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Description of CMAQ simulations and O3 components 

Table S1. Simulation names and descriptions for hemispheric-scale and regional-scale simulations. Table 

adapted from 2020 O3 Policy Assessment Table 2-1 (USEPA, 2020).  Table S1 is reproduced from Table 1 in the 

main text to aid in interpreting Tables S2 and S3. 

Simulation Description 

BASE All emission sectors are included 

ZUSA All U.S. anthropogenic emissions are removed including prescribed fires.* 

ZROW All international anthropogenic emissions are removed including prescribed fires where 

possible.** 

ZCANMEX All anthropogenic emissions from Canada and Mexico are removed including prescribed fires 

where possible.** 

ZANTH All anthropogenic emissions are removed including prescribed fires.** 

STRAT Tracer species for O3 injected into the upper troposphere/lower stratosphere based on CMAQ 

potential vorticity parameterization for stratospheric O3.*** 
* Emissions estimated to be associated with intentionally set fires (“prescribed fires”) are grouped with anthropogenic fires. 

** Only for PA simulations 

*** Only for EQUATES simulations. 

 

Table S2. Expressions used to calculate contributions from specific sources for Policy Assessment simulations 

described in Table S1. Table adapted from 2020 O3 Policy Assessment Table 2-2 (USEPA, 2020). 

Label Name Description Expression 

BASE Total Total Concentration BASE 

USB USB US Background ZUSA 

USA USA US Anthropogenic BASE – ZUSA 

INTL International Rest of the World 

Contribution 

BASE – ZROW 

CANMEX Canada & Mexico Canada & Mexico 

Contribution 

BASE – ZCANMEX 

LINTL Long-range international Contribution from 

countries other than the 

US, Canada, and Mexico 

INTL – CANMEX 

NAT Natural Natural Contribution ZANTH 

RES-ANTH Residual anthropogenic Anthropogenic 

contribution that is not 

attributed directly to 

either the US or 

International due to non-

linear chemistry 

BASE – ZANTH – INTL 

– USA 

= BASE – ZANTH – 

(BASE – ZROW) – 

(BASE – ZUSA) 

= ZROW + ZUSA – 

BASE – ZANTH  

 

Table S3. Expressions used to calculate contributions from specific sources for EQUATES simulations 

described in Table S1. 

Label Name Description Expression 

BASE Total Total Concentration BASE 

USB USB US Background ZUSA 

STRAT Stratospheric Stratospheric O3 estimate 

from potential vorticity 

tracer species 

STRAT 
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USB_NOSTRAT USB non-stratospheric Estimate of USB O3 from 

sources other than 

stratospheric O3 

ZUSA – STRAT 

Table S4. Summary of emissions used for CTM simulations. 

 PA continental PA H-CMAQ EQUATES 

continental 

EQUATES 

H-CMAQ 

US anthropogenic 2016 emissions 

modeling platform 

(2016fe) (USEPA, 

2019a) 

2016fe Foley et al. (2023) Foley et al. (2023) 

non-US (except 

Canada and 

Mexico) 

from lateral 

boundary conditions 

EDGAR-HTAP* 

projected to 2014 

(USEPA, 2019b) 

China: Tsinghua 

University (Zhao et 

al., 2018) 

rest of Asia: MIXv1 

(Li et al., 2017) 

from lateral 

boundary conditions 

EDGAR-HTAP 

projected to 2014 

China: Tsinghua 

University 

Canada and Mexico 2016fe 2016fe Canada: 

Air Pollutant 

Emission Inventory 

by Environment and 

Climate Change 

Canada 

Mexico:  

Inventory from 

Mexico's Secretariat 

of Environment and 

Natural Resources 

(SEMARNAT) 

Canada: 

Air Pollutant 

Emission Inventory 

by Environment and 

Climate Change 

Canada 

Mexico:  

Inventory from 

Mexico's Secretariat 

of Environment and 

Natural Resources 

(SEMARNAT) 

Lightning None GEIA** CMAQ inline 

module (Kang et al., 

2019) 

GEIA 

Biogenics Biogenic Emission 

Inventory System 

(BEIS) 

