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Abstract. The deterministic motions of clouds and turbulence, despite their chaotic nature, nonetheless have been shown

to follow simple statistical power-law scalings: a fractal dimension D relates individual cloud perimeters p to measurement

resolution, and turbulent fluctuations scale with air parcel separation distance through the Hurst exponent H. However, it

remains uncertain whether atmospheric turbulence is best characterized by a split isotropy that is three-dimensional with H=

1/3 at small scales and two-dimensional with H= 1 at large scales, or by a wide-range anisotropic scaling with an intermediate5

value of H. Here, we introduce an “ensemble fractal dimension" De – analogous to D – that relates the total cloud perimeter

per domain area P as seen from space to the measurement resolution, and we show theoretically how turbulent dimensionality

and cloud edge geometry can be linked through H=De − 1. Observationally and numerically, we find the scaling De ∼
5/3, or H∼ 2/3, spanning 5 orders of magnitude of scale. Remarkably, the same scaling relationship links two “limiting

case” estimates of P evaluated at resolutions corresponding to the planetary scale and the Kolmogorov microscale suggesting10

extension to 10 orders of magnitude. Our results are nearly consistent with a previously proposed “23/9D" anisotropic turbulent

scaling and suggest that the geometric characteristics of clouds and turbulence in the atmosphere can be easily tied to well-

known planetary physical parameters.

1 Introduction

The Earth system is radiatively open and materially closed. Radiatively, Earth’s global mean temperature is sustained by15

a balance between absorption of high-intensity shortwave sunlight and the reemission at longwave frequencies to the cold

of space. Materially, the total dry atmospheric mass is confined to the planet by gravity and can only be redistributed by

turbulent circulations that mix air over a broad range of scales within the thin atmospheric layer. Clouds play important roles

in determining the magnitude of both categories of flow. Geometrically speaking, cloud areas govern radiative fluxes (Zelinka

et al., 2022) while the edge length or perimeter of clouds controls
::::::
material

:
exchanges of air between clouds and their clear-sky20

environment (Zhao and Austin, 2005; Heus et al., 2008; Garrett et al., 2018).

A scientific challenge is that the seemingly objective properties of cloud area and perimeter are a function of the more

subjective choice of spatial resolution ξ (defined as either the pixel side length in a satellite image or the grid spacing in a
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modelfollowing Garrett et al. (2018)).
:
). Clouds smaller than ξ cannot be resolved, and the square shapes in a resolved grid do

not reflect more irregular cloud structures. Even casual observations of the sky show cloud edges that are intricately complex25

for any plausibly resolvable scale. For example, the boundary of a small cumulus cloud may appear smoothly rounded at first

glance, but fine turbulent structures become apparent when it is viewed through binoculars. The change of observational scale

lengthens the cloud boundary with clear skies, even as the total cloud area remains nearly unchanged. Because the resolution-

dependent cloud perimeter is shaped by the complex and chaotic processes of turbulent mixing and diffusion (Hentschel and

Procaccia, 1984), and while air and energy exchanges are physically independent of ξ, a resolution-based link is required to30

relate the two (Lovejoy et al., 2001; Fielding et al., 2020).

Fractal geometry is often used as a tool for characterizing the resolution-dependent complexity of shapes. The fractal dimen-

sion D was first introduced by Richardson (1961) to characterize the complexity of political borders and was later popularized

by Mandelbrot (1967) to describe how the length of a coastline changes depending on the length of the ruler used to measure

it. Generally, the perimeter p around an individual fractal object can be related to the measurement resolution ξ through35

p∝ ξ1−D (1)

For the Euclidean case that p is independent of ξ then D = 1. At the other extreme, a “space-filling" curve that passes through

every resolved point in a unit area has D = 2. Lovejoy (1982) first measured D for clouds by relating individual cloud perime-

ters p to cloud areas a using the expression p∝
√
a
D. A measured value of D = 1.35± 0.05≈ 4/3 has since been adopted as

the canonical value describing individual clouds (Siebesma and Jonker, 2000; Christensen and Driver, 2021).40

A “monofractal" object has a constant value of ,
::::::::
although

::::::
various

:::::::
studies

::::
have

::::::
shown

::::
that D , and for the case that its

scaling of p with ξ (e. g. , by a power-law) is the same at all length scales, it is considered
:::
can

::::
vary

::::::::::
considerably

:::::
from

:::::
cloud

::
to

:::::
cloud.

:::
For

::::::::
example,

::::::::::::::::::::::
Batista-Tomás et al. (2016)

:::::
found

::::::
distinct

::::::
fractal

:::::::::
dimension

:::::
values

:::
for

:::::
cirrus

::::
with

::::::
ragged,

:::::::
tenuous

:::::
edges

::
of

::::::::
D = 1.37,

:::::::
whereas

:::
for

::::::::::::
cumulonimbus

::::
with

::::::::
smoother

::::::
edges,

:::::::::
D = 1.18.

:::::
Other

:::::::
analyses

::
of

:::::::
cumulus

:::::
fields

::::
have

::::::
found

::::::::
D = 1.28

:::::::::::::::::::::::::
(Zhao and Di Girolamo, 2007)

:::
and

::::::::
D = 1.19

::::::::::::::::::::
(Mieslinger et al., 2019)

:::::::::
determined

:::::
using

:::
the

:::::::::
expression

:::::::::
p∝

√
a
D.45

::::::::
Generally,

:::
we

::::::
define

::::
here

::
a
::::::::
geometric

::::::::
quantity

::::
that

::::
does

:::
not

::::
vary

:::::
with

:::::
length

:::::
scale

:::
as

:::::
being

:
“scale invariant.,"

:::
such

:::
as

::
the

:::::::
scaling

::
of

::
p
:::::

with
:
ξ
:::

in
:::
Eq.

::::
(1).

