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Abstract. United States (US) background ozone (O3) is the counterfactual O3 that would exist with zero 

US anthropogenic emissions. Estimates of US background O3 typically come from chemical transport 

models (CTMs), but different models vary in their estimates of both background and total O3. Here, a 10 

measurement-model data fusion approach is used to estimate CTM biases in US anthropogenic O3 and 

multiple US background O3 sources, including natural emissions, long-range international emissions, 

short-range international emissions from Canada and Mexico, and stratospheric O3. Spatially and 

temporally varying bias correction factors adjust each simulated O3 component so that the sum of the 

adjusted components evaluates better against observations compared to unadjusted estimates. The 15 

estimated correction factors suggest a seasonally consistent positive bias in US anthropogenic O3 in the 

eastern US, with the bias becoming higher with coarser model resolution and with higher simulated total 

O3 though the bias does not increase much with higher observed O3. Summer average US anthropogenic 

O3 in the eastern US was estimated to be biased high by 2, 7, and 11 ppb (11%, 32%, and 49%) for one 

set of simulations at 12, 36, and 108 km resolutions and 1 and 6 ppb (10% and 37%) for another set of 20 

simulations at 12 and 108 km resolutions. Correlation among different US background O3 components 

can increase the uncertainty in the estimation of the source-specific adjustment factors. Despite this, 

results indicate a negative bias in modeled estimates of the impact of stratospheric O3 at the surface, with 

a western US spring average bias of -3.5 ppb (-25%) estimated based on a stratospheric O3 tracer. This 

type of data fusion approach can be extended to include data from multiple models to leverage the 25 

strengths of different data sources while reducing uncertainty in the US background ozone estimates.  
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1 Introduction 

United States (US) background (USB) ozone (O3) is the counterfactual O3 that would exist if US 

anthropogenic (USA) emissions were zero. The National Ambient Air Quality Standard (NAAQS) for O3 

was set at a level of 70 ppb in 2015 and may be lowered. In its recent reviews of the O3 NAAQS, the US 30 

Environmental Protection Agency (EPA) noted the importance of USB O3 (US EPA, 2013, 2014, 2020b, 

a). USB O3 takes up a larger portion of the allowed ozone as the NAAQS is tightened and is a larger 

portion of total observed O3 as anthropogenic precursor emissions decline (Lin et al., 2017; Guo et al., 

2018; Jaffe et al., 2018). USB O3 cannot be observed (Fiore et al., 2003; Dentener et al., 2010; Mcdonald-

Buller et al., 2011; Fiore et al., 2014; Jaffe et al., 2018; US EPA, 2013, 2014, 2020b, a). It is typically 35 

quantified using a chemical transport model (CTM), most commonly using the zero-out method in which 

USA emissions are set to zero. There is much uncertainty in CTM estimates of USB O3 due to model 

biases and differences in CTM-estimated USB O3 among different models (Mcdonald-Buller et al., 2011; 

Fiore et al., 2014; Dolwick et al., 2015; Huang et al., 2015; Guo et al., 2018; Jaffe et al., 2018). Jaffe et 

al. (2018) estimated that the typical uncertainty in CTM-estimated seasonal mean USB O3 is ±10 ppb. 40 

Sources of USB O3 include naturally occurring emissions such as wildfires, biogenic VOCs, 

oxides of nitrogen (NOx) from soil, lightning NOx, stratosphere-to-troposphere exchange, and oxidation 

of methane (Fiore et al., 2014; Jaffe et al., 2018; US EPA, 2020a). Some portions of total O3 contributions 

from soil NOx and methane oxidation are USB sources while some are anthropogenic. Soil NOx is emitted 

by microbial processes in both natural and agricultural lands and is limited by availability of nitrogen in 45 

the soil. There is a pre-industrial level of methane that contributes to USB O3 formation, but any O3 

created through oxidation of methane above the pre-industrial level is anthropogenic. Soil NOx and 

methane oxidation are often treated as USB O3 sources in their entirety in CTM studies due to the 

complexity of splitting up the natural and anthropogenic portions (US EPA, 2020a). Wildfires are treated 

as USB O3 sources, but the impacts of wildfires on O3 can be affected by US anthropogenic emissions 50 

when VOCs from fires are transported over NOx-rich urban areas, leading to enhanced O3 production 

(Jaffe et al., 2013; Langford et al., 2023; Rickly et al., 2023). USB O3 sources also include non-US 

anthropogenic pollution which may be from long range transport (Lin et al., 2012b) or from short range 

transport from neighboring countries (Wang et al., 2009). 
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In previous work (Skipper et al., 2021), we developed a bias correction method which used 55 

regression modeling to adjust CTM-simulated USA and USB O3 to better align with observations and to 

improve agreement of differing USB O3 estimates from different model configurations. We developed 

spatially and temporally varying scaling factors to adjust USA and USB O3. In that work, USB O3 was 

treated as a single quantity rather than considering different sources of USB O3 individually. A consistent 

low bias in USB O3 in spring was identified, though the specific source of this low bias could not be 60 

identified. Here, we extend the bias correction method to estimate biases in separate components of USB 

O3. Separating the USB O3 components provides new insights into the inferred CTM error in USB O3 

that was not possible when USB O3 was treated as a lumped quantity. 

2 Methods 

2.1 Chemical transport model simulations 65 

Total O3 (i.e., BASE O3), USB O3, and individual USB O3 components are simulated at both 

regional and hemispheric scales using the Community Multiscale Air Quality (CMAQ) model. We use 

maximum daily 8-h average (MDA8) O3 as the metric of interest since this is the metric used in 

determining attainment of the NAAQS. References to O3 throughout are to MDA8 O3. CMAQ results are 

from two recent sets of simulations by the US EPA (Table 1). The two sets of simulations include different 70 

USB O3 components allowing us to explore how different components of USB O3 affect the bias in O3.  

 

Table 1. Simulation names and descriptions for hemispheric-scale and regional-scale simulations. 

Table adapted from 2020 O3 Policy Assessment Table 2-1 (US EPA, 2020a). 

Simulation Description 

BASE All emission sectors are included. 

ZUSA All US anthropogenic emissions are removed including prescribed fires. a 

ZROW All anthropogenic emissions outside the US are removed including prescribed fires 

where possible (ROW = rest of world). b 

ZCANMEX All anthropogenic emissions from Canada and Mexico are removed including 

prescribed fires where possible. b 
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ZANTH All anthropogenic emissions globally are removed including prescribed fires. b 

STRAT Tracer species for O3 injected into the upper troposphere/lower stratosphere based on 

CMAQ potential vorticity parameterization for stratospheric O3.c 

a Emissions estimated to be associated with intentionally set fires (“prescribed fires”) are grouped with anthropogenic fires. 75 
b Only for PA simulations 
c Only for EQUATES simulations. 

 

The first set of simulations was conducted for the Policy Assessment (PA) for the review of the 

O3 NAAQS in 2020 (US EPA, 2020a). These simulations also support the draft PA for the reconsideration 80 

of the O3 NAAQS. The PA simulations cover the entire year of 2016 and provide estimates of USA and 

USB O3 as well as natural (NAT) and international anthropogenic (INTL) contributions to USB O3. INTL 

O3 is also further decomposed to short-range international anthropogenic contributions from Canada and 

Mexico (CANMEX) and long-range international (LINTL) contributions from other countries. The PA 

simulations consist of nested simulations from hemispheric scale (Mathur et al., 2017) at 108 km 85 

horizontal resolution to continental scale at 36 km resolution to a finer continental scale at 12 km 

resolution. 

USB O3 components are determined by the zero-out method in which the model is run in the same 

configuration as the base case but with specified emissions sources removed. The zero-out method is the 

most common approach for simulating USB O3, though other approaches such as sensitivity simulations 90 

and source tagging techniques have also been previously employed (Jaffe et al., 2018). The zero-out 

method neglects non-linear interactions between sources which can affect the simulated source 

contribution (Wu et al., 2009; Dolwick et al., 2015). However, the zero-out method is consistent with the 

definition of USB O3 as the level of O3 in the absence of US anthropogenic emissions, while sensitivity 

or tagging techniques would instead provide an estimate of source contributions to total simulated O3 95 

(including O3 from US anthropogenic sources). USB O3 is estimated by removing US anthropogenic 

emissions (ZUSA simulation). USA O3 is calculated as BASE O3 minus USB O3. NAT O3 is estimated 

by removing all anthropogenic emissions (ZANTH simulation). The non-US anthropogenic O3 

contribution is estimated by removing anthropogenic emissions everywhere except the US (ZROW 

simulation). The INTL contribution is calculated as BASE O3 minus O3 from the ZROW simulation. 100 

CANMEX O3 is estimated by removing Canada and Mexico anthropogenic emissions (ZCANMEX). The 
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CANMEX O3 contribution is calculated as BASE O3 minus the O3 from the ZCANMEX simulation. 