Model of Emissions 

of Gases and 

Aerosols from 

Nature (MEGAN), 

except BEIS over 

North America 

BEIS Hourly CAMS 

biogenic VOCs v2.2 

data (Sindelarova et 

al., 2014); extension 

of MEGAN2.1 

Soil NOx BEIS MEGAN, except 

BEIS over North 

America 

BEIS Hourly CAMS soil 

NO v2.1 data 

Wildfires 2016fe FINNv1.5 

(Wiedinmyer et al., 

2011), except 

2016fe over North 

America 

SMARTFIRE2 + 

Bluesky 

FINNv1.5;  

SMARTFIRE2 + 

Bluesky within 

North America 

Methane set to constant value 

in CMAQ (1850 

ppb) 

set to constant value 

in CMAQ (1850 

ppb) 

set to constant value 

in CMAQ (1850 

ppb) 

set to constant value 

in CMAQ (1850 

ppb) 

Stratospheric O3 from LBCs, 

otherwise none 

potential vorticity 

parameterization in 

CMAQ (Xing et al., 

2016; Mathur et al., 

2017) 

from LBCs, 

otherwise none 

potential vorticity 

parameterization in 

CMAQ 
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* https://edgar.jrc.ec.europa.eu/htap_v2/  

** http://www.geiacenter.org/  

  

https://edgar.jrc.ec.europa.eu/htap_v2/
http://www.geiacenter.org/
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Table S5. Summary of model configurations for CTM simulations. 

 PA continental PA H-CMAQ EQUATES 

continental 

EQUATES  

H-CMAQ 

CMAQ model 

version 

5.2.1 5.2.1 5.3.2 5.3.2 

Chemical 

mechanism 

cb6r3_ae6nvPOA_aq cb6r3_ae6_aq cb6r3_ae7_aq cb6r3m_ae7_kmtbr 

Lateral 

boundary 

conditions 

nested from H-CMAQ to 

36 km CMAQ to 12 km 

CMAQ 

clean conditions at 

equator 

Nested from  

H-CMAQ 

clean conditions at 

equator 

Meteorology 

model version 

WRF v3.8 WRF v3.8 WRF v4.1.1 WRF v4.1.1 

 

 
 

  



6 

 

Seasonal average O3 concentrations 

 

 

Figure S1. Seasonal average O3 from Policy Assessment CMAQ simulations. Results are shown for 36 km 

horizontal resolution for winter (DJF), spring (MAM), summer (JJA), and fall (SON). O3 concentrations 

include total (BASE) O3 as well as O3 components from USA, NAT, LINTL, and CANMEX sources. 



7 

 

 

 

Figure S2. Seasonal average O3 from Policy Assessment CMAQ simulations. Results are shown for 108 km 

horizontal resolution for winter (DJF), spring (MAM), summer (JJA), and fall (SON). O3 concentrations 

include total (BASE) O3 as well as O3 components from USA, NAT, LINTL, and CANMEX sources. 
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Figure S3. Seasonal average O3 from EQUATES CMAQ simulations. Results are shown for 12 km horizontal 

resolution for winter (DJF), spring (MAM), summer (JJA), and fall (SON). O3 concentrations include total 

(BASE) O3 as well as O3 components from USA and USB sources. 
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Figure S4. Seasonal average O3 from EQUATES CMAQ simulations. Results are shown for 108 km 

horizontal resolution for winter (DJF), spring (MAM), summer (JJA), and fall (SON). O3 concentrations 

include total (BASE) O3 as well as O3 components from USA and USB sources. 
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Regression modelling supplemental information 

The regression variables are normalized to zero mean and unit standard deviation. The means and standard 

deviations for the 2016, 2017, and combined 2016-2017 observations are provided below. 

Table S6. Regression variable means and standard deviations.  

  

 variable 

mean standard deviation 

2016 2017 2016-2017 2016 2017 2016-2017 

lon -95.4 -95.0 -95.2 16.0 15.7 15.8 

lat 37.5 37.7 37.6 4.80 4.73 4.76 

z 401 402 402 566 571 569 

sin(d) -0.017 0.016 0.000 0.718 0.725 0.722 

cos(d) -0.142 -0.128 -0.135 0.681 0.676 0.679 
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In the cross-validation summary tables, spatial and temporal withholding refers to randomly assigning 10% of data to the test set, spatial withholding refers to 

assigning data from 10% of randomly chosen observation sites to the test set, and temporal withholding refers to assigning data from 10% of randomly chosen days 

of the year to the test set. O3 split refers to the O3 components included in each regression model. The BASE O3 simulation performance is also provided for 

comparison to the results of the regression models. 