:
For such scale invariance to apply to an atmospheric cloud field, this would require

that the physics controlling cloud shapes is unchanged with measurement resolution, at least between the limits of possi-

ble cloud sizes. While clouds
::::::
Clouds have been shown to be broadly scale invariant for the number distributions of cloud

perimeters (DeWitt et al., 2023), cloud shapes might better be described as being multifractal, where
::::
areas

::::
and

:::::::::
perimeters50

:::::::::::::::::
(DeWitt et al., 2024)

::::::
despite

:::::::
previous

::::::::::
observations

::
of

:::::
scale

:::::
breaks

::::
that

:::::::
appeared

::
to

:::::::
separate

:::::
small

:::
and

:::::
large

:::::
clouds

::::
into

:::::::
different

:::::::
physical

:::::::
regimes.

::::::::::::::::::::::
DeWitt and Garrett (2024)

:::::
argue

:::
that

:::::
these

::::
scale

::::::
breaks

:::
are

:::::::
artifacts

:::
that

::::
owe

::
to

:::
the

::::::::
treatment

::
of
::::::
clouds

::::
that

::
are

::::::::
truncated

:::
by

:::
the

::::
edge

::
of

:::
the

:::::::::::
measurement

:::::::
domain.

:

::::::::
Although

:::
the

:::::
initial

:::::
result

::
of

::::::::::::::
Lovejoy (1982)

::::::
showed

:
a
::::::::
constant

::::
value

:::
of

::
D

:::
for

::::::
length

:::::
scales

:::::::
ranging

::::
from

::
1

::
to

:::::
1,000

::::
km,

:::::::::
suggesting

:
a
::::::::::::
wide-ranging

::::
scale

:::::::::
invariance

:::
of

::::::
clouds,

:::
the

:::::
value

:::
of D is a continuous function of threshold used to define55

cloud (Lovejoy and Schertzer, 1990; Marshak et al., 1995; Lovejoy and Schertzer, 2006). Various studies have shown that D

can vary considerably from cloud to cloud and even within different regions of the same cloud. For example, Batista-Tomás et al. (2016)
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found distinct fractal dimension values for cirrus with ragged, tenuous edges of D = 1.37, whereas for cumulonimbus,with

smoother edges, D = 1.18. Other analyses of cumulus fields have found D = 1.28 (Zhao and Di Girolamo, 2007) and D = 1.19

(Mieslinger et al., 2019) using the expression p∝
√
a
D

::
has

:::::::::
sometimes

:::::
been

:::::::
observed

:::
to

::
be

::::::
greater

:::
for

:::::
larger

::::::
clouds. Cahalan60

and Joseph (1989) reported D = 1.27 for small clouds and D = 1.56 for large clouds, supported by Benner and Curry (1998)

who found D = 1.23 and D = 1.34 respectively. Furthermore, after reexamining the data in Lovejoy (1982), Gifford (1989)

noted that D increases from 1.35 to 1.77 for the largest clouds with areas > 2.5× 104 km2. Inclusion of holes in the measured

cloud areas (Peters et al., 2009) and merged clouds (Cahalan and Joseph, 1989) have been theorized to affect
:::
The

::::::::
apparent

:::::::
increase

::
in

::::::::
measured

:::
D

:::
for

:::::
larger

::::::
clouds

::::::::
suggests

::
a

:::::::
violation

:::
of

:::::
scale

:::::::::
invariance.

::::::::
However,

::::
this

::
is
::::::

likely
::::::
another

:::::::
artifact65

::
of

:::
the

::::
data

:::::::
analysis

::::::::
methods.

::::
The

::::::::
inclusion

::
of

:::::::
interior

:::::
cloud

:::::
holes

::
in

::::
area

:::
and

:::::::::
perimeter

::::::::::::
measurements

:::
has

:::::
been

:::::
shown

:::
to

::::::::::
overestimate

:
calculations of D .

::::
using

:::
the

::::::::::
expression

::::::::
p∝

√
a
D

::::::::::::::::::::::::::::::::::
(Peters et al., 2009; Brinkhoff et al., 2015)

:
.
:::::::
Because

:::::::
interior

::::
holes

::::
tend

::
to

:::
fill

:::::
when

::::::
imaged

::::
with

::::::::::
increasingly

::::::
coarse

:::::::::
resolution,

:::
this

::
ξ

::::::::::
dependence

::
of

:
a
::::::
results

::
in

::
an

:::::::::
inaccurate

:::::
value

::
of

::
D

::
–

::
the

:::::
error

::
of

:::::
which

::::
can

::
be

:::::::::
calculated

::::
using

::::::::::
multifractal

:::::::
analysis

:::::::::::::::::::::::::
(Lovejoy and Schertzer, 1991)

:
.

The multifractal nature of clouds and their apparent size and type dependence of
::::::
Clouds

::::
have

::::
been

::::::
shown

::
to

::
be

:::::::::::
multifractal,70

::::
such

:::
that

:
D seem to contradict the argument that cloud geometries are scale invariant. Additionally, a monofractal D does not

account for multifractal parameters that account for
:
is

:
a
::::::::::
continuous

:::::::
function

::
of

::::::::
threshold

::::
used

::
to

:::::::::
distinguish

::::::
clouds

::::
from

:::::
clear

::::
skies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lovejoy and Schertzer, 1990, 1991; Marshak et al., 1995; Lovejoy and Schertzer, 2006)

:
.
::::::
Studies

::
of

:::
the

::::::::::
multifractal

::::::::
properties

::
of

:::::
clouds

:::
are

::::::
useful

::::::
because

::::
they

:::
can

:::
be

::::
used

::
to

:::::::::::::
mathematically

::::::
account

:::
for

:
turbulent intermittency (the variability of turbulent

fluctuations), notably observed in measurements of water mixing ratio (Tuck, 2022). However, scale invariance might be a75

reasonable assumption for describing a large ensemble of clouds considered over a sufficiently long period of time and space,

especially if turbulent intermittency might be reflected by the geometric intermittency of multiple and varied cloud types in

the ensemble. Indeed, the topic of whether or how scale invariance applies to atmospheric structures has
::
We

:::::
argue

::::
that

::
a

::::::::::
monofractal

:::::::::
assumption

::
is

::::::::
sufficient

:::
for

:::
the

:::::::
primary

::::::::::
conclusions

::
of

:::
this

:::::
study

::
in

:::::::
Section

:::
5.4.

