
I cannot remember when I have had more helpful reviews than those given by the two people who 
carefully went through my paper.  The fact that they both noted some of the same issues made it 
certain that I had to fix a few things. I describe the planned changes in detail after each of the related 
reviewer comments which are italicized.   

I did have to abandon my effort to make the paper totally analytic in that I had to do numerical 
integrations to show the effect of non-linear temperature profiles.  Since this took considerable effort, 
I may not have addressed all the other comments as well as I should. The most important changes 
are: 

1)  To try to make the model idea better I plan to add a description of viscous bending to the 
introduction and in section 3.3 on the thin plate approximation of the flexural wavelength.  

2) To illustrate the asymptotic behavior of the analytic model I added a panel to Figure 5 showing 
predicted internal bending moments versus the log of the e-folding length for viscosity variations. 

3) I analyzed the errors in the analytic approximation by carrying out numerical integration of the 
stress differences for the assumed ice flow law.  The difference between the full and approximate 
solutions for the internal bending moment depend on the assumed flow law parameters and surface 
temperature, but are less than 3% for the most extreme cases illustrated in the figures. 

4)  A new section on “Effects of nonlinear temperature variation with depth” will include (1) a figure 
showing temperatures from 3 boreholes on the Ross Ice Shelf and 1 from the Amery Ice shelf, and 
(2) calculation of steady-state temperature profiles for a range of rates of surface accretion and basal 
accretion or melting (after Robin, 1955) and results of numerical analysis of internal bending 
moments for those temperature profiles. The Figures are given below. 

Reviewer1 

This manuscript presents a novel analysis of flexure at the terminus of a freely floating ice 
shelf.  It addresses observations of upward flexure of the Ross Ice shelf near Roosevelt island.   

I plan to note that the upward flexure is seen not only near Roosevelt Island but along 
along∼74% of the front of Ross Ice Shelf (Becker et al., 2021). 
 

Whereas these were previously explained in terms of an eroded ice bench, this manuscript shows 
that a vertical variation in ice viscosity, arising from a linear variation in ice temperature and 
acting on a vertically uniform rate of extension, gives rise to a bending moment that can explain 
the observed flexure.  This is an appealing hypothesis because ice benches are not observed at 
Ross (using the same sensor that has observed them elsewhere).  The argument is supported by a 
clear and relatively simple mathematical theory that is consistent with a classical analysis of ice 
shelves (Weertman 1957).  The manuscript is well written and well illustrated, easy to follow, 
and makes a novel and significant contribution to our understanding of ice-shelf dynamics.  It 
has important implications for our understanding of ice-shelf calving.  It should be published 
with minor revisions. 

I see no major problems with the manuscript as written.  The author has cleverly applied insights 
from plate flexure derived in the context of tectonics to ice shelves.  Amusingly, the author 



highlights that his analysis was tee'd up by Reeh 1968, whose "mathematical troubles" are 
relieved by the simplifying assumption of a linear temperature variation through the ice 
shelf.  This leads to a Taylor series expansion and truncation at leading order, making the 
moment integral tractable and unlocking a solution.  This context prompts two relatively minor 
suggestions.  The first is to better discuss and justify the linear temperature assumption, as this is 
crucial to progress. There are borehole measurements by Mike Craven et al (e.g., J. Glaciology, 
Vol. 55, No. 192, 2009) and likely others.  Plotting their data in comparison to a linear fit might 
be nice. 

Here is a figure and caption I plan to add to an added section 3.4 Effects of nonlinear temperature 
variation with depth: 

 
New Figure 9.  4 sets of borehole temperature measurements that constrain the temperature profiles for parts of 
two Antarctic ice shelves.  (a, b and c) are for the Ross ice shelf re-plotted from Taylor and MacAyeal (1979) 



while (d) is from the Amery Ice Shelf re-plotted from Craven et al. (2009) and locations of the boreholes are 
given in those references. 
 