Table S7. Summary of linear regression model cross-validation root mean square error (RMSE).  

modelling 

case O3 split 

BASE 

Simulation 

RMSE 

(ppb) 

training 

RMSE 

spatial and 

temporal 

withholding 

(ppb) 

test RMSE 

spatial and 

temporal 

withholding 

(ppb) 

training 

RMSE 

spatial 

withholding 

(ppb) 

test RMSE 

spatial 

withholding 

(ppb) 

training 

RMSE 

temporal 

withholding 

(ppb) 

test RMSE 

temporal 

withholding 

(ppb) 

EQUATES 

12 km 

USA + USB 

8.09 

7.25 7.25 7.25 7.22 7.25 7.28 

USA + 

USB_NOSTRAT + 

STRAT 

7.12 7.13 7.12 7.14 7.11 7.2 

EQUATES 

108 km 
USA + USB 9.29 8.33 8.34 8.33 8.40 8.35 8.24 

PA 12 km 

USA + USB 

8.18 

7.04 7.10 7.07 6.79 7.04 7.04 

USA + NAT + INTL 7.14 7.18 7.17 6.86 7.14 7.17 

USA + NAT + LINTL 

+ CANMEX 
7.09 7.13 7.12 6.82 7.09 7.09 

PA 36 km 

USA + USB 

10.04 

7.96 7.97 8.01 7.47 7.97 7.89 

USA + NAT + INTL 7.98 7.98 8.02 7.55 7.98 7.93 

USA + NAT + LINTL 

+ CANMEX 
7.89 7.89 7.93 7.52 7.9 7.87 

PA 108 km 

USA + USB 

12.05 

8.67 8.69 8.71 8.33 8.68 8.63 

USA + NAT + INTL 8.65 8.69 8.68 8.45 8.66 8.64 

USA + NAT + LINTL 

+ CANMEX 
8.52 8.56 8.54 8.42 8.54 8.47 

Average n/a 9.53 7.80 7.83 7.83 7.58 7.81 7.79 
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Table S8. Summary of linear regression model cross-validation mean biases (MB). 

modelling 

case O3 split 

BASE 

Simulation 

MB 

(ppb) 

training MB 

random split 

(ppb) 

test MB 

random split 

(ppb) 

training MB 

site split 

(ppb) 

test MB site 

split 

(ppb) 

training MB 

time split 

(ppb) 

test MB time 

split 

(ppb) 

EQUATES 

12 km 

USA + USB 

-1.83 

-0.08 -0.07 -0.07 -0.4 -0.08 0.4 

USA + 

USB_NOSTRAT + 

STRAT 

-0.12 -0.12 -0.11 -0.12 -0.12 0.38 

EQUATES 

108 km 
USA + USB 0.66 -0.1 -0.07 -0.1 -0.28 -0.1 0.31 

PA 12 km 

USA + USB 

0.49 

-0.09 -0.1 -0.09 -0.55 -0.09 0.54 

USA + NAT + INTL -0.16 -0.15 -0.16 -0.62 -0.16 0.47 

USA + NAT + LINTL 

+ CANMEX 
-0.15 -0.14 -0.15 -0.62 -0.15 0.52 

PA 36 km 

USA + USB 

2.16 

-0.24 -0.28 -0.25 -0.74 -0.24 0.31 

USA + NAT + INTL -0.29 -0.31 -0.29 -0.83 -0.29 0.23 

USA + NAT + LINTL 

+ CANMEX 
-0.26 -0.28 -0.26 -0.79 -0.26 0.31 

PA 108 km 

USA + USB 

4.16 

-0.26 -0.33 -0.26 -0.83 -0.26 0.38 

USA + NAT + INTL -0.26 -0.31 -0.26 -0.9 -0.26 0.33 

USA + NAT + LINTL 

+ CANMEX 
-0.23 -0.28 -0.22 -0.86 -0.23 0.39 

Average n/a 1.13 -0.19 -0.20 -0.19 -0.63 -0.19 0.38 
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Table S9. Regression model coefficients and standard errors for USA + USB formulation models. 