:

:::::
While

:::
the

::::::
fractal

:::::::::
dimension

::::
and

::::
scale

:::::::::
invariance

:::
are

:::::::::::
intrinsically

::::::
linked,

::::
their

:::::::::::
relationship

::
to

::::::::
turbulent

::::::::
structures

:::
in

:::
the80

:::::::::
atmosphere

::
is
::::

less
:::::

clear.
:::::

Two
:::::::::
paradigms

::
of

::::::::::
turbulence

::::::
scaling

:::
in

:::
the

::::::::::
atmosphere

::::
have

:
been the topic of decades of de-

bate(Lovejoy and Schertzer, 2013).

The :
::::
split

:::
2D

:::
and

:::
3D

:::::::
isotropic

::::::
scaling

:::::::
regimes

:::
for

::::
large

:::
and

:::::
small

:::::
scales

:::::::::::::::::::::::::::::::::::::::::
(Fiedler and Panofsky, 1970; Nastrom et al., 1984)

:
,

:::
and

:::::::::::
wide-ranging

:::::::::
anisotropic

::::::
scaling

::::::::::::::
(Lovejoy, 2023).

::::
Both

:::::::
theories

:::::::::
originated

::::
from

:::
the pioneering work of Richardson (1926)

:::::::::::::::
Richardson (1926),

::::
who

:
showed that the turbulent eddy diffusivity K, measured using the relative motion of pairs of particles85

separated by distance ℓ, followed a power-law with a 4/3 exponent from the millimeter scale for molecular diffusion to the

length scale of atmospheric cyclones (ℓ∼ 103 km), K ∝ ℓ4/3, termed the Richardson “4/3 law" of atmospheric diffusion.

The scaling exponent of the diffusivity with respect to length scale can be obtained experimentally from measurements

of velocity fluctuations ∆v of two air parcels separated by a distance ℓ using passive scalars Θ, as a physical quantity that

is affected by but does not affect the turbulent flow, such as the concentration of aerosols (Celani et al., 2002). Along one90

dimension x, the generalized first-order (which ignores intermittency) “structure function" expresses the covariance of Θ as a
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function of separation distance ℓ. For turbulent scalars, the function tends to be a power-law given by

S(ℓ) = |∆Θ(ℓ)|=
〈
|Θ(x+ ℓ)−Θ(x)|

〉
∝ ℓH (2)

where brackets indicate averaging over many iterations of the experiment, and H is the Hurst exponent1 bounded by
::::
with

::::::
bounds 0<H< 1 (Schertzer and Lovejoy, 1984; Hentschel and Procaccia, 1984; Lovejoy and Schertzer, 2012).95

The 4/3 law was later derived using dimensional reasoning applied to the theory of 3D isotropic turbulence developed by

Kolmogorov (1941). In the theory, for a fluid with kinematic viscosity ν, turbulence kinetic energy is passed along an energy

cascade, from large eddies of the energy input scale L to progressively smaller eddies with a constant kinetic energy dissipation

rate ε, ending at the “Kolmogorov microscale," η ∼ (ν3/ε)4 ∼ 1 mm, a dissipation length scale where inertial and viscous

forces balance. Through dimensional analysis, the covariance of air parcel velocity fluctuations was derived to be ∆v ≈ ε1/3ℓH,100

where H = 1/3 for the case of 3D isotropic turbulence. The dimensional approximation that K ∼ ℓv (Tennekes and Lumley,

1972) results in K ∼ ε1/3ℓ4/3, reproducing Richardson’s 4/3 power-law, and implying that the relationship between diffusivity

and the Hurst exponent H
:::::
(again

::::::::
ignoring

:::::::::::
intermittency)

:
follows

K ∼ ℓ1+H (3)

As Sect. 5 elaborates, the value of H depends
:::::
differs

::::::
based on the dimensionality of the turbulence .

::::
(e.g.,

:::
the

::::
case

:::
of105

::
2D

::::::::
isotropic

::::::::::
turbulence).

:
The problem that 3D turbulence cannot apply at the “flatter" planetary scales to a relatively thin

troposphere has been well known. Even Kolmogorov predicted that 3D turbulence can only apply in the atmosphere at scales

< 100 m. This led to the paradigm that 3D isotropic turbulence must be applicable at small scales and 2D at large scales,

separated by a scale break around the depth of the troposphere (See Lovejoy (2023) for a historical review.). The contrasting

case for 2D turbulence was developed for the case of an incompressible fluid (Kraichnan, 1967)
:::
and

::::
later

::::::
refined

:::
into

:::
the

::::::
theory110

::
of

:::
2D

::::::::::::::
quasi-geostrophic

:::::::::
turbulence

::::::::::::::
(Charney, 1971), where the expected value is instead H = 1.