LINTL O3 is estimated as INTL O3 minus CANMEX O3. Due to non-linear chemistry, there is some 

residual anthropogenic contribution to BASE O3 which is not attributed to US or international emissions. 

Descriptions of these CMAQ simulations and calculation of O3 components are given in Tables S1 and 105 

S2. Further details of the modeling setup are available in the 2020 Policy Assessment (US EPA, 2020a).. 

The second set of simulations was developed from EPA’s Air QUAlity TimE Series (EQUATES) 

project which spans 2002-2019. Additional simulations using the EQUATES modeling framework were 

conducted for 2016–2017 to estimate USB O3 and USA O3 using the zero-out method. The EQUATES 

simulations consist of hemispheric scale simulations at 108 km horizontal resolution and nested US 110 

continental scale simulations at 12 km horizontal resolution. Descriptions of these CMAQ simulations 

and calculation of O3 components are given in Table S3. Further details on the model configuration for 

EQUATES are available from Foley et al. (2020) and Foley et al. (2023). More details on both the PA 

and EQUATES simulations are summarized in Tables S4 and S5. 

The 108 km EQUATES simulations also include an inert tracer species which serves as a proxy 115 

for simulated stratospheric O3 contributions. Separate stratospheric O3 contributions were not available 

from the PA simulations, so the EQUATES simulations provide an opportunity to assess potential biases 

specific to stratospheric O3 contributions. CMAQ simulates stratospheric O3 using a parameterization 

based on the relationship between O3 and potential vorticity (PV) in the upper troposphere and lower 

stratosphere (UTLS) (Xing et al., 2016). The parameterization was developed using 21 years of 120 

ozonesonde data from the World Ozone and Ultraviolet Radiation Data Centre and PV data from the 

Weather Research Forecasting (WRF) model for 1990-2010. In the EQUATES 108 km simulations, the 

parameterization is applied to the top model layer only. A PV tracer species tracks O3 injected into the 

UTLS throughout the rest of the model domain for the hemispheric simulations. The 12 km continental 

simulations inherit the PV tracer species through lateral boundary conditions from the hemispheric 125 

simulations. This tracer is subject to transport and deposition but not chemistry. We refer to the PV tracer 

concentrations as STRAT (short for stratospheric) O3 since it relates to the stratospheric influence, but it 

only partly replicates the impact of stratospheric O3 since it does not undergo chemical losses. STRAT 

O3 does, however, provide a measure of the spatiotemporal variability of stratospheric O3 impacts. We 
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also estimate the contribution to USB O3 from sources other than the stratosphere as USB O3 minus 130 

STRAT O3 and refer to it as USB_NOSTRAT O3. The use of the chemically inert PV tracer to split up 

stratospheric and non-stratospheric influences on USB O3 introduces uncertainty as the STRAT O3 

component may be unrealistically high, especially in areas and times with more active chemistry. 

The modeling configurations of the PA and EQUATES simulations differ in some respects which 

is expected to lead to some differences in simulated O3, though they do share some of the same 135 

configuration options. Both the PA and EQUATES simulations use a 44-layer vertical structure for 

hemispheric scale applications (at 108 km resolution) and a 35-layer vertical structure for continental (i.e., 

36 km and 12 km resolution) applications with a vertical extent from the surface to 50 hPa and a surface 

layer height of approximately 20 m for both the hemispheric and continental configurations (see Mathur 

et al. (2017) for more details on these vertical layer structures). CMAQ v5.2.1 was used for the PA 140 

simulations while CMAQ v5.3.2 was used for the EQUATES simulations. These were the latest versions 

of CMAQ at the respective times that each set of simulations were conducted. One potential source of 

differences is that halogen chemistry was updated in CMAQ v5.3 (Sarwar et al., 2019). The EQUATES 

hemispheric simulations therefore include losses of O3 over seawater that are not present in the PA 

hemispheric simulations which could affect O3 transported over the Pacific in particular. An 145 

intercomparison of CMAQ v5.2.1 and CMAQ v5.3.1 (which is not significantly different from CMAQ 

v5.3.2) showed that the newer version typically had lower O3 compared to the older version, with mean 

bias ~1 ppb lower in CMAQ v5.3.1 (Appel et al., 2021). Besides the addition of halogen chemistry, there 

are other differences in the chemical mechanisms used for each set of simulations. The mechanisms used 

for the hemispheric simulations were cb6r3_ae6_aq for the PA simulations and cb6r3m_ae7_kmtbr for 150 

the EQUATES simulations. The part of the mechanism name labeled cb6r3m indicates additional 

chemistry relevant in marine environments (the halogen chemistry described above); ae6 and ae7 indicate 

the version number for chemistry relevant to aerosols; aq and kmtbr indicate different treatments of cloud 

chemistry. The chemical mechanisms used for continental-scale PA and EQUATES simulations 

(cb6r3_ae6nvPOA_aq and cb6r3_ae7_aq) also differ in their representation of organic aerosols (Murphy 155 

et al., 2017; Pye et al., 2019; Qin et al., 2021; Appel et al., 2021) which could affect O3 concentrations. 
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Different versions of WRF (v3.8 for PA simulations and v4.1.1 for EQUATES simulations) employed 

may also contribute to differences in O3.  

Emission inputs also differ between the PA and EQUATES simulations. Different US 

anthropogenic emission inventories were used for the simulations. The PA simulations used an early 160 

version (sometimes called the “alpha” version) of a 2016 emissions modeling platform developed by the 

National Emissions Inventory Collaborative (US EPA, 2019b). The EQUATES simulations used an 

inventory that was developed as part of the broader EQUATES framework to model a long timeseries 

using consistent methods for emissions estimates (Foley et al., 2023). For emissions in Canada and 

Mexico, both sets of simulations use emission inventories developed by the respective national 165 

governments, though the EQUATES simulations use more recent inventories (as described by Foley et 

al. (2020)) than the PA simulations (as described by US EPA (2019b)).). Both the PA and EQUATES 

simulations use the Tsinghua University inventory of emissions in China (Zhao et al., 2018). For other 

countries, both sets of simulations use the Hemispheric Transport of Air Pollution (HTAP) v2.2 inventory 

(Janssens-Maenhout et al., 2015) with scaling factors derived from the Community Emissions Data 170 

System (CEDS) (Hoesly et al., 2018) to account for yearly changes. Differences in the anthropogenic 

emissions used in the two model configurations are expected to contribute to differences in simulated O3, 

most notably for the different US anthropogenic emissions since we focus here on O3 in the US.  

For hemispheric-scale simulations, biogenic VOC emissions are from the Model of Emissions of 

Gases and Aerosols from Nature version 2.1 (MEGAN2.1) (Guenther et al., 2012). The PA simulations 175 

additionally replace MEGAN emissions with emissions from the Biogenic Emission Inventory System 

(BEIS) (Bash et al., 2016) over North America (US EPA, 2019a).. The EQUATES MEGAN emissions 

are obtained from a compilation by Sindelarova et al. (2014). Soil NOx emissions for the PA hemispheric 

simulations are also from MEGAN with replacement by BEIS soil NOx over North America. Soil NOx 

emissions for the hemispheric EQUATES simulations are from a dataset by the Copernicus Atmosphere 180 

Monitoring Service (CAMS, 2018) based on methods by Yienger and Levy (1995). Lightning NO 

emissions for both the PA and EQUATES hemispheric simulations are from monthly climatology 

obtained from the Global Emissions Initiative (GEIA) and are based on Price et al. (1997). Lightning NOx 

was not included in the PA continental-scale simulations, while lightning NOx for the EQUATES 
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continental-scale simulations is calculated using an inline module in CMAQ (Kang et al., 2019). For both 185 

PA and EQUATES, wildfire emissions outside of North America are based on the Fire Inventory from 

NCAR (FINN) v1.5 (Wiedinmyer et al., 2011) which provides day-specific fire emissions. Wildfires are 

vertically allocated with 25% of emissions distributed to the lowest two layers (~0-45 m), 35% distributed 

to layers 3-9 (~45-350 m), and the remaining 40% distributed to layers 10-19 (~350-2000 m) as described 

in the Technical Support Document for northern hemispheric emissions (US EPA, 2019a). Wildfire 190 

emissions within North America are based on the Hazard Mapping System (HMS) fire product which 

provides day-specific fire activity data. Emission processing for North American wildfires is further 

described in the Technical Support Document for North American emissions (US EPA, 2019b) 

(applicable to PA simulations) and Foley et al. (2023) (applicable to EQUATES simulations). Although 

the methods are similar, North American wildfire emissions may differ between PA and EQUATES based 195 

on the specific fire activity data that was used in each case. Fire plume injection height for North American 

fires is determined by an inline plume rise algorithm in CMAQ based on fire heat content (see e.g., 

Wilkins et al. (2022) for more details on fire plume injection height in CMAQ). Stratospheric O3 in both 

the PA and EQUATES simulations is from the PV parameterization by Xing et al. (2016) (described in 

more detail above) in the hemispheric simulations. Stratospheric O3 in the continental-scale simulations 200 

only comes from any stratospheric O3 inherited from the lateral boundary conditions provided by the 

hemispheric simulations. 