  EQUATES 12 

km 

EQUATES 108 

km PA 12 km PA 36 km PA 108 km 

α0,USA 1.093 ± 0.0021 0.951 ± 0.0026 0.86 ± 0.0014 0.762 ± 0.0016 0.658 ± 0.0017 

αx,USA -0.119 ± 0.0015 -0.108 ± 0.0023 -0.054 ± 0.0011 -0.061 ± 0.0011 -0.037 ± 0.0013 

αy,USA 0.075 ± 0.0016 0.006 ± 0.002 -0.006 ± 0.0011 -0.028 ± 0.0011 0.005 ± 0.001 

Αe 0.01 ± 0.0023 0.064 ± 0.0028 0.044 ± 0.0016 0.078 ± 0.0016 0.141 ± 0.002 

αsin,USA 0.094 ± 0.0017 0.109 ± 0.002 0.024 ± 0.0011 0.018 ± 0.0011 -0.016 ± 0.0012 

αcos,USA 0.085 ± 0.0018 0.184 ± 0.0022 0.005 ± 0.0012 0.043 ± 0.0013 0.074 ± 0.0014 

α0,USB 1.05 ± 0.0006 1.027 ± 0.0008 1.053 ± 0.0007 1.062 ± 0.0008 1.061 ± 0.0008 

αx,USB -0.02 ± 0.0006 -0.008 ± 0.0007 0.008 ± 0.0006 0.029 ± 0.0007 0.02 ± 0.0007 

αy,USB -0.016 ± 0.0005 -0.01 ± 0.0006 0.022 ± 0.0006 0.016 ± 0.0007 0.009 ± 0.0007 

αz,USB 0.002 ± 0.0005 -0.001 ± 0.0007 0.005 ± 0.0006 0.004 ± 0.0006 -0.014 ± 0.0007 

αsin,USB 0.044 ± 0.0006 0.036 ± 0.0007 0.078 ± 0.0006 0.078 ± 0.0007 0.089 ± 0.0007 

αcos,USB 0.001 ± 0.0005 -0.041 ± 0.0006 0.028 ± 0.0006 0.001 ± 0.0006 -0.016 ± 0.0007 
 

Table S10. Regression model coefficients and standard errors for USA + NAT + INTL formulation models. 

 
PA 12 km PA 36 km PA 108 km 

α0,USA 0.943 ± 0.0016 0.835 ± 0.0018 0.74 ± 0.002 

αx,USA -0.028 ± 0.0012 -0.031 ± 0.0013 -0.051 ± 0.0014 

αy,USA 0.024 ± 0.0012 -0.032 ± 0.0012 0.046 ± 0.0012 

αz,USA 0.077 ± 0.0017 0.134 ± 0.0018 0.178 ± 0.0022 

αsin,USA 0.066 ± 0.0013 0.066 ± 0.0013 0.026 ± 0.0015 

αcos,USA -0.014 ± 0.0014 0.062 ± 0.0015 0.118 ± 0.0017 

α0,NAT 1.065 ± 0.0022 1.107 ± 0.0025 1.1 ± 0.0027 

αx,NAT -0.044 ± 0.0019 -0.012 ± 0.002 0.051 ± 0.0021 

αy,NAT -0.067 ± 0.0019 -0.022 ± 0.002 -0.102 ± 0.002 

αz,NAT -0.041 ± 0.0019 -0.104 ± 0.0021 -0.085 ± 0.0021 

αsin,NAT 0.009 ± 0.002 -0.01 ± 0.0022 0.06 ± 0.0022 

αcos,NAT 0.103 ± 0.0022 -0.016 ± 0.0026 -0.071 ± 0.0027 

α0,INTL 1.332 ± 0.0051 1.248 ± 0.0056 1.238 ± 0.0063 

αx,INTL 0.15 ± 0.004 0.123 ± 0.0041 -0.014 ± 0.0045 

αy,INTL 0.197 ± 0.0038 0.114 ± 0.0037 0.243 ± 0.0043 

αz,INTL 0.09 ± 0.0042 0.203 ± 0.0045 0.141 ± 0.0047 

αsin,INTL 0.154 ± 0.0043 0.205 ± 0.0046 0.069 ± 0.005 

αcos,INTL -0.146 ± 0.0049 0.005 ± 0.0055 0.074 ± 0.0059 
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Table S11. Regression model coefficients and standard errors for USA + NAT + LINTL + CANMEX formulation models. 