Figure 1 illustrates how two- and three-dimensional components in cloud structures are visible at all scales, but arguably

2D structures predominate at scale L, becoming more 3D approaching η, reflecting a scale dependence due to large-scale

stratification. Aircraft measurements of turbulent spectra of wind and temperature fluctuations have been argued to support

this
:::::::
physical

:::::::::
separation

::
of

::::
large

::::
and

::::
small

::::::
scales, where quasi-two-dimensional structures are seen at large scales and isotropic115

three-dimensional structures at small scales (Fiedler and Panofsky, 1970), with a scale break seen between approximately 20

km and 500 km (Nastrom et al., 1984; Gage and Nastrom, 1986). Lovejoy et al. (2007) (hereafter L07)
::::::::::::::::::
Lovejoy et al. (2009)

argued that this scale break owes
:
is

::
an

::::::
artifact

::::::
owing to vertical aircraft movements that occur when flying along isobars rather

than isoheights and proposed instead that 3D isotropic turbulence is inapplicable at nearly any scale because stratification

compresses the atmosphere vertically, even for scales as small as 5 m. Furthermore, the results of Alder and Wainwright (1970)120

show the formation of vortices even at the 10−8 m scale, inconsistent with a description of isotropic molecular diffusion (Tuck,

2022).
1The Hurst exponent has various

::::::::
mathematical

:
applicationsin other fields, but here we employ its common usage in the field of fractal geometry

::
(for

:::
the

::::::::::
non-intermittent

::::
case) to relate

::
the

:::::
scaling

::
of turbulent fluctuations with

::::::
respsect

:
to
:
separation distance ℓ.
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Figure 1. Diagram showing the similarity of rotational motions of clouds from the planetary diameter L∼ 2a, where structures are nearly 2D,

to smaller scales with more 3D structure. At L (left), swirling features associated with synoptic-scale systems are ∼ 104 km long and nearly

2D compared to the tropospheric depth H . At smaller resolved scales, the vertical component is more similar to the horizontal component,

and thus the structure is more 3D. The images on the left are from EPIC (top) and a MODIS and VIIRS composite (bottom) for the same

time frame. The upper right inset shows cloud features shaped by von Kármán vortices viewed near the Canary Islands obtained by VIIRS

with eddy length scales ∼ 10 km. The image on the bottom right shows swirling clouds in a thunderstorm photographed from the ground

with a length scale ∼ 0.01 km. The bottom inset is a cartoon depicting the smallest length scale of turbulence, the Kolmogorov microscale

η, where kinetic energy is dissipated to heat through molecular diffusion Kη , with individual cloud droplets illustrated as dots with spacing

to represent the cloud edge interface.
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Specifically,
::::::::::::::::::
Lovejoy et al. (2007)

:::::::
(hereafter

:
L07

:
), and more comprehensively Lovejoy and Schertzer (2013), provided evi-

dence that
:
,
:::::
rather

:::
than

::::
two

:::::::
separate

:::::::
isotropic

:::::::::
turbulence

:::::::
regimes, the atmosphere is best characterized by a consistent intermediate

turbulence regime at all scales following the
:::::
single

::::::::::
anisotropic

:::::::::
turbulence

::::::
regime

::::::::
spanning

:::
all

::::::
scales

::
in

:::
the

:::::::::::
atmosphere.125

::::::::
Following

:::
the

:
framework of generalized scale invariance (GSI), which accounts for stratificationin ,

:
the “23/9D" elliptical

model of turbulence in the atmosphere
::
is

:::::::::::
characterized

::
by

::
a
:::::::::
dimension

:::::::::::
intermediate

::
to

:::
2D

:::
and

::::
3D (Schertzer and Lovejoy,

1985). Power spectra of radar reflectivity, cloud radiance, wind speed, and temperature all revealed length-scaling exponents

that lie between purely 2D and 3D turbulence cases, consistent with an intermediate
:::::::::
anisotropic turbulence regime predicted

to have a (fractal) volume dimension of D = 2.55 = 2+H where H≈ 0.55
::::::::::::::::
D = 2.55 = 2+Hz::::::

where
:::::::::
Hz ≈ 0.55

::
is

:::
the

::::
ratio130

::
of

::::::::
horizontal

::::
and

:::::::
vertical

:::::
values

:::
of

::
H

:::::::::
(discussed

::::::
further

:::
in

::::
Sect.

:::
5) (Schertzer and Lovejoy, 1985; Lovejoy and Schertzer,

1985; Lovejoy et al., 1993; Lovejoy, 2021). In these cases,
:::
For

:::
the

::::::::
Gaussian

::::
case,

::::::
which

::::
does

::::
not

::::::
include

:::::::::::
intermittency

:::
or

:::::::::
multifractal

:::::::
aspects,

:
H is calculated from the power spectrum of the observed phenomenon, E(k)∼ k−B , where B = 2H+1.

::
In

:::
the

:::::
23/9D

::::::
theory,

:::::
which

:::::::::::
incorporates

:::
the

::::::
vertical

::::
and

::::::::
horizontal

:::::::
aspects

::
of

:::::::::
separation,

::::::::::::::::::::::
Hz = (BV − 1)/(BH − 1).

:

Simplifications of the first-order structure function have also been used to determine H for properties of clouds (Pressel and Collins, 2012; Pressel et al., 2014)135

::::::::::::::::::::::::::::::::::::::
(Pressel and Collins, 2012; Pressel et al., 2014), and to link the dimension of turbulence to the fractal dimension through the

expression (Hentschel and Procaccia, 1984; Mandelbrot, 1985)

D = 2−H (4)

Equation (4) has also been related directly to cloud perimeter fractal dimension as adjusted for intermittency µ through

Dµ = 2−H (Hentschel and Procaccia, 1984).
:
is
::::

the
:::
2D

::::::
analog

::
of
::::

the
::::::
fractal

:::::::::
dimension

::
of

::
a
:::::::::
geometric

:::
set

::
of

::::::
points.

::::
For140

:::::::
example,

:::::
given

:::::::::
(x,Θ(x))

::::::
where

::
x

::
is

:::
the

:::::::
position

::
in
::

a
:::
1D

:::::::
transect

::::
and

::
Θ
:::

is
:::
the

::::::::
measured

::::::
cloud

:::::::::
brightness,

:::
the

:::
1D

:::::
case

:::::::::
D = 1−H

:::::::
extends

::
to

:::
the

:::
2D

:::::
cloud

::::::::
perimeter

:::::::
(Θ(x,y)

::
as

::::::::::
D = 2−H

::::::::::::::::::::::::::
(Hentschel and Procaccia, 1984)

:
.