2.2 O3 observations 

O3 observational data are from the Air Quality System (AQS) database, which provides data from 

federal, state, local, and tribal air quality monitoring networks across the US. The average precision of O3 205 

monitors in the AQS database was reported as 2.2% and 2.4% in 2016 and 2017, respectively, and the 

national average absolute bias was reported as 1.5% in both 2016 and 2017 

(https://www.epa.gov/amtic/amtic-ambient-air-monitoring-assessments). There were ~360,000 MDA8 

O3 observations available per year for 2016 and 2017 from ~1250 unique monitoring sites. These numbers 

take into account monitoring sites where O3 is measured by multiple instruments at the same location (as 210 

indicated in the AQS database by a parameter occurrence code). In these cases, the MDA8 O3 

https://www.epa.gov/amtic/amtic-ambient-air-monitoring-assessments
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observations from multiple instruments are averaged for a given site and day and treated as a single 

observation. The observations overrepresent the eastern US compared to the western US. About 40% of 

daily MDA8 O3 observations and ~36% of O3 monitoring sites are in the western US (as defined by 

longitude < -97 °W). Western US sites are also overrepresented by sites in the state of California. About 215 

40% of daily MDA8 O3 observations and ~40% of O3 monitoring sites in the western US are in California. 

The observations also overrepresent the high O3 season of April – October (Figure 1) since many monitors 

are only required to be operated during the high O3 season. 

 

 220 

Figure 1. Locations of O3 observational sites in 2016 indicated with a circle whose color shows the 

number of daily MDA8 O3 observations available from each site in 2016 (top). Total number of 

daily MDA8 O3 observations in each month of 2016 (bottom). 
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2.3 O3 data fusion model 225 

We use multivariate ordinary least squares regression to model the relationship between the 

individual model components and observed MDA8 O3. Regression parameters provide estimates of the 

spatial and temporal model bias attributable to each individual O3 component. The regression model for 

ozone mixing ratio O3 on day d and location (lon, lat, z) is formulated as follows: 

𝑂3 = ∑ 𝛼𝑖𝑂3𝑖
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑖 +  𝜀  230 

Where: 

𝛼𝑖 =  𝛼0,𝑖 + 𝛼𝑥,𝑖𝑙𝑜𝑛 + 𝛼𝑦,𝑖𝑙𝑎𝑡 + 𝛼𝑧,𝑖𝑧 + 𝛼𝑠𝑖𝑛,𝑖 sin(𝑑) + 𝛼𝑐𝑜𝑠,𝑖 cos(𝑑) 

d is day of year in radians 

z is elevation above sea level 

lon, lat, z, sin(d), and cos(d) are normalized to zero mean and unit standard deviation (Table S6) 235 

𝜀 ~ 𝑁(0, 𝜎2) 

index i represents different sets of O3 components. Specifically, we consider four sets of i: 

𝑖 ∈ {𝑈𝑆𝐴, 𝑈𝑆𝐵}   (PA and EQUATES) 

𝑖 ∈ {𝑈𝑆𝐴, 𝑁𝐴𝑇, 𝐼𝑁𝑇𝐿}  (PA only) 

𝑖 ∈ {𝑈𝑆𝐴, 𝑁𝐴𝑇, 𝐿𝐼𝑁𝑇𝐿, 𝐶𝐴𝑁𝑀𝐸𝑋} (PA only) 240 

𝑖 ∈ {𝑈𝑆𝐴, 𝑈𝑆𝐵_𝑁𝑂𝑆𝑇𝑅𝐴𝑇, 𝑆𝑇𝑅𝐴𝑇}  (EQUATES only) 

 

Each simulated O3 component (𝑂3𝑖
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 ) is multiplied by the alpha adjustment factor for that 

component (αi), which varies as a function of space and time, to calculate an adjusted estimate of each O3 

component. The inferred model bias for a particular component is calculated as the difference between 245 

the original simulated O3 and adjusted O3 for that component. The individual adjusted O3 components are 

summed to calculate the total adjusted O3. The longitude and latitude terms of αi are intended to capture 

the spatial variability of O3 biases while the z term of αi is intended to capture biases in O3 related to 

elevation. The sinusoidal day of year terms of αi are intended to capture the cyclical nature of O3 

production and to identify any seasonal dependence in O3 biases. The modeled O3 components do not add 250 

up to observed O3 because of biases in the model or its inputs. The CMAQ-simulated O3 components are 
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adjusted by applying estimated regression coefficients to the gridded data so that the sum of the 

components more closely aligns with observed O3. A more complex method (e.g., nonlinear regression 

or machine learning) may give a better fit to observed O3, but the interest here is to estimate potential 

biases in the modeled O3 components which is more straightforward with a linear regression. Empirical 255 

orthogonal function (EOF) analysis was used to further explore the spatial and temporal structure of the 

inferred bias fields and is discussed in the SI. 

A separate regression model is developed for each separate model configuration (i.e., model 

resolution, PA or EQUATES simulation, and USB O3 component split). There are three model resolutions 

and three USB O3 splits for the PA simulations, resulting in nine PA models. There are two model 260 

resolutions for the EQUATES simulations. The 12 km EQUATES data has two USB O3 splits while the 

108 km EQUATES data has one USB O3 split, resulting in three EQUATES models. For the PA models, 

only 2016 PA simulation data are used to train the models since these simulations are for only that year. 

For the EQUATES models, both 2016 and 2017 EQUATES simulation data are used to train the models. 

The location and sampling schedule of the monitoring sites overrepresent the eastern US, low elevations, 265 

and high O3 season which may impact how representative the results are for non-monitored locations. 

Overfitting of the regression model is tested using three cross-validation approaches in which the data are 

split in both space and time, in space only, and in time only. In the first approach (spatial and temporal 

withholding), 10% of all observational data are randomly selected and reserved as a test set while the 

remaining 90% are used as the training set. In the second approach (spatial withholding), data from 10% 270 

of randomly selected observation sites are used as a test set while data from the remaining 90% of sites is 

used as the training set. In the third approach (temporal withholding), data from 10% of randomly selected 

days of the year are used as a test set while data from the remaining 90% of days of the year are used as 

the training set. The root mean square error (RMSE) and mean bias for the test and training set are 

compared to evaluate the potential for the model to overfit the data. 275 
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3 Results and discussion 

3.1 CTM results 

The overall performance of MDA8 O3 for each simulation is summarized here by the normalized 

mean bias (NMB) compared to O3 monitoring sites. The 12 km PA simulations were biased high for 2016 

(NMB=1.2%) while the 12 km EQUATES simulations were biased low for 2016 and 2017 (NMB=-3.7% 280 

and -5.1%). The 36 km and 108 km PA simulations were biased high over the US for 2016 (NMB=5.2% 

and 10.0%). The 108 km EQUATES simulations were also biased high over the US for 2016 and 2017 

(NMB=2.8% and 0.5%). The two sets of simulations are broadly consistent with one another for BASE, 

USA, and total USB O3 which are common to both. Details on the contributions from the different O3 

components in the PA and EQUATES simulations follow. 285 

CMAQ-simulated O3 from the PA simulations show similar results across the three different 

model resolutions for USB O3 sources (Figure 2; Table 2). Simulated USA O3 tends to increase with 

coarser model resolution which results in corresponding increases in BASE O3. NAT makes the largest 

contribution to annual average O3 across the US with a larger contribution in the western US (~55% of 

BASE) than in the eastern US (~45% of BASE). USA O3 is the second largest component of annual 290 

average O3 with a larger contribution in the eastern US (~35% of BASE) than in the western US (~20% 

of BASE). There are a small number of US grid cells with negative annual averages for USA O3. This 

means that USB O3 was greater than BASE O3 and indicates that anthropogenic emissions suppress O3 

through NOx titration. LINTL impacts the western US (~15% of BASE) more strongly than the eastern 

US (~10% of BASE). Both NAT and LINTL tend to be higher at higher elevations, suggesting that some 295 

of the effects from NAT and LINTL are from O3 in the free troposphere. In spring, O3 lifetimes are longer, 

and trans-Pacific transport of O3 is more likely which is consistent with the spring peak in LINTL (Liu et 

al., 1987). The other components and BASE O3 peak in the summer with some exceptions (Figure 3). In 

the southeastern US, NAT is lower during summer compared to surrounding areas and is lower than NAT 

in the southeastern US during spring. This is likely because O3 loss through reaction with biogenic VOCs 300 

(which peak in the summer and are abundant in the southeastern US) reduces O3 under the extremely low 

NOx conditions with zero anthropogenic emissions. The CANMEX contribution to O3 is small except at 

some locations along the border with Mexico where the contributions can be high, especially in the 
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summer. For US grid cells within 100 km of the border with Canada, the annual average impact is ~2 ppb 

while for US grid cells within 100 km of the border with Mexico, the annual average impact is ~5 ppb.  305 

 

Table 2. Summary of annual average of MDA8 O3 components for the Policy Assessment set of 

simulations. Averages are shown for all of the US and separately for the eastern and western US 

with a longitude of 97 °W serving as the east-west dividing line. The mean across all grid cells within 

the given area is shown along with the minimum and maximum for any grid cell within the given 310 

area in parentheses. Numbers in the table are in units of ppb. Seasonal averages are provided in 

Table S13. 