 
PA 12 km PA 36 km PA 108 km 

α0,USA 0.951 ± 0.0016 0.859 ± 0.0018 0.771 ± 0.002 

αx,USA -0.034 ± 0.0012 -0.046 ± 0.0013 -0.054 ± 0.0014 

αy,USA 0.033 ± 0.0012 -0.008 ± 0.0012 0.055 ± 0.0012 

αz,USA 0.066 ± 0.0018 0.12 ± 0.0018 0.187 ± 0.0022 

αsin,USA 0.063 ± 0.0013 0.062 ± 0.0013 0.009 ± 0.0014 

αcos,USA -0.004 ± 0.0014 0.085 ± 0.0016 0.143 ± 0.0018 

α0,NAT 1.037 ± 0.0023 1.047 ± 0.0027 1.006 ± 0.003 

αx,NAT -0.043 ± 0.002 0.014 ± 0.0021 0.056 ± 0.0021 

αy,NAT -0.073 ± 0.0019 -0.065 ± 0.0021 -0.087 ± 0.002 

αz,NAT -0.03 ± 0.002 -0.082 ± 0.0022 -0.1 ± 0.0021 

αsin,NAT 0.013 ± 0.002 0.006 ± 0.0022 0.083 ± 0.0022 

αcos,NAT 0.082 ± 0.0023 -0.056 ± 0.0027 -0.135 ± 0.0029 

α0,LINTL 1.54 ± 0.0068 1.601 ± 0.0077 1.822 ± 0.0085 

αx,LINTL 0.192 ± 0.0046 0.121 ± 0.005 0.095 ± 0.005 

αy,LINTL 0.224 ± 0.0047 0.264 ± 0.0051 0.151 ± 0.0052 

αz,LINTL 0.017 ± 0.0047 0.104 ± 0.0053 0.15 ± 0.0049 

αsin,LINTL 0.148 ± 0.0052 0.117 ± 0.0058 -0.102 ± 0.0059 

αcos,LINTL -0.095 ± 0.0059 0.063 ± 0.0066 0.104 ± 0.0068 

α0,CANMEX 0.943 ± 0.0079 0.803 ± 0.0081 0.667 ± 0.009 

αx, CANMEX 0.191 ± 0.0079 0.135 ± 0.0068 -0.143 ± 0.0098 

αy, CANMEX 0.117 ± 0.0063 0.004 ± 0.0052 0.173 ± 0.0075 

αz, CANMEX 0.295 ± 0.0071 0.352 ± 0.0071 0.248 ± 0.0085 

αsin, CANMEX 0.007 ± 0.0075 0.056 ± 0.0074 0.021 ± 0.0082 

αcos, CANMEX -0.327 ± 0.0077 -0.174 ± 0.008 0.094 ± 0.0085 
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Table S12. Regression model coefficients and standard errors for USA + USB_NOSTRAT + NOSTRAT formulation model. 

 
EQUATES 12 km 

α0,USA 1.088 ± 0.0015 

αx,USA -0.1 ± 0.0011 

αy,USA 0.043 ± 0.0011 

αz,USA 0.006 ± 0.0016 

αsin,USA 0.066 ± 0.0011 

αcos,USA 0.062 ± 0.0013 

α0,USB_NOSTRAT 1.058 ± 0.0017 

αx,USB_NOSTRAT  0.097 ± 0.0012 

αy,USB_NOSTRAT  -0.011 ± 0.001 

αz,USB_NOSTRAT  -0.001 ± 0.0013 

αsin,USB_NOSTRAT  0.028 ± 0.0012 

αcos,USB_NOSTRAT  -0.116 ± 0.0015 

α0,STRAT 1.038 ± 0.0022 

αx, STRAT -0.167 ± 0.0015 

αy, STRAT -0.035 ± 0.0013 

αz, STRAT 0.012 ± 0.0015 

αsin, STRAT 0.074 ± 0.0016 

αcos, STRAT 0.154 ± 0.0019 
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Empirical orthogonal function analysis 

The inferred CMAQ bias fields are further analyzed by performing an empirical orthogonal function (EOF) 

analysis to explore the spatial and temporal variability of the inferred bias. The EOF analysis is performed using the 

eofs Python package (Dawson, 2016). EOFs and principal components (PCs) represent the inferred bias time series as 

follows: 