Observations of scaling behaviors in clouds, whether expressed through the fractal dimension or turbulent structure func-

tions, point to a robust relationship between ξ, cloud geometry, and turbulence. This paper explores the topic as follows. In

Sect. 2, we relate the Hurst exponent to an “ensemble" fractal dimension De that defines a globally distributed cloud field145

and discuss in Sect. 3 a resolution coarsening procedure to measure it. Section 4 presents the values of the ensemble fractal

dimension obtained using several satellite and numerical model datasets. Section 5 interprets the significance of the results

by comparing them to the expected values of De and H for 2D and 3D isotropic turbulence, as well as for an intermediate

:::::::::
anisotropic

:
turbulence regime that combines the two

::
is

::::::::::
intermediate

:::
to

:::
2D

:::
and

:::
3D

:
at all scales. Our findings

::::::::
contradict

:::
the

::::::
theories

:::::::::
proposing

::::
split

:::
2D

::::
and

:::
3D

:::::::
isotropic

:::::::::
turbulence

:::::::
regimes

::::::::
separated

:::
by

:
a
:::::
scale

:::::
break

::::
that

::::
have

::::::::
prevailed

::::
over

:::
the

::::
past150

::::::
decades

:::::::::::::::::::::::::::::::::::::::::
(Fiedler and Panofsky, 1970; Nastrom et al., 1984)

:
,
:::
and

:
support the concept of a

:::::::::::
wide-ranging, scale invariant 2D-3D

intermediate
:::::::::
anisotropic turbulence regime proposed by Schertzer and Lovejoy (1985), described in detail by Lovejoy and

Schertzer (2013), that we show
:
.
:::
We

::::
show

::::
that

:::
this

:::::::::
anisotropic

:::::::::
turbulence

::::::
regime

:
applies to cloud perimeters over a remarkable

10 orders of magnitude
::::::
ranging

:
from the Kolmogorov microscale η to the planetary diameter 2a.
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Figure 2. Illustration of the theorized cloud edge mixing engine from Garrett et al. (2018). The circulations are generated from the production

and dissipation of buoyant potential energy at the planetary scale. All clouds in the domain area Ad of Earth’s surface are represented as a

single cylinder with total perimeter P =
∑

p. The total available buoyant potential energy is dissipated vertically through moist adiabatic

convection with vertical buoyancy speed vV ∼N ξV , and horizontally via turbulent mixing at cloud edge with speed vH ∼KP . Globally,

the vertical and horizontal components must balance.

2 Analytical expressions relating the perimeter of cloud ensembles to the dimension of turbulence155

To explore how cloud perimeter varies with measurement resolution ξ, the total perimeter of a cloud ensemble viewed from

above (e.g., looking down as a satellite would view it from space) can be expressed in terms of a “perimeter density." The

perimeter density P is defined as the summed perimeters p of all clouds P =
∑

p normalized by the area of the horizontal

domain Ad; that is, P = P/Ad, a quantity analogous to the cloud fraction A=A/Ad where A is the total cloud area. In this

section, we show how P can be related to ξ through the Hurst exponent H.160

2.1 Cloud perimeter and the Hurst exponent

In Garrett et al. (2018), the total cloud edge perimeter P of a tropical convective cloud field was estimated theoretically for

equal horizontal and vertical resolutions ξH = ξV = ξ within a domain volume V =AdξV . To obtain P , a “mixing engine"

framework was introduced, that described cloud edge circulations consisting of coupled large-scale vertical buoyancy oscilla-

tions and horizontal turbulent exchanges as shown in Fig. 2. The derivation reflects a dimensional balance between two speeds.165

In the horizontal, vH =KP represents a speed of erosion or formation of cloud edge due to dissipative mixing with a character-

istic length scale ξH . The speed in the vertical direction is vV =N ξV where N is the moist adiabatic Brunt-Väisälä frequency,

and represents the speed of production of potential energy through oscillatory vertical motions. Assuming steady-state and that

the speeds of the horizontal and vertical legs of the circulation are equal, vV = vH , then it follows that

KP =N ξV (5)170
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Invoking mass continuity for the cloud edge circulation, ∇ · v = 0 leads to ∂vV /∂ξV =−∂vH/∂ξH , and through scale

analysis, N ξV /ξV ∼KP/ξH . Thus, where ξH is the horizontal measurement resolution ξ viewed from space,

Pξ ∼
N ξ

Kξ
(6)

where Kξ is the turbulent eddy diffusivity with eddy length scale ξ.

From Eq. (3), Kξ scales with H, the value of which varies depending on the dimensionality of turbulence reflecting any175

anisotropy between ξV and ξH . The adjustment needed to scale Kξ from the molecular diffusivity at η (i.e., Kη , the diffusion

coefficient of air) to the resolution ξ is (Richardson, 1926; Garrett et al., 2018)2

Kξ =Kη

(
ξ

η

)1+H

(7)

Substituting Eq. (7) into Eq. (6), the expected relationship relating measurement resolution to the cloud perimeter density Pξ

becomes:180

Pξ =
Nη

Kη

(
η

ξ

)H

∝ ξ−H (8)

An observed value of H is then obtainable from measurements of P as a function of ξ. Note that ξ is normalized here by η

rather than its common normalization by an outer scale L (Lovejoy, 2023). We choose this normalization to more conveniently

relate Pξ to Kξ and Kη .

