanks for your comment. In this and the following sections, ground-level NO2 concentrations are 

from satellite-based estimates. We have clarified it in the manuscript (lines 338-339): 

“Based on the satellite-derived ground-level NO2 concentrations (mentioned as ground-level NO2 

concentrations from hereon)”. 

Comment: Line 266: Since this paragraph is talking about Fig. S1, I would suggest presenting the figure in the 

main text. Also, as the correction factor is important to the results of this study, how it is calculated should be 

presented in the main text or as an appendix. Related to the computation of correction factor, what is the possible 

maxima of m? Is it up to 24 (hours of a day)? 

Response: Thanks for your comments.  

(1) Fig. S1 has been moved to the main text as Fig. 7.  

(2) The calculation of the correction factor is moved to the main text as Section 2.7.  

(3) For a specific hour, the maximum value of m in Eq. 1 is 365 for one year. We clarified it in line 263-264. 

“For a specific hour, the maximum value of m index in Eq. 1 is 365 for one year.” 

For the annual correction factor, the maximum value of m in Eq. 1 is 8760 for one year. We clarified it in line 280-

281. 

“For the annual correction factor, the maximum value of m index in Eq. 1 is 8760 for one year.” 

Comment: Line 350: Since Fig. S6 is discussed here, considering presenting the figure in the main text. 

Response: Thanks for your comments. The figure has been moved to the main text as Fig. 12. 

Comment: Line 425: Are NO2 and NO really in chemical equilibrium in the real atmosphere? 

Response: Thanks for your comments. We revised the sentence and removed this particular description. 

Comment: Line 444: The reasoning given here is too general. Consider adding some details/analysis specific to 

your results. 



Response: Thanks for your comments. We had added more discussions on the spatial disparities of NO2 

concentration and its implication for air pollution management in lines 572-594:  

“The spatial distribution of ground-level NO2 concentrations in the study region revealed significant 

regional disparities, with higher levels observed in urban agglomerations with high population densities 

(e.g., BTH, YRD, and PRD regions) than in lightly populated areas (e.g., western China). Even within 

the NC region, the highly populated urban areas had NO2 concentrations nearly double those of lightly 

populated rural areas. These spatial disparities are due to distributions of NO2 emission sources that vary 

with population densities, decreasing from highly populated to lightly populated areas. In highly 

populated urban areas in regions like BTH, YRD, and PRD, mobile NOx emissions from dense road 

networks contribute to pronounced increase in NO2 levels. Moreover, the short lifespan of NO2 due to 

atmospheric chemical reactions results in elevated concentrations near emission sources in highly 

populated areas, such as roadways, accompanied by rapid declines in NO2 concentrations with increasing 

distance from highly populated areas (Lee et al., 2018). Furthermore, the diverse terrains, land cover, and 

climates observed in subregions with different population categories collectively influence vertical and 

horizontal airflows, rates of NO2 formation and deposition, and contribute to spatiotemporal variations 

in ground-level NO2 concentrations between the highly populated and lightly populated areas across 

China. Additionally, the population-weighted mean NO2 concentrations were consistently higher than 

the spatial mean NO2 concentrations in most provinces across China. This is due to the spatial 

coincidence between NO2 concentrations and population density. These results indicate that the use of 

simple spatial average concentrations can lead to a systematic underestimation of overall population 

exposure and the associated health impacts. It is important to use high-resolution NO2 data to accurately 

quantify true population exposure. Furthermore, the adverse impacts of high NO2 concentrations in 

highly populated urban areas suggest that for more effective reduction of overall population exposure 

and better protection of public health, control efforts should be further targeted at highly populated and 

highly polluted areas. Targeted control programs to reduce pollutant levels at population hotspots should 

be more cost-effective than trying to reduce pollutant concentrations everywhere. Additionally, control 

policies can be implemented by encouraging the public to relocate to less polluted areas through land-

use development and urban planning.” 

Comment: Line 470: The wording and the order of the sentence starting with ‘The average ground-measured 

NO2 concentrations’ is confusing, please revise. 

Response: Thanks for your comments. We revised the sentence from “The average ground-measured NO2 

concentrations, when satellite data was available, consistently underestimated the average NO2 concentrations 

from all ground measurements for each hour.” to (line 618): 

“The issue of missing data consistently underestimated the average NO2 concentrations for each hour.” 

Comment: Figure 3: How model 1 (i.e., without NMH) differs from model 2 (with NMH) is not clearly shown 

in the diagram. Please either split the flowcharts or add some description in the caption. 

Response: Thanks for your valuable comments. We re-plotted the flowchart to highlight the role of inner model. 

Additionally, we added description on the difference between basic model and nested model in the caption of 

Figure 3. 

“The basic model (Model I) does not consider NMH from the inner model and utilizes only ten input 

variables for testing and training, namely: satellite NO2, two temporal variables, and seven 

meteorological variables. The nested model (Model II) considers the NMH from the inner model as an 

additional input variable, along with the other ten input variables used for the basic model. Therefore, 

the nested model utilizes eleven input variables for testing and training: satellite NO2, two temporal 

variables, seven meteorological variables, and the NMH predictions from the inner model.” 

 

Comment: Figure 4: Please clarify the meaning of each figure element (dots with colors, lines, etc.). 



Response: Thank you very much for your comments. We clarified the meaning of the figure elements in lines 303-

306: 

“The red dotted line represents a 1:1 relationship. The solid black line is the line of best fit between the 

ground-measured NO2 and the satellite-estimated NO2. The scattered dots represent the individual NO2 

values for each ground measurement and satellite-based estimation. The color scale ranging from red to 

blue represents the density of the NO2 values, with red indicating high density and blue representing low 

density.” 

Comment: Figure 7: Is this figure corresponding to ground-based observations or satellite-based estimates? Is it 

an average of 8 AM to 3 PM local time or daily average? Please clarify. Also, mark the province if possible so 

that readers unfamiliar with China can have a better sense of the regions you are referring to. 

Response: Thanks very much for your comment. This figure presents satellite-based estimates of the annual 

average ground-level NO2 concentration, which represents the 24-hour average throughout the year 2021, after 

bias correction for the missing data issue. We have clarified this information in the caption of the figure (lines 

364-368). Additionally, provinces are marked in the figure.  

“Spatial distributions of annual average ground-level NO2 concentrations for 2021 derived from satellite 

measurements in the study region (left panel) and in the four major urban agglomerations in China (right 

panel): Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Pearl River Delta (PRD), and Sichuan 

Basin (SCB). This annual average concentration represents the 24-hour average throughout the year of 2021 

after the bias correction for the missing data issue.” 

Comment: Figures 9 through 12: What are the vertical bars in each plot? Please clarify. 

Response: Thanks for your comment.  

(1) The vertical bars in figure 9 (now figure 10), 10 (now figure 11) and 11 (now figure 13) represent one standard 

deviation. The description is added in the caption of the figures. 

(2) The vertical bars in figure 12 (now figure 14) represent whiskers that extend to the most extreme data points 

within 1.5 times the interquartile range from quartile 1 (25th percentile of data) and quartile 3 (75th percentile of 

the data). The description is also added in the caption of the figure.  