 BASE USA NAT LINTL CANMEX 

PA 12 km 

all US 39 (18, 56) 10 (-12, 23) 20 (15, 30) 6 (4, 10) 2 (-4, 9) 

eastern US 39 (28, 49) 13 (2, 23) 18 (15, 21) 4 (4, 9) 1 (1, 6) 

western US 40 (18, 56) 7 (-12, 23) 22 (15, 30) 7 (4, 10) 2 (-4, 9) 

PA 36 km 

all US 40 (28, 62) 11 (2, 30) 20 (15, 28) 6 (4, 10) 2 (1, 16) 

eastern US 40 (28, 55) 14 (4, 28) 18 (15, 21) 4 (4, 9) 1 (1, 5) 

western US 40 (30, 62) 8 (2, 30) 22 (15, 28) 7 (4, 10) 2 (1, 16) 

PA 108 km 

all US 42 (30, 70) 11 (3, 42) 21 (16, 28) 5 (3, 10) 2 (1, 9) 

eastern US 42 (30, 70) 15 (4, 42) 19 (16, 23) 4 (3, 6) 1 (1, 4) 

western US 42 (31, 54) 8 (3, 20) 23 (16, 28) 6 (3, 10) 2 (1, 9) 
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 315 

Figure 2. Annual average MDA8 O3 from Policy Assessment CMAQ simulations. Results are shown 

for 12 km (top row), 36 km (middle row), and 108 km (bottom row) horizontal resolutions. O3 

concentrations include total (BASE) O3 as well as O3 components from USA, NAT, LINTL, and 

CANMEX sources. 

 320 
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Figure 3. Seasonal average MDA8 O3 from Policy Assessment CMAQ simulations. Results are 

shown for 12 km horizontal resolution for winter (DJF), spring (MAM), summer (JJA), and fall 

(SON). Seasonal averages for the 36 km and 108 km simulations are provided in Figures S1 and S2. 325 

O3 concentrations include total (BASE) O3 as well as O3 components from USA, NAT, LINTL, and 

CANMEX sources. 

 

The second set of simulations (EQUATES) split USB O3 to different components compared to the 

PA simulations. The use of different USB O3 components provides additional insight into the source-330 

specific biases in USB O3. CMAQ simulated O3 results from the 2016 EQUATES simulations are 

comparable to the results from the PA simulations for the 12 km simulations, though the EQUATES 

simulations have slightly less O3 from USA and more from USB compared to the PA simulations (Figure 
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4; Table 3). USA O3 contributed ~20% of annual average BASE O3 across all US model grid cells (~25% 

for PA simulations). Like in the PA simulations, the contribution to USA O3 was higher in the eastern US 335 

(~25% of BASE) than in the western US (~15% of BASE). STRAT O3 is higher in the western US, 

especially at higher elevations, which is consistent with previous studies (Jaffe et al., 2018). On average, 

STRAT O3 is 40% of BASE O3 in the western US and 34% of BASE O3 in the eastern US. STRAT O3 

represents an upper bound of stratospheric influences because the tracer species used for its calculation 

in this study does not undergo chemical losses. Non-STRAT O3 (i.e., USB_NOSTRAT) contributes 47% 340 

of annual average BASE O3 in the western US and 42% in the eastern US. USB_NOSTRAT is likely 

underestimated in regions and seasons with more active chemistry due to the use of the chemically inert 

tracer species used to calculate USB_NOSTRAT. The 108 km hemispheric CMAQ (H-CMAQ) results 

for the EQUATES and PA simulations are similar on average but do have some notable differences. The 

H-CMAQ simulations are similar in their simulation of USB O3. The USA O3 contributions are also 345 

similar on average, though the PA simulations have higher maximum values compared to the EQUATES 

simulations which leads to higher maximum values of BASE O3. 

 

Table 3. Summary of annual average of MDA8 O3 components for the EQUATES set of simulations. 

Averages are shown for all of the US and separately for the eastern and western US with a longitude 350 

of 97 °W serving as the east-west dividing line. The mean across all grid cells within the given area 

is shown along with the minimum and maximum for any grid cell within the given area in 

parentheses. Numbers in the table are in units of ppb. Seasonal averages are provided in Table S14. 

  BASE USA USB USB_NOSTRAT STRAT 

EQUATES 12 km 

all US 39 (22, 51) 7 (-4, 18) 32 (24, 44) 17 (8, 23) 15 (12, 22) 

eastern US 38 (30, 45) 9 (1, 15) 29 (24, 36) 16 (8, 23) 13 (12, 19) 

western US 40 (22, 51) 5 (-4, 18) 35 (25, 44) 19 (12, 22) 16 (12, 22) 

EQUATES 108 km 

all US 41 (31, 49) 8 (2, 18) 33 (26, 41) --- --- 

eastern US 40 (31, 49) 10 (3, 18) 30 (26, 38) --- --- 

western US 41 (32, 49) 6 (2, 12) 36 (29, 41) --- --- 

 

 355 
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Figure 4. Annual average MDA8 O3 from EQUATES CMAQ simulations. Results are shown for 

12 km resolution (top and middle rows) and 108 km (bottom row). O3 concentrations include total 

(BASE) O3 as well as O3 components from USA, USB_NOSTRAT, and STRAT sources for 12 km. 360 

For both the 12 km and 108 km simulations, O3 concentrations of BASE, USA, and total USB are 

also shown. 

 

BASE O3 in EQUATES is highest in the summer (Figure 5). USB O3 is the highest during spring 

throughout most of the US. In much of the Mountain West, USB O3 is highest during the summer (Figures 365 
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S3 and S4). The STRAT O3 tracer is the highest in the western US. Much of the western US has STRAT 

O3 at about the same level in the spring and summer. In the southeastern US, STRAT O3 is highest in the 

summer while in the northeastern US, there are similar levels of STRAT O3 in the spring and summer. 

STRAT O3 is elevated in the summer because of the lack of chemical sinks due to the inert tracer species 

used to estimate STRAT O3. Most previous studies have indicated that stratospheric O3 peaks in the spring 370 

(Lin et al., 2015). The stratospheric contribution to O3 from H-CMAQ calculated using the decoupled 

direct method (which does account for chemical losses) also showed higher stratospheric contributions in 

spring than in summer (Mathur et al., 2022). The higher summer STRAT O3 here is explained by the lack 

of chemical losses due to the tracer method used. Potential biases are explored further in Section 3.3. 

USA O3 is highest in the summer in the eastern US and in California, consistent with the PA simulations. 375 

Non-STRAT USB O3 is relatively uniform outside of summer, though it tends to be slightly lower in the 

southeast and higher in the western US.  

The results from both the PA and EQUATES simulations indicate that USB O3 contributes more 

than USA O3 to BASE O3 on an annual average basis. Simulated USB O3 is higher in the western US 

than in the eastern US due to greater impacts from both natural and non-domestic anthropogenic sources. 380 

Simulated USA O3 is higher in the eastern US than in the western US due to the higher population density 

and consequently greater anthropogenic emissions. The contributions from USA O3 peak in the summer 

which causes BASE O3 to peak in the summer as well. USB O3 varies by season but is not as seasonally 

variable as USA O3. These results are broadly consistent with previous efforts to quantify USB and USA 

O3 using CTMs (Mcdonald-Buller et al., 2011; Jaffe et al., 2018).  385 
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Figure 5. Seasonal average MDA8 O3 from EQUATES CMAQ simulations. Results are shown for 

12 km horizontal resolution for winter (DJF), spring (MAM), summer (JJA), and fall (SON). O3 

concentrations include total (BASE) O3 as well as O3 components from USA, USB_NOSTRAT, and 390 

STRAT sources. Seasonal averages for the other USB O3 split cases are provided in the SI (Figures 

S3 and S4). 
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3.2 Cross-validation of regression modeling 

Overfitting is tested using a cross-validation analysis as described in Section 2.2. Three different 395 

cross-validation methods are used: spatial and temporal withholding, spatial withholding, and temporal 

withholding. The parameters derived from the training set are then used to predict the observed O3 in the 

test set. The RMSE and mean bias with respect to the true observations of both the training and test set 

are compared to one another (Table 4; Tables S7 and S8). For each of the three cross-validation methods, 

the RMSE and mean bias of the training and test sets are similar to one another. This indicates that the 400 

model is not overfitting and is generalizable to data outside of its training data, providing confidence that 

we can apply the regression models to the gridded CTM results to estimate the bias in O3 and individual 

O3 components across the US. 