𝑓(𝑡, 𝑥, 𝑦) =  ∑ 𝑃𝑘(𝑡) × 𝐸𝑘(𝑥, 𝑦)

𝑘

 

Where: 

f is the inferred bias timeseries 

k is the number of orthogonal basis functions 

P are the PCs that represent how the EOFs vary in time 

E are the EOFs that show the spatial structure of the influences on the temporal variability of f  

The EOFs are scaled by multiplying by the square root of the corresponding eigenvectors. The PCs are scaled by 

dividing by the square root of the corresponding eigenvectors (which is equivalent to scaling the PCs to unit variance). 

The leading EOF of each of the inferred bias components are shown in Figures S5 – S6. Results are shown here for 

the 12 km horizontal resolution Policy Assessment (PA) and EQUATES simulations. Note that the data is normalized 

to zero mean along the time axis before calculating the EOFs and time series. The EOFs and PCs then represent the 

variation from the average bias for each component. 

In both simulation cases, the leading EOF of BASE O3 bias is positive and is higher in the eastern US. The 

corresponding PCs are also similar, showing a seasonal pattern with negative values in the winter and spring and 

positive values in the summer and fall. The leading EOFs of the USA O3 bias are also similar in the two cases, with 

the highest values in the most populated areas. The PCs are also similar with positive values in the summer and fall 

and slightly negative values during other times. In general, for BASE O3 and each of the components, the PC of the 

leading EOF follows the same temporal pattern as the temporal trends of the bias shown in Figure 6 if the EOF is 

mostly positive and the inverse of the temporal trend of the bias if the EOF is mostly negative. 

The information that can be obtained from an EOF analysis of a single year (or two years for the EQUATES 

data) is limited. Longer timeseries are needed to uncover the structure of variability within the data. The full 

EQUATES dataset from 2002 – 2019 for total (i.e., BASE) O3 may provide some opportunity to explore this further 

in the future. 
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Figure S5. Leading EOF and PC time series for inferred bias of BASE O3 and each O3 component for Policy Assessment 

(PA) 12 km simulations. The number in parenthesis is the percent of variance explained by the leading EOF.  
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Figure S6. Leading EOF and PC time series for inferred bias of BASE O3 and each O3 component for EQUATES 12 km 

simulations. The number in parenthesis is the percent of variance explained by the leading EOF.  
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CTM biases by model resolution 

As mentioned in previous sections, the inferred CTM bias in USA O3 tends to increase both with coarser 

model resolution and with increasing BASE O3. The effects of this finding at O3 monitoring site locations are shown 

in Figure 9. Here, total O3 is split only into the most basic two components (USA and USB) for simplicity. The 

inferred bias in USB O3 is consistent across model resolutions and BASE O3 concentrations. USB O3 bias is also 

consistent between the PA and EQUATES simulations. USA O3 for the PA simulations is typically biased high. 

Across all three model resolutions (12, 36, and 108 km), the inferred bias increases with higher BASE O3. The bias 

increases at all O3 concentration bins when going from 12 km to 36 km and from 36 km to 108 km. Both the typical 

biases (as indicated by the median) and the more extreme biases (as indicated by the 5th and 95th percentiles) 

increase with coarser model resolution. The EQUATES simulations have lower inferred biases in USA O3 compared 

to the corresponding PA simulations of the same model resolution. For the 12 km resolution EQUATES simulation, 

the USA O3 biases do not change much at different O3 concentration bins. The 108 km EQUATES simulation has 

similar behavior to the PA simulations that the USA O3 bias gets larger with increasing BASE O3. The increasingly 

high bias with coarser model resolution is likely due to over-dilution of NOx in the coarser resolution simulations 

(e.g., Li et al. (2023)). This can result in NOx that is more localized with finer model resolution being spread out 

across a larger area in the coarser model resolutions and enhancing O3 production in areas that should in reality have 

less NOx as well as reducing the effect of NOx titration in high NOx areas. 
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Figure S7. Inferred biases of USA and USB separated by simulated O3 concentration at O3 monitoring sites. Results are 

shown for the PA (top row) and EQUATES (bottom row) simulations for all available model resolutions. The line shows 

the median; the box shows the 25th-75th percentiles; the whiskers show the 5th and 95th percentiles.  
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