In that new section I propose to discuss the effect of “Robin-type” temperature profiles on the 
calculated internal moments.  To do that I also had to use a numerical integration of the stress 
differences predicted by the full flow law using the non-linear temperature profiles.  I would add 
something like this: 

Several effects, including accretion or melting of the surface or base of an ice shelf, can 
contribute to non-linearity of temperatures with depth and this will affect stresses and so internal 
moments. Following Robin (1955) we can estimate the effects of surface accretion and basal 
accretion or melting on temperatures in an ice shelf ice shelf.  Pure shear thinning of the layer 
maintains a uniform shelf thickness, ℎ, while the velocity of the surface is 𝑣! and the velocity of 
the vase is 𝑣". The surface is maintained at 𝑇! and the base at 𝑇". The steady-state temperature 𝑇 
as a function of depth below the ice surface, 𝑧, can be written: 
   	
𝑇(𝑧∗) = 𝑇! + (𝑇" − 𝑇!) -

$%&	()*∗),$%&	(,)*"#$)
$%&	-)(.,*"#$)/,$%&	(,)*"#$)

.   (to be added as equation 23) 

 

where 𝑧∗ = 𝑧
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 and 𝜅 is the thermal diffusivity, here taken 

to be 10-6 m2/s. Resulting temperature profiles for a layer 400 m thick and several combinations 
of 𝑣!  and 𝑣" are shown in the figure below (proposed new Figure 10). Equation (11) was then 
used with the calculated temperatures with depth to give the stress differences needed for 
numerical integration of equations 5 and 10 to get the predicted internal moment of the 
horizontal stress distribution (MI). 
 
 

 
 



New Figure 10.  Effect of surface or basal accretion on ice shelf temperature profiles and internal bending 
moments. (a) Examples of three steady-state temperature profiles for the indicated values of surface and basal 
velocities (𝑣! and 𝑣") compared with a linear temperature profile for the same surface and base temperatures. 
(b) Numerically calculated normalized internal bending moments for a range of temperature profiles calculated 
with the indicated parameters. Black dots indicate the temperature profiles shown in part (a). Moments are 
divided by the moment for a linear temperature profile. 
 
In describing this in the text I plan to note that freezing onto the base of an ice shelf should act to 
increase the amplitude of the internal moment and so the expected upward bending of the shelf 
edge.  Accretion to the surface and melting of the base act to diminish the internal moment. 
 

The second is to use the second-order term in the Taylor series as a means to estimate the 
truncation error in equation (14).  My quick calculation gives a multiplicative factor of exp[( 
T'/T_s z )2].  Taking z=h as an upper bound, this gives exp( (\delta T/T_s)2 ) ~ exp( (30/240)2 ) ~ 
1.02.  So a maximum 2% error in viscosity due to Taylor expansion.  This could be propagated 
through the calculation to obtain the error on M_I (but in fact the linear temperature assumption 
must be a larger source of error). 

Rather than do that I used the full assumed flow law (Equation 11 in my text) and numerically 
integrate the resulting stress differences based on equation (12) to calculate the internal moment 
using equation (10). As noted above, the difference between the full and approximate solutions for 
the internal bending moment depend on the assumed flow law parameters and surface temperature, 
but are less than 3% for the most extreme cases illustrated in the figures.  In going through this 
exercise, I realized that I had not updated the last version of the equation that I used to calculate the 
e-folding length for viscosity variations in equation (15).  So now equation (15) becomes: 
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 Changing the “Ts2” term in that equation with “TsTb” forces the log-linear approximation to pass 
equal the viscosity or stress difference values at the top and base of the layer as given by the full flow 
law.  This significantly reduces the errors of the moment calculated analytically.  I had done that in 
the cases illustrated in the submitted text (as can be seen in Figure 4(b)) but had not updated equation 
(15).  

My third suggestion is to more carefully discuss the time-dependence of viscoelastic 
flexure.  Although the details will vary between problems, the scaling with time/(Maxwell time) 
should not.  How does this affect the comparison with the Ross ice shelf?  What is the age of that 
edge?  Is it fresh (i.e., age/Maxwell << 1)?  This relates to the approximate of stresses as, close 
to the shelf edge, they will be modified with time since calving.  In this regard, the bi-metallic 
strip analogy is somewhat misleading, as it is in mechanical equilibrium at a fixed temperature. 

In response to this suggestion and a similar one made by reviewer 2 I plan to add a paragraph to 
sections 2 “Conceptual Model” describing viscous effects. 