 

Table 4. Summary of performance for cross-validation of MDA8 O3 data fusion model. Values 405 

shown are the average over all regression model cases. RMSE and mean bias statistics for individual 

cases are provided in Tables S7 and S8. The performance for the BASE O3 simulations prior to 

applying the bias adjustment is also provided for comparison. 

metric 

BASE 

simulations 

spatial and temporal 

withholding spatial withholding temporal withholding 

training test training test training test 

RMSE (ppb) 9.53 7.80 7.83 7.83 7.58 7.81 7.79 

mean bias (ppb) 1.13 -0.19 -0.20 -0.19 -0.63 -0.19 0.38 

 

3.3 Inferred CTM biases 410 

The coefficients from the regression models (Tables S9 – S12) are applied to the gridded CTM 

data to calculate adjusted values of each O3 component. The inferred CMAQ bias for each component is 

the difference between the original CMAQ-simulated value and the adjusted value. The inferred bias in 

BASE O3 is the original CMAQ-simulated BASE O3 minus the sum of adjusted O3 components. For the 

PA simulations, there is a residual anthropogenic component of BASE O3 that is not apportioned to either 415 

USA or INTL sources due to the effects of non-linear chemistry (Table S2). The residual anthropogenic 

component is equal to BASE – NAT – INTL – USA. This means that the sum of biases in the individual 

components do not add up to the bias in BASE O3 as the residual anthropogenic component was not 
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included in the adjusted O3 results. In the PA simulations, BASE O3 is inferred to be biased high in most 

of the Eastern US as well as in some parts of California and Arizona (Figure 6). USA O3 is inferred to be 420 

biased high in the same areas. Reducing the amount of USA O3 improves the fit to BASE O3 which is 

suggestive that biases in the effects from US anthropogenic emissions contribute to the high biases 

inferred in BASE O3. The inferred high biases in BASE and USA O3 increase with increasing coarseness 

of model resolution in the eastern US. Similarly, the high bias increases with coarser model resolution in 

the CANMEX component along the border with Mexico. The inferred high biases in USA O3 in the 425 

eastern US are primarily driven by biases in the summer and fall (Table S15, Figures S5-S7). Inferred 

eastern US USA O3 biases average 2, 7, and 11 ppb in the summer and 3, 4, and 5 ppb in the fall for the 

12, 36, and 108 km simulations. In the western US, where USA O3 is mostly found to be biased low, 

coarser model resolution results in the summer average bias changing from slightly negative in the 12 km 

simulations (-0.5 ppb) to slightly positive in the 36 and 108 km simulations (+0.7 ppb and +1.0 ppb).  430 

In contrast to our results showing an increase in O3 with coarser resolution, Schwantes et al. (2022) 

found that O3 tended to increase for a finer resolution simulation (~14 km vs. ~111 km over the CONUS) 

during the summer over urban areas using the Community Earth System Model (CESM)/Community 

Atmosphere Model with full chemistry (CAM-chem) model which was attributed to improvements in the 

spatial resolution of NOx emissions resulting in less artificial dilution of NOx and enhanced O3 production. 435 

Similarly, Lin et al. (2024) found that a variable resolution global model (AM4VR with horizontal 

resolution of 13 km over the CONUS) had increased O3 over urban areas compared to a fixed resolution 

model (AM4.1 with horizontal resolution of ~100 km globally). In particular for the Los Angeles Basin 

and Central Valley regions of California, Lin et al. (2024) found that the increased resolution of AM4VR 

led to better simulation of observed O3 levels in these areas due the finer resolution model’s ability to 440 

represent sharp spatial gradients in areas with NOx-limited vs. NOx-saturated O3 production regimes. 

Given these previous results finding increased O3 with finer resolution simulations, our results here 

finding higher biases in USA O3 in the eastern US with coarser resolution should be taken to apply 

specifically to the CMAQ model results described here rather than as a general finding on the impact of 

model resolution on O3 production. 445 
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There are offsetting inferred biases in the LINTL and NAT O3 components in much of the western 

US. The offsetting inferred biases may reflect an inability of the regression model to separate the signals 

from LINTL and stratospheric O3. LINTL and stratospheric O3 are expected to impact sites at similar 

spatial and temporal scales, with larger impacts expected at high elevations in the western US during 

spring. Stratospheric O3 effects are not limited to episodic intrusion events but also come from constant 450 

entrainment of stratospheric air to the free troposphere. The impacts from LINTL are primarily from long-

range transport in the free troposphere, so stratospheric O3 and LINTL are expected to be correlated. The 

regression model may be assigning bias due to stratospheric O3 to LINTL because the CTM-modeled 

LINTL component has more correlation with the stratospheric O3 impact than the CTM-modeled NAT 

component. This could result in the regression model adjusting LINTL upwards (i.e., inferred negative 455 

bias) to add stratospheric O3. The NAT O3 is then adjusted downwards (i.e., inferred positive bias) in the 

same locations because some of the effects of stratospheric O3 are captured in the CTM-modeled NAT 

component but need to be offset because of the O3 that was added to the LINTL component. This indicates 

a limitation of this method in that it is sensitive to correlation between modeled O3 components. 

Correlation of the O3 components is a major confounding issue in this analysis. In interpreting the results, 460 

it is necessary to consider both the inferred biases and the correlation of the components together. 
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Figure 6. Annual average of inferred MDA8 O3 model bias from Policy Assessment CMAQ 

simulations. Results are shown for 12 km (top row), 36 km (middle row), and 108 km (bottom row) 465 

horizontal resolutions. O3 concentrations include total (BASE) O3 as well as O3 components from 

USA, NAT, LINTL, and CANMEX sources. Seasonal averages are provided in Figures S5-S7. 

 

In the temporal trends of inferred BASE O3 bias, the PA simulations show a consistent low bias 

in winter and spring and high bias in summer and fall which is consistent across model resolution scales 470 

(Figure 7). There is also a consistent high bias in USA O3 in summer and fall in the eastern US which 

increases with coarser model resolution. Inferred bias in USA O3 in the western US has some small 

seasonal variability but is near zero on average. The seasonal patterns of LINTL bias have the largest 

underestimate in the winter and spring and the smallest underestimate in late summer and early fall. The 

temporal trend of NAT differs in the 12 km simulation compared to the 36 km and 108 km simulations. 475 

In the 12 km simulation, NAT biases are higher in the middle of the year than in the beginning and end 

of the year. In the 36 km and 108 km simulations, the opposite is found. This change in sign is a result of 
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changes in the spatial patterns of NAT inferred bias in different seasons. In the 12 km simulation, NAT 

is inferred to be biased low in the southern part of the US and biased high in the northern part of the US. 

In the 36 km and 108 km simulations NAT is inferred to be biased low in the eastern US and mostly 480 

biased high in the western US, particularly in the Mountain West region. These spatial changes in the 

seasonal average NAT O3 bias are enough to change the sign of the US average temporal bias trend. As 

described before, the offsetting negative LINTL bias and positive NAT bias in the high elevation areas of 

the western US are thought to be a result of the regression model allocating stratospheric O3 bias to the 

LINTL signal while removing some stratospheric O3 from the NAT signal. CANMEX O3 biases are very 485 

small when averaged across the US since this source primarily affects border areas and only has small 

impacts elsewhere. 
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Figure 7. Daily average of inferred MDA8 O3 model bias from Policy Assessment CMAQ 490 

simulations averaged across US model grid cells in the eastern and western US. A longitude of 97 

°W is used as the dividing line between east and west. PA O3 concentrations include total (BASE) 

O3 as well as O3 components from USA, NAT, LINTL, and CANMEX sources. USB indicates the 

sum of biases for individual USB components. 

 495 

The spatial results for the EQUATES 12 km simulations are shown for two O3 split cases. One 

case splits USB O3 to STRAT and non-STRAT sources while the other considers all USB O3 together. 