2.2 The fractal dimension of cloud ensembles185

Equation (8) expresses the cloud perimeter as a function of resolution, and is thus analogous to Eq. (1) where p∝ ξ1−D with

fractal dimension D. The canonical value for individual clouds is D ≈ 4/3 (Lovejoy, 1982; Siebesma and Jonker, 2000; Chris-

tensen and Driver, 2021), but there are complications with this expression for D, including the aforementioned multifractal

nature of clouds. Additionally, D in the expression p∝
√
a
D only applies mathematically to the shape of an individual cloud,

and has been argued to only represent sets of identically shaped objects (Imre, 1992).190

From a climatological perspective, it is instead the ensemble of clouds with total perimeter density P that governs exchanges

of energy and air across cloud edges. Following the fractal “islands" analogy from Mandelbrot (1977) who considered the total

perimeter of an ensemble of objects (described in more detail below), we propose an “ensemble fractal dimension" for clouds

De analogous to Eq. (1) such that

Pξ ∝ ξ1−De (9)195

implying from Eq. (6), that the scaling exponent of the diffusivity is equivalent to the ensemble fractal dimension:

Kξ ∝ ξDe (10)
2
:::
Note

:::
that

:
ξ
:
is
::::::::
normalized

:::
here

::
by

:
η
::::
rather

:::
than

:::
the

:::
more

::::::
common

:::::::::
normalization

::
by

::::
outer

::::
scale

:
L,
:::

the
::::
largest

::::
eddy

:
of
:::

the
::::::
turbulent

:::
flow,

::::
from

::::
which

:::::
energy

:
is
:::::::
transferred

::
to

:::::
smaller

:::::
eddies

:
of
::::::::
observation

::::
scale

::::
ℓ= ξ

:
in
:::
the

::::
energy

::::::
cascade.

::::::
Because

::
the

:::::
choice

::
of

:::::::::
normalization

::::
length

::::
scale

:::
does

:::
not

::::
affect

::::::::
calculations

:
of
:::
the

::::
value

:
of
::
H
::
or

:::
De,

::
we

:::::
choose

::
η
:
to
::::

relate
:::
Pξ::

to
::
Kξ:::

and
:::
Kη .

::::
This

:
is
:::::::
consistent

:::
with

:::
the

::::::
approach

::::
taken

::
by

::::::::::::::::::::::::::::
Krueger et al. (1997); Garrett et al. (2018)

:::
who

:::::
focused

::
on

::
the

::::::::
relationship

::::::
between

::::
cloud

::::::::::
measurements

:
at
::::
scale

:
ξ
:::
and

::::::
turbulent

::::::
processes

::
at
::
the

:::::::::
Kolmogorov

:::::::
microscale

::
η.
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The distinction between D and De was first raised by Mandelbrot (1977), who showed that an ensemble of fractal “islands"

with power-law distributed areas a follows the Korčák Law, a survival function S(a′ > a)∝ a−K (Korčák, 1938), where the

ensemble fractal dimension of the total coastline perimeter P is De = 2K confined to the bounds 1≤D <De ≤ 2.200

The survival function can be related to a cumulative distribution function (CDF) through S = 1−CDF and K is equivalent

to the exponent of the power-law number distribution (Clauset et al., 2009). The area number distribution can be expressed

as na ∝ a−(1+α) for clouds (Cahalan and Joseph, 1989; Benner and Curry, 1998; Wood and Field, 2011), and K ∼ α. The

perimeter number distribution, np ∝ p−(1+β), is related to that for the area through α=Dβ/2 for clouds (DeWitt et al., 2023)

:::::::::::::::::
(DeWitt et al., 2024). It follows that the ensemble fractal dimension is given by De =Dβ. The inequality D <De requires205

that β > 1.

Comparing the exponents in Eqs. (8) and (9), the Hurst exponent can be related to the ensemble fractal dimension through

H=De − 1 (11)

This equation is important because it provides a means for linking satellite observations of cloud perimeter fractal properties

and size distributions to the less easily seen but more physically relevant turbulent structures at cloud edge. For comparison210

with a LES model of a tropical cloud field resolved at 100 m scales, Garrett et al. (2018) applied a value of H= 1/3 to Eq. (7)

consistent with Richardson (1926) and the 4/3 law. Implicit in this case is an assumption of 3D isotropic turbulence at resolved

scales. The assumption may be appropriate for an LES that chooses a cubic Eulerian grid for computational ease at the expense

of losing a Lagrangian perspective.

However, while D = 4/3 is consistent with values seen for individual clouds, a larger value is required for cloud ensem-215

bles, in which case the inequality D <De predicted by Mandelbrot (1977); DeWitt et al. (2023) applies. To allow for an

:::::::::::::::::::::::::::::::::
Mandelbrot (1977); DeWitt et al. (2024)

::::::
applies.

::
In

::
a
::::::
similar

:
adjustment to the individual fractal dimension, Hentschel and

Procaccia (1984) related the perimeter fractal dimension of clouds to H through the expression D = 2−H (Eq. 4), but required

::::
with a correction for intermittency in turbulence

::::::::
turbulent

:::::::::::
intermittency

:
(µ, where Dµ = (4+µ)/3≈ 5/3 (described below).

We obtain, from Eqs. (11) and (4), an adjustment to D for an ensemble of clouds:220

De = 3−D (12)

The quantity 3−D has been described as the fractal intermittency of turbulence
::::::
defined

::
as
::::

the
:::::::::::
intermittency

::::::::
exponent

:::
by

::::::::::::::::::::::::::
Hentschel and Procaccia (1984)

:::
and

:::
the

:::::::::
multifractal

:::::::::::
codimension3

:::::::::::::::::::::::::
(Schertzer and Lovejoy, 1987) within a 3D volume (Mandelbrot, 1977; Hentschel and Procaccia, 1984)

.
:::::
space.