Also, in explaining viscous bending effects more thoroughly in section 3.3 on “Topographic 
variation…” I will replace the paragraph beginning on line 262 with: 



Reeh (1968) and Olive et al. (2016) find that for a viscous or viscoelastic plate with a uniform 
viscosity 𝜂 the wavelength of the flexure changes with time as: 
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where 𝑡 is time, E is Young’s Modulus and 𝜐 is Poisson’s ratio and where 𝜏F = GHI8D-JFH<IKIJ
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 is 

a measure of the Maxwell time of the layer. Combining equations 20 and 21 suggests that the 

amplitude should increase with time roughly as: 𝑒7F(𝑡) = 𝑒7F(0) :
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parameter approaches the layer thickness, the two-dimensional nature of the problem means that 
the thin-plate approximation is no longer valid.  For layer of a few hundred meters thickness this 
should take about 1000 Maxwell times. For an average layer viscosity of a few times 1014 Pas and 
a layer thickness of 300 m this should take about 4 years. Reeh (1968) came to this conclusion and 
estimated that the long-term flexure parameter can be a bit smaller than the layer thickness. A more 
thorough study was done by Olive et al. (2016) who compare fully two-dimensional viscoelastic 
models of flexure to the thin plate solution and find the best fitting thin plate flexure parameter 
evolution to match the 2D results. They find that after many Maxwell times that the effective 
flexure parameter is smaller than the layer thickness. Thus, for figures 6 and 7 𝛼 is set to 250 m 
while the ice layer thickness is taken to be 400 m.  
 
Finally, I plan to add a sentence or two to section 4 “Discussion and Conclusions” describing how 
IceSat II lidar observations analyzed by Sartore et al., (2024) show that after a calving event on 
part of the front of the Ross Ice Shelf that the moat and rampart takes several years to develop and 
grow.  This cold be explained in terms of the expected viscous change in the flexural wavelength 
and the resulting increase in bending deflections. 
 

Broadly, I think the author should draw more attention to the assumptions made and the caveats 
and cautions that they introduce.  This would not detract from the importance of the manuscript, 
but would better promote further research to build and test the ideas introduced here. 

I tred to do this mainly with the new section on temperature profiles describe above. 

Some detailed points, by line number in the manuscript: 
 
[32] where ice shelf serves as an adjective, it should have a hyphen.  E.g., ice-shelf edges 

 
Will change! 
 



 
[Fig 1] expand the figure caption to explain the lines in these figures.  Improve the resolution to 
clarify that the hashing are ascending and descending track lines. 

It is worth noting that Reviewer 2 also wanted a better explanation.  I plan to add this to the figure 
caption:  “The grey lines are estimated streamlines of ice flow while the red lines show both 
ascending and descending IceSat II track lines analyzed by Becker et al. (2021).” 
 
     [76--78] These two sentences say the same thing, which is confusing.  Only one is needed. 
 
I will delete the second sentence. 

 
[98--99] The sentence starting with "Imagine" is important but the reader hasn't yet been 
adequately informed about why.  Somewhere above (maybe the introduction) there should be a 
brief discussion of how visco-elastic bending is time dependent. 

 
As noted above I will add a couple of sentences to the conceptual model and a revised paragraph in 
section 3.3. 
 

[103] "To do this" grammatical issue here. 
 
I plan to find a proper grammarian who can tell me what is wrong here. 

 
[163] The result here appear to be positive but represents downward flexure (line 124 states that 
upward bending corresponds to positive total applied moments).  Please check signs. 
 

Correct, I left out the minus sign and will put it in. I also have to add a minus sign to equation (19). 
 
[175] Spelling of MacAyeal. 

 
Will fix. 

 
[188] The assumption regarding stresses evaluated at large distance from the edge of the ice is 
somewhat sketchy so I think a bit more emphasis and discussion would be relevant here. 

 
I will add reference to Weertman (1957) on this topic as suggested by reviewer 2. 
 
      [210] A reference here to Weertman 1957 or similar would be appropriate and helpful. 
 
I will add this as well. 

 
[Fig 5b] I think that a version of this plot with a logarithmic x axis (and an expanded domain 
and range) would be helpful in seeing the asymptotic behaviour of M_I at large and small z_0/h. 

 
Good idea.  In the text I will note that the analytic internal moment solution for small values of z0 
goes to -3.75 times the value of the water related moment.  For large values of z0 it goes to zero. Here 
is the new version of Figure (5) with an added plot (c): 
 
 



 
 
New Figure 5c (to be added to present Figure 5) shows the variation of internal and total 
moments as functions of the logarithm of the e-folding scale if viscosity variations. 
 
     [294] "illustrates shows" 
 
Will cut one. 
 
     [340] "places" 
 
Will be “placed” 
 
     [throughout] mathematical notation should be italic but frequently appears as regular next. 
 
Will change. 
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