Results show a mostly low bias inferred in BASE O3 throughout most of the US for the 12 km simulation 

(Figure 8). For the 108 km H-CMAQ simulation there is a high bias in the eastern US and a low bias in 

the western US for BASE O3. Like the PA results there is a high bias in USA O3 in the eastern US that 500 

increases with coarser model resolution. The inferred low bias in the STRAT O3 component indicates that 

there is too little stratospheric O3 in the western US. There is an inferred high bias in STRAT O3 in the 

eastern US. The STRAT O3 results should be interpreted with some caution because the STRAT 

component comes from a chemically inert tracer. The STRAT O3 biases are partly offset by opposite 

biases in the non-STRAT USB O3. The low biases in STRAT O3 and the lack of low biases in the non-505 

STRAT USB O3 provides more evidence that the low biases in the LINTL O3 from the PA simulations 

are related to low biases in stratospheric O3. 

In the case where USB O3 is not split into STRAT and non-STRAT components, the 12 km and 

108 km simulations both have low biases in USB O3, but the magnitude of bias is greater in the 12 km 

simulation than in the 108 km simulation. This may be a result of differences in the impacts of 510 

stratospheric O3 at the surface level in the H-CMAQ simulation compared to the continental-scale 

simulation. Differences in the estimation of stratospheric O3 impacts may arise from differences in how 

the vertical structure of the model in the H-CMAQ simulations is configured compared to the continental 

simulations. The UTLS PV O3 scaling is turned on during the H-CMAQ simulation. For the continental 

simulation, PV O3 scaling is turned off because the continental model configuration uses fewer vertical 515 

layers and a coarser vertical resolution in the UTLS compared to the H-CMAQ simulations. The 

stratospheric O3 influences in the continental simulation are only those influences that are inherited from 

the lateral boundary conditions. Previous work indicates that O3 in the upper layers of the continental-
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scale model is driven mostly by horizontal advection of the lateral boundary conditions (Hogrefe et al., 

2018), meaning that if stratospheric intrusion events are captured by the hemispheric-scale simulation, 520 

the effects of these events are also expected to be captured by the continental-scale simulation. However, 

a sensitivity test with UTLS PV O3 scaling turned on during the continental simulation may be an area 

for future study. This would require the addition of more vertical layers with finer resolution in the UTLS 

in the continental simulation to support the PV O3 scaling parameterization. The differences in vertical 

structure of the hemispheric and continental simulations can affect the vertical mixing of stratospheric O3 525 

from upper layers down to the surface which may explain the differences in inferred bias of USB O3. 

Alternatively, the differences in USB O3 biases could also occur due to differences in O3 production from 

local USB O3 sources across model resolution scales and may not necessarily be affected by differences 

in stratospheric O3.  
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Figure 8. Annual average of inferred MDA8 O3 model bias from EQUATES CMAQ simulations. 

Results are shown for 12 km resolution (top and middle rows) and 108 km (bottom row). O3 

concentrations include total (BASE) O3 as well as O3 components from USA, USB_NOSTRAT, and 

STRAT sources for 12 km. For both the 12 km and 108 km simulations, O3 concentrations of BASE, 535 

USA, and total USB are also shown. Seasonal averages are provided in Figures S8-S10. 

 

For the EQUATES temporal results, BASE O3 is biased low in the spring and high in the summer 

in the eastern US (Figure 9). In the western US, BASE O3 is biased low throughout most of the year. 

Averaged across the US, bias is near zero in the summer and fall in the 12 km simulation with high biases 540 

in the 108 km simulation during the same period (+1 ppb in summer; +2 ppb in fall). The high biases in 
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BASE O3 in the eastern US are mostly due to high biases in the USA O3 component which peak in the 

summer (average +1.4 and +6.0 ppb for the 12 and 108 km simulations) and continue to be biased high 

into the fall (average +0.8 and +2.2 ppb for the 12 and 108 km simulations). The STRAT O3 component 

is inferred to be biased low except in the summer and early fall. In the western US, STRAT O3 bias in the 545 

summer is near zero in the summer and fall while in the eastern US, STRAT O3 is biased high in the 

summer and fall. The lowest biases in STRAT O3 occur in the winter. The STRAT O3 biases are partially 

offset by opposing biases in the non-STRAT USB O3. The regression model formulation without the 

separate STRAT O3 indicates that there is a low bias in USB O3 throughout most of the year in the 12 km 

simulation which is at its lowest in the spring. The 108 km simulations show a low bias for USB O3 in 550 

the spring and summer and high bias in the fall and winter.  

In the 12 km EQUATES simulations, the STRAT O3 tracer averages 14 ppb in the western US 

during spring, with a maximum spring average across all western US grid cells of 17 ppb. Using the bias 

correction approach developed here, we find that the spring average STRAT O3 in the western US is 

biased low by 3.5 ppb, resulting in an adjusted (i.e., bias corrected) estimate of western US spring average 555 

STRAT O3 of 17 ppb. Consistent with the low bias in stratospheric O3 suggested here, other CTMs have 

estimated higher stratospheric O3 contributions compared to those simulated here with CMAQ. The spring 

average of stratospheric O3 contributions estimated with the AM3 model has been estimated at 20-25 ppb 

(Lin et al., 2012a; Langford et al., 2015; Lin et al., 2015). The AM3 estimates of stratospheric O3 have 

sometimes been estimated to be biased high (Lin et al., 2012a) and have also been shown to lead to 560 

overestimated springtime O3 concentrations when used as boundary conditions for regional-scale CMAQ 

simulations (Hogrefe et al., 2018) but at other times have been estimated to be relatively unbiased based 

on evaluation against observations from intensive field studies (Langford et al., 2015). The stratospheric 

O3 contribution simulated by AM3 has been previously found to be higher than that of the GEOS-Chem 

global model (Fiore et al., 2014). Using GEOS-Chem, Zhang et al. (2014) found the spring mean 565 

stratospheric O3 influence in the Intermountain West to range from 8-10 ppb as estimated using the 

standard GEOS-Chem definition of stratospheric O3 as described in Zhang et al. (2011) and, alternatively, 

found a spring mean of 12-18 ppb using a definition of stratospheric O3 adopted from Lin et al. (2012a) 

(the same method used for the AM3 estimates reported here). Itahashi et al. (2020) previously found that 
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the stratospheric O3 representation in CMAQ was biased low in the free troposphere and suggested that 570 

improvements were needed to the CMAQ representation of stratosphere to troposphere transport. Our 

bias adjusted estimate of western US spring mean stratospheric O3 (17 ppb) falls in between the estimates 

from the default GEOS-Chem representation (8-10 ppb) and from AM3 (20-25 ppb). As these are seasonal 

averages, the values are more representative of the continual entrainment of stratospheric air into the 

troposphere rather than episodic deep stratospheric intrusion events. 575 

 

 

Figure 9. Daily average of inferred MDA8 O3 model bias from EQUATES CMAQ simulations 

averaged across US model grid cells in the eastern and western US. A longitude of 97 °W is used as 

the dividing line between east and west. EQUATES O3 concentrations include BASE O3 as well as 580 

O3 components from USA, USB_NOSTRAT, and STRAT sources for 12 km. For both the 12 km 

and 108 km simulations, O3 concentrations of BASE, USA, and total USB are also shown. For the 
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case with multiple USB O3 components, USB indicates the sum of biases for individual USB 

components. 

 585 

3.4 CTM biases by O3 concentration 

The contributions and biases of different O3 components have been presented so far as annual or 

seasonal averages (Figures 2-6 and 8) or as daily averages over US model grid cells (Figures 7 and 9). 

However, the relative contributions of O3 components at different total O3 concentrations is also of 

interest. For example, the relative contribution of USA and USB O3 to total O3 may be different on days 590 

with higher total O3 vs. days with lower total O3. Situations where O3 exceeds the NAAQS, which is 

currently set at a level of 70 ppb, are of particular interest. We analyze the different O3 components at O3 

monitoring sites under cases when O3 is less than 60 ppb, between 60 and 70 ppb (inclusive), and greater 

than 70 ppb. These concentration bins are selected because they reflect the current level of the standard 

(70 ppb) as well as a potential range which might be considered as the level of the standard in the future 595 

(60-70 ppb). We compare the results of the analysis when using both simulated and observed O3 bins. 

Simulated O3 has a positive bias on average when simulated O3 is high and has a negative bias on average 

when observed O3 is high, so selection bias influences these results. For this analysis, we consider the 12 

km resolution simulations for the PA and EQUATES simulations. The 12 km simulations are the 

resolution that is typical for simulations that support regulatory analyses. Monitoring sites are split into 600 

western or eastern US using a longitude of 97 °W as the dividing line. The division to western and eastern 

US is done because there are differences in the contribution of US anthropogenic vs. background 

contributions in the two parts of the country. 