:
Applying the canonical value of D = 4/3 for individual clouds leads to the expected value of De = 5/3 for cloud

ensembles. Perhaps the geometric intermittency of multiple and varied cloud types in an ensemble reflects the turbulent inter-225

mittency that is not represented by D for individual clouds. This
::::::
estimate

:::
of

::::::::
De = 5/3

:
is in agreement with Hentschel and

Procaccia (1984), who found that Richardson’s 4/3 law only applies if the fractal dimension is Dµ = 5/3, obtained by adding

an intermittency correction with a value between 0.25< µ < 0.5 to the value D = 4/3. The 5/3 value is also nearly identical to

the value of De = 1.68± 0.06 obtained from De =Dβ for β = 1.26 from DeWitt et al. (2023)
::::::::::::::::
DeWitt et al. (2024), which ap-

plied across various satellite instruments and climate regimes. In this case, the implied value of the Hurst exponent is H= 2/3,230

3
::
The

:::::::
difference

::::::
between

::
the

:::::
spatial

:::::::
dimension

::
of

::
the

:::::
domain

:::
and

::
the

:::::
fractal

:::::::
dimension
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Table 1. Summary of main formulas

Equation number Formula Reference

(1) p∝ ξ1−D Mandelbrot (1967)

(2) S(ℓ) = ∆Θ(ℓ) = ⟨Θ(x+ ℓ)−Θ(x)⟩ ∝ ℓH Kolmogorov (1941)

(3) K ∼ ℓ1+H Derived from Richardson (1926) and Kolmogorov (1941)

(4) D = 2−H Hentschel and Procaccia (1984)

(5) KP =N ξV Garrett et al. (2018)

(6) Pξ ∼ Nξ
Kξ

Equation (5)

(7) Kξ =Kη

(
ξ
η

)1+H
Krueger et al. (1997) and Eq. (3)

(8) Pξ =
Nη
Kη

(
η
ξ

)H
∝ ξ−H Equations (6) and (7)

(9) Pξ ∝ ξ1−De Mandelbrot (1977)

(10) Kξ ∝ ξDe Equations (6) and (9)

(11) H=De − 1 Equations (8) and (9)

(12) De = 3−D Equations (4) and (11)

which is between the 3D turbulence value of H= 1/3 and the 2D turbulence value of H= 1. Using Eq. (9) and the methods

below, we observationally evaluate the applicability of the result H= 2/3 that is associated with De = 5/3.

3 Data and methods

Equation (11) implies that the dimensionality of the turbulent structure in clouds can be inferred from observations of cloud

perimeters. To explore this hypothesis and the suggestion from Eq. (12) that H= 2/3, we consider satellite imagery of clouds235

from platforms in polar-orbiting, geostationary, and heliocentric orbits (summarized in Table 2) using cloud mask algorithms.

The resulting binary arrays, hereafter “cloud masks," represent cloudy pixels with a value of unity and clear skies by a value

of zero. Cloudy pixels are considered an individual connected cloud when they are vertically or horizontally adjacent (i.e.,

“4-connectivity"). The edges of the domain are not included as part of the perimeter. The quantities p and a are calculated for

all individual clouds (see Fig. 3f for an example). The perimeter is defined as the sum of all pixel edge lengths along the outer240

edge of each cloud. Although the example shows that all pixel sizes are equal, in satellite imagery, each pixel has individual

values of ξx and ξy for its width and height, which are adjusted from ξN to account for the Earth’s curvature away from the

satellite nadir vertically and horizontally. The area is the sum of ξx × ξy for each pixel in the cloud. For each image, p and a

are summed and normalized by domain area Ad to determine P and A.

The polar-orbiting data sets considered are from the instruments VIIRS and MODIS, which have native pixel resolutions245

ξN at the nadir of 0.75 km and 1 km, and capture imagery in narrow, meridional swaths. Values of ξN represent the pixel

resolution at satellite nadir; the horizontal and vertical dimensions of each pixel are adjusted based on their distance from

the nadir. The average swath size for VIIRS is 2501 × 12944 pixels with a domain area Ad of 2.6×107 km2. For MODIS
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it is 1261 × 8120 pixels with Ad = 2.0×107 km2. The VIIRS and MODIS datasets include 60 and 72 cloud masks from

02 June 2021. Their respective cloud mask techniques are described by Kopp et al. (2014) and Ackerman et al. (2008). We250

also include 12 MODIS cloud masks with 0.25 km resolution as defined by optical reflectance values R≥ 0.01 described

by DeWitt et al. (2023)
::::::::::::::::
DeWitt et al. (2024). These high-resolution cloud masks have Ad = 5.1×106 km2 and average image

dimensions of 5048 × 8120 pixels obtained from 01 January 2021 through 09 January 2021.

Geostationary datasets are obtained from instruments denoted here by their more familiar satellite names, Himawari (in-

strument name: AHI), GOES-WEST (ABI), and METEOSAT-11 (SEVIRI), which provide full-disk imagery of Earth with255

Ad = 1.0× 108km2 positioned over the fixed longitudes 141◦E, 137◦W, and 0◦, respectively. Their nadir pixel resolutions are

2 km, 2 km, and 3 km, respectively, with cloud masks as described by Derrien and Gléau (2005). For each of the geostationary

datasets, 30 cloud masks were obtained from 02 June 2021 through 01 July 2021, each at approximately the local noon at the

satellite nadir.

To provide unique observations of global cloud coverage, we also include cloud masks from GEO-Ring and EPIC. GEO-260

Ring is a composite of geostationary satellite imagery (Ceamanos et al., 2021) that provides stitched satellite imagery of the

surface of the Earth (excluding the poles) with Ad = 4.4× 108 km2 at ξN = 11 km. Thirty-nine GEO-Ring cloud masks were

obtained from 02 June 2021 through 21 June 2021. EPIC obtains full-disk imagery of Earth from the DSCOVR satellite in

heliocentric orbit, photographing Earth as it rotates, providing coverage of all longitudes. Due to its location at the L1 Lagrange

Point in deep space, EPIC imagery has a coarser pixel resolution of 8 km. 30 EPIC cloud masks (described by described by265

Yang et al. (2019)) were obtained from 01 June 2017 through 30 June 2017.