The impacts of the linear regression adjustment technique at the observation sites are examined 

by comparing the original simulated bias to the residual bias (i.e., the sum of the adjusted individual O3 605 

components minus observed O3) (Figure 10). The change in bias from the original to residual bias is the 

inferred bias that has been referenced elsewhere. In all cases when O3 is binned by simulated O3 levels, 

the adjustment brings the bias closer to zero. In the eastern US, high biases at higher simulated O3 levels 

were reduced for both the PA and EQUATES simulations. In the western US, low biases when simulated 
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O3 was below 60 ppb were brought closer to zero for both the PA and EQUATES simulations. At higher 610 

simulated O3 levels, the PA simulations originally had high biases in the western US which were reduced 

in the adjusted results while the EQUATES simulations originally had low biases in the western US which 

were improved in the adjusted results. The effects on bias when binning by observed O3 are mixed. In 

both the western and eastern US for both the PA and EQUATES simulations, the simulations were 

originally biased low at higher observed O3 levels, with the EQUATES simulations more biased low than 615 

the PA simulations. The low bias is improved in the EQUATES simulations, but in the PA simulations 

the bias is either about the same or becomes more biased low. The inability of the adjustment to improve 

the bias across the range of both observed and simulated O3 levels is a limitation of this technique. The 

fitting of multi-axis (lat, lon, season) linear correction factors (αi) will be strongly influenced by the larger 

population of lower (O3 < 70 ppb) concentrations and will only correct the upper end if the bias structure 620 

is consistent.  
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Figure 10. Bias compared to MDA8 O3 observations of original simulations (black) and residual 

bias (purple) obtained as the difference between adjusted MDA8 O3 and observations for PA (top 625 

row) and EQUATES (bottom row) simulations. The horizontal line shows the median; the box 

shows the 25th-75th percentiles; the whiskers show the 5th and 95th percentiles. Grey vertical lines 

separate the boxplots for each MDA8 O3 concentration bin. The numbers at the bottom of each 

panel are the number of data points falling within each concentration bin. 

 630 

For the PA simulations, the contribution from USA O3 tends to increase with higher simulated O3 

and with higher observed O3 (Figure 11), indicating that domestic anthropogenic pollution is driving the 

highest O3 concentrations. The contribution from USA O3 is higher at eastern US sites than at western 

US sites due to higher anthropogenic precursor emissions in the east. There may also be impacts on USA 

O3 in the eastern US from O3 or precursor pollutants transported from the western to eastern US. The 635 

median USA O3 contribution is biased high (+1 ppb in the western US; +4 ppb in the eastern US) when 

BASE O3 is between 60 and 70 ppb with higher median biases (+2 ppb in the western US; +6 ppb in the 

eastern US) when BASE O3 exceeds 70 ppb. When observed O3 is between 60 and 70 ppb, the median 

USA O3 contribution is biased slightly low in the western US (-0.2 ppb) and biased high in the eastern 

US (+2 ppb). Bias is higher in the western US when observed O3 exceeds 70 ppb (+1 ppb) but is about 640 

the same in the eastern US (+2 ppb). Inferred biases of USA O3 are higher across the range of simulated 

and observed O3 levels in the eastern US compared to the western US. 

In the western US, NAT O3 tends to be higher when either simulated or observed O3 is greater 

than 60 ppb; however, the distribution of NAT O3 when O3 is above 70 ppb is similar to the distribution 

of NAT O3 when O3 is between 60 and 70 ppb. In the eastern US, the distribution of NAT O3 is similar 645 

across the range of simulated and observed O3 concentration bins but is slightly higher when O3 is greater 

than 60 ppb. LINTL makes a small contribution to O3 across concentration bins and tends to be lower as 

simulated or observed O3 increases. CANMEX O3 is typically very small and only makes significant 

contributions at a few near-border sites (not shown). The NAT and LINTL O3 components are biased 

slightly low at monitoring sites in the western US. For western US sites, the sum of the median biases in 650 

USA and USB (i.e., NAT+LINTL+CANMEX) O3 at monitoring sites is negative across the simulated 

and observed O3 concentration bins but gets closer to zero at higher O3 levels. For eastern US sites, the 

bias in USA O3 is predicted to be the main contributor to biases at high simulated O3 when simulated O3 
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concentrations exceed 60 ppb. When the O3 components are binned by observed O3 rather than simulated 

O3, the sum of the median biases in USA and USB O3 at monitoring sites in the eastern US is negative 655 

across the range of simulated O3 with USB O3 becoming less negatively biased as observed O3 increases 

and USA O3 becoming more positively biased as observed O3 increases. 

 

   

 660 

Figure 11. Contributions to MDA8 O3 from the PA simulation (top row) and inferred biases (bottom 

row) of USA, NAT, LINTL, and CANMEX separated by both observed and simulated BASE 

MDA8 O3 concentration at O3 monitoring sites. The sum of NAT, LINTL, and CANMEX is shown 

as USB. The horizontal line shows the median; the box shows the 25th-75th percentiles; the 

whiskers show the 5th and 95th percentiles. Grey vertical lines separate the boxplots for each 665 

MDA8 O3 concentration bin. The numbers in the bottom row of panels are the number of data 

points falling within each concentration bin. 

 

For the 12 km EQUATES simulations, the USA O3 contribution is similar to the 12 km PA results 

across the simulated O3 concentration bins (Figure 12). At higher observed O3, the EQUATES simulations 670 

generally simulate lower USA O3 compared to the PA simulations. Like in the PA simulations, the USA 

O3 contribution increases with increasing simulated and observed O3, meaning that domestic 
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anthropogenic emissions are mostly driving the highest O3 levels. There is an inferred negative bias in 

USA O3 in the western US which becomes increasingly more negative as simulated or observed O3 

increases. In the eastern US, there is an inferred positive bias in USA O3 which becomes larger at higher 675 

simulated O3 concentrations (median bias of +0.05, +2, +4 ppb at <60, 60-70, and >70 ppb simulated O3). 

There is also an inferred high bias across the range of observed O3; however, the magnitude is smaller, 

and the bias does not increase much at higher levels of observed O3 (median bias of +0.05, +0.5, and +0.6 

ppb at <60, 60-70, and >70 ppb observed O3).  

The contribution from STRAT O3 is higher in the western US than in the eastern US across 680 

simulated and observed O3 concentrations. In the western US, STRAT tends to be higher when either 

observed or simulated is above 60 ppb. In the eastern US, STRAT O3 is at similar levels across the range 

of simulated and observed O3. In the western US, STRAT O3 has a negative bias which gets closer to zero 

when simulated and observed O3 is above 60 ppb. In the eastern US, STRAT O3 has a positive bias which 

gets higher when simulated and observed O3 are above 60 ppb. In both the western and eastern US, 685 

USB_NOSTRAT makes similar contributions across different O3 concentrations. In the western US, 

USB_NOSTRAT has a negative bias when simulated or observed O3 is below 60 ppb and a positive bias 

when O3 is above 60 ppb. In the eastern US, USB_NOSTRAT has a negative bias across the range of 

simulated and observed O3. The magnitude of the negative bias is smaller when simulated or observed O3 

is below 60 ppb than when O3 is above 60 ppb.  690 
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Figure 12. Contributions to MDA8 O3 by the EQUATES simulation (top row) and inferred biases 

(bottom row) of USA, USB_NOSTRAT, and STRAT separated by both observed and simulated 695 

BASE MDA8 O3 concentration at O3 monitoring sites. The sum of USB_NOSTRAT and STRAT is 

shown as USB. The line shows the median; the box shows the 25th-75th percentiles; the whiskers 

show the 5th and 95th percentiles. Grey vertical lines separate the boxplots for each MDA8 O3 

concentration bin. The numbers in the bottom row of panels are the number of data points falling 

within each concentration bin. 700 

 

Binning the O3 contributions and inferred biases by observed and simulated O3 results in different 

numbers of data points in each sample. In the western US, there were 4145 instances when observed O3 

exceeded 70 ppb, while there were 3302 (PA) and 627 (EQUATES) instances when simulated O3 

exceeded 70 ppb at a monitoring site, with a large fraction of the observed and simulated exceedances 705 

occurring in California. In the eastern US there were 2135 instances when observed O3 exceeded 70 ppb 

with 2901 (PA) and 556 (EQUATES) instances when simulated O3 exceeded 70 ppb. The PA simulations 

more accurately simulated the number of exceedances compared to EQUATES, though this does not 

consider the timing or location of exceedances. Given the different number of samples in the observed 

vs. simulated bins and the lower number of data points for EQUATES simulated O3 exceeding 70 ppb, it 710 
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is possible that the population of data points are when simulated O3 exceeds 70 ppb are not spatially 

representative of the population when observed O3 exceeds 70 ppb.  

For the western US, the PA simulations largely capture the spatial distribution of exceedances 

seen in the observations, although the number of exceedances is underestimated (Figure 13). The 

exceedances from the EQUATES simulations are not very representative of the spatial distribution of 715 

observed exceedances in the western US as there are very few sites with more than one or two exceedances 

outside of California. In particular, the number of exceedances in the Denver, Colorado; Phoenix, 

Arizona; Las Vegas, Nevada; and Boise, Idaho; areas are underestimated in EQUATES relative to both 

the PA simulations and observations. Both the PA and EQUATES simulations underestimate the number 

of exceedances in the state of Utah. For the eastern US, the PA simulations generally capture the spatial 720 

distribution of observed exceedances but simulate too many exceedances. This is particularly notable in 

the northeastern US and along the Gulf Coast. The EQUATES simulations underestimate the number of 

exceedances, although the spatial distribution is generally similar to the observations. The degree of 

spatial representativeness provides additional context for interpreting the findings for the O3 component 

contributions and biases binned by O3 levels. For the western US, the findings for instances when O3 725 

exceeds 70 ppb are not applicable to the western US more broadly. There are a limited number of instances 

when O3 exceeds 70 ppb in the western US outside of California. These results are mostly indicative of 

conditions in the Los Angeles area and in the Central Valley in California. This applies especially to the 

EQUATES results, but it is also the case for the PA simulations and the observations. For the eastern US, 

on the other hand, there is enough spatial variability in the observations as well as both sets of simulations 730 

to interpret the findings for the eastern US more generally. These results are informative in an average 

sense but are not expected to hold in all cases when applied to specific monitoring sites or to specific days 

(e.g., fourth highest O3). The biases for bins 60-70 ppb and greater than 70 ppb should be interpreted with 

caution because the inferred biases apply the mean tendency to these high concentration subpopulations. 

 735 
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Figure 13. Spatial distribution of the number of times MDA8 O3 exceeded 70 ppb for observed and 

simulated O3. The circles show the locations of sites, and the color indicates the number of times 

MDA8 O3 exceeds 70 ppb at each site for observations (left), PA 12 km simulation (middle), and 

EQUATES 12 km simulation (right). Only sites with at least one exceedance are shown. The black 740 

dotted line shows the longitude of 97° W which is used to divide west and east. Similar results for 

other model resolutions are shown in Figure S11. 

 

4 Conclusions 

In this work, we use two sets of CMAQ simulations to analyze the contributions to USB O3 from 745 

different sources. Naturally occurring sources, long-range international anthropogenic pollution, and 

short-range international anthropogenic pollution from Canada and Mexico are separately considered for 

one set of simulations. In the other set of simulations, stratospheric and non-stratospheric sources of USB 

O3 are also considered separately. We also consider the contribution to total O3 from US domestic 

anthropogenic sources. The measurement-model data fusion approach for apportioning bias to USA and 750 

USB O3 components from our previous study (Skipper et al., 2021) was extended to identify biases in 

separate USB O3 components. The results generally confirm previous high-level results, but provide new 

insights from additional components and more detailed analysis. 

Results indicated that USA O3 was consistently inferred to be biased high in the eastern US where 

domestic anthropogenic emissions are the dominant contributor to total O3, with increasingly higher 755 
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biases with coarser model resolution and at higher simulated O3 concentrations. This is consistent with 

our previous findings. This does not necessarily imply that the trend of decreasing biases with finer 

resolutions would continue at resolutions finer than 12 km as we have not tested this approach at those 

resolutions. As noted in Section 3.3, previous modeling studies examining the effects of horizontal 

resolution have found that O3 increased over urban areas with finer resolution, so the findings for the 760 

effects of model resolution should be taken to apply our current results rather than as a general finding on 

the impacts of model resolution. Our finding that USA O3 biases increase with higher O3 does not hold 

when O3 is binned by observed rather than simulated concentrations. There is much less variation in the 

USA O3 bias across the range of observed O3 than for simulated O3. Although the choice of binning O3 

by observed or simulated levels changes the sample of data, the results for the eastern US are generalizable 765 

to this part of the country because the samples have consistent spatial representation across the eastern 

US. In the western US, USA O3 was inferred to be biased high at higher O3 levels for the PA simulations 

and biased low at higher O3 levels for the EQUATES simulations. These differences are explained by the 

use of different emission inventories in the two sets of simulations. Regardless, the findings for inferred 

O3 biases at higher O3 levels in the western US are not broadly applicable to the entire western US because 770 

the sample that these findings are based on is dominated by sites in California. There are relatively few 

sites in other states in the western US that contribute to this sample, so the results are not likely to be 

indicative of conditions in other parts of the western US. The correction of USB components provided 

consistent results with previous studies, but more detail. Like Skipper et al. (2021) and Hosseinpour et al. 

(2024), simulated USB O3 was inferred to be biased slightly low overall. The original simulated annual 775 

averages of USB O3 across all the PA and EQUATES modeling configurations considered here ranged 

from 30-33 ppb while the adjusted annual average USB O3 ranged from 31-34 ppb. This work separated 

USB into natural, short-range international, and long-range international and each had distinct seasonality 

to the inferred bias. Short-range international was marginally high-biased in spring/winter and marginally 

low-biased in summer. The contribution from natural and long-range international have larger seasonality, 780 

which are slightly out of phase. Natural bias was low in winter, but high in summer peaking in July. Long-

range international was consistently low-biased with a minimum in April and a maximum (near unbiased) 
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in August-September. From May to October, the natural and long-range international biases are largely 

offsetting while they are reinforcing in other parts of the year.  

The seasonality of inferred long-range international bias highlights a key uncertainty in correlative 785 

bias attribution. The biases associated with long-range international may be misattributed due to the 

difficulty of the regression model formulation to isolate stratospheric influences from other natural 

sources. Stratospheric O3 is expected to have similar temporal and spatial patterns to LINTL, with 

contributions being higher in spring and at high elevations. It is suspected that the regression model 

formulation may be assigning a negative bias in LINTL to make up for missing stratospheric O3 that has 790 

a similar pattern to LINTL while at the same time assigning a high bias for NAT to reallocate some of 

stratospheric O3 that is present in NAT to LINTL instead. Results for the STRAT O3 tracer in the second 

set of simulations support the idea that there is missing stratospheric O3 at the surface level in the western 

US as the STRAT O3 is inferred to be biased low. Taken together, there is an overall low bias in the 

simulated USB O3 that is most pronounced in the spring. This may be a result of too little stratospheric 795 

O3 reaching the surface. Photolysis of particulate nitrate over oceans has been found to increase O3 (Shah 

et al., 2023; Sarwar et al., 2024). This process is not included in the chemical mechanism which could 

contribute to low biases in O3 during the same time of year. The potential for misattribution is not specific 

to the methods employed here but is inherent to correlative bias approaches with incomplete information 

contained in independent variables. 800 

Analysis of the original bias and residual bias emphasize the importance of subpopulation 

diversity. The correction factors are optimized for the whole population and can degrade performance at 

any subpopulation (e.g., a site, a day, or a subgroup). For example, in the western US, the PA simulation 

was originally high-biased for days with high predictions and low-biased for days with high observations 

(>70 ppb). The overall correction was downward for both populations because they are generally 805 

consistent spatially and seasonally. This means that the “corrected” model has more bias on days with 

high observations in the western US than the “uncorrected.” This is not unexpected but highlights that 

correlative adjustments should be considered as broad conclusions and should only be cautiously applied 

more narrowly (e.g., specific monitors or days). This is a limitation of the linear formulation as noted by 

Hosseinpour et al. (2024). 810 
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This work has focused only on surface O3. We are not able to draw a conclusion as to whether the 

potential lack of stratospheric O3 is a result of biases in the UTLS PV scaling in the upper layers or from 

errors in vertical transport from upper layers to the surface. More detailed studies that analyze the entire 

vertical structure, such as a recent study of CMAQ stratospheric O3 by Itahashi et al. (2020), are needed 

to identify the exact causes and solutions for the surface biases identified here. Another potential area for 815 

future work is to separate stratospheric O3 from natural sources in a set of simulations like those conducted 

for the O3 Policy Assessment. This might solve the suspected issue of bias in stratospheric O3 being 

allocated to long-range international emissions that may be caused by the correlation of stratospheric O3 

and long-range international impacts. While details on the spatial and temporal characteristics of biases 

in different O3 components are provided here, the correlational bias attribution method employed here 820 

does not necessarily identify the specific factors that drive the biases. These results provide estimates of 

potential biases in USB and USA O3 that can inform more targeted future work examining the individual 

sources in greater detail. Additional future work could take a process-oriented approach rather than the 

source-oriented approach described here. A process-oriented approach would focus on how different 

physical and chemical processes (deposition, transport, photochemical activity, etc.) relate to biases in O3 825 

simulations. A further area for future work is to apply the data fusion bias correction method to an 

ensemble of USB O3 estimates from different models. This work has only used the CMAQ model. A test 

of the method would be to apply it to several different models to determine whether it is able to reduce 

the uncertainty of USB O3 estimates while also reducing bias in total O3. 
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