As a means to compare measurements of Pξ from satellite observations to the value derived by Garrett et al. (2018), we

consider the geometries of clouds simulated using the System for Atmospheric Modeling (SAM), calculated as they would

be viewed from space. SAM is a high-resolution 3D LES, initialized with idealized GATE Phase III campaign soundings for

tropical convection. The simulation domain of 204.8 km× 204.8 km× 19 km includes more than one billion grid points –270

often referred to as a “Giga-LES." There are 2048 grid points in the horizontal directions with a grid spacing of 100 m, and 256

grid points in the vertical with grid spacing ranging from 50 m to 100 m. The simulation is integrated at two-second intervals

for 24 hours. Refer to Khairoutdinov et al. (2009) for a more complete description of the simulation. We analyze scenes hourly

from hour 12 through hour 24 of the model to ensure that steady-state has been reached.

In order to compare the 3D model data with 2D satellite retrievals, we define the SAM cloud masks as 3D binary arrays275

for mixing ratios of non-precipitating cloud condensate qn > 0.01 g kg−1. A 2D facsimile of a satellite cloud mask is created

from a vertical projection of the 3D cloud mask that represents the view from above. The 2D binary cloud mask is assigned

a cloudy pixel
:::::
based

::
on

::::::::
threshold

:::::
value

:
j
:
where the corresponding vertical columns of the 3D cloud mask have

∑H
0 (cloudy

pixels) > j. For example, with a threshold value of j = 3, each pixel in the 2D cloud mask is classified as cloudy if more

than three of the pixels in the corresponding 3D vertical column are cloudy. Multiple 2D cloud masks were obtained using280

threshold values j = 1,2,3,5,9,15. This thresholding procedure is similar to an analysis performed by DeWitt et al. (2023)

:::::::::::::::::
DeWitt et al. (2024) that compared differences in cloud statistics defined by various optical depth thresholds.
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Table 2. Summary of satellite datasets used in this study.

Dataset

name

Sensor

name
View Type

Approx. nadir

resolution

Longitude

at nadir
Dates examined

Description of

cloud mask algorithm

MODIS 250 m MODIS Polar-Orbiting 250 m -
01 January 2021 to

09 January 2021
DeWitt et al. (2023)

:::::::::::::::
DeWitt et al. (2024)

VIIRS VIIRS Polar-Orbiting 750 m -
03 June 2021 to

04 June 2021
Kopp et al. (2014)

MODIS 1km MODIS Polar-Orbiting 1 km -
02 June 2012 to

02 June 2012
Ackerman et al. (1998, 2008)

Himawari AHI Full-Disk 2 km 141° E
02 June 2021 to

01 July 2021
Derrien and Gléau (2005, 2010)

GOES ABI Full-Disk 2 km 137° W
02 June 2021 to

01 July 2021
Derrien and Gléau (2005, 2010)

METEOSAT SEVIRI Full-Disk 3 km 0°
02 June 2021 to

01 July 2021
Derrien and Gléau (2005, 2010)

EPIC EPIC Full-Disk 8 km -
01 January 2017 to

31 January 2017
Yang et al. (2019)

GeoRing (Composite) Full-Disk 11 km -
02 June 2021 to

21 June 2021
Ceamanos et al. (2021)

To obtain values of De, total cloud perimeter P is calculated first at the native spatial resolution ξN and normalized by Ad

to obtain PN . The image is then artificially coarsened (see description below) and the procedure is repeated. Pξ is obtained at

progressively coarser spatial resolutions ξ > ξN such that ξ = ξNk, where k is the coarsening factor. Coarsening is performed285

by separating the original image into a grid of multiple “boxes" containing k× k pixels (see Fig. 3e, red boxes) which are

reduced to a single upscaled pixel through averaging. Each pixel of the coarsened image (Fig. 3f, outlined in blue) is determined

to be cloudy or clear by rounding the average of the values inside each box in the native resolution image (Fig. 3e, outlined in

blue) to unity or zero. The values of k are chosen to be the nearest odd integers that differ by a constant factor (e.g., k = 2n).

The maximum value of k for each dataset corresponds to coarsening to a single pixel along the shorter dimension of the domain.290

Figure 3 (a-d) shows an example of resolution coarsening to a single pixel for various EPIC cloud masks.

A least squares linear regression is performed on values of lnPξ and lnξ to obtain the Hurst exponent H and De from Eqs.

(8) and (9). Linear regression was performed on the straightest region of all curves, which was found to be 7< ξ/ξN < 150

where biases due to interpolation (ξ/ξN < 7, most significantly for EPIC) and due to the square shape of pixels at very coarse

resolutions (ξ/ξN > 150) are omitted. Uncertainties in the linear regression are evaluated at the 95% confidence level.295

12



Figure 3. Top: EPIC cloud masks shown at native resolution ξN and coarsened resolutions ξ to a single pixel for four cases with initial native

cloud fraction between 0.48<AN < 0.58 (increasing from top to bottom) illustrating a bifurcation of cloud fraction with coarsening of

resolution depending on the native cloud fraction to either zero or unity. Note that the single pixel case shown here has a value of A= 0.37

rather than unity because the domain area represented by the square pixel is the disk area Ad = πa2. Bottom: A detailed example of the

upscaling method. The “original" image here is shown at 100x the resolution of the true original image to exaggerate pixels for clarity, and

the coarsened image is upscaled 3x or k = ξ/ξN = 3. The thin blue lines outline pixels with side lengths ξN and the red boxes are the

upscaled pixel regions. An example region of pixels from which the mean is used to determine whether the upscaled pixel is cloudy or clear

is highlighted as a thick blue box with pixel values shown within. An example of the individual perimeter and area calculation is highlighted

in yellow, assuming the original pixel resolution is ξN = 1 m. Areas outside the circle are marked NaN and so are omitted from the average.
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Figure 4. Measured cloud fraction AN (a) and perimeter density PN (b) at native measurement resolution ξN (solid markers), and Aξ and

Pξ at coarsened resolutions ξ normalized by ξN (lines and hollow markers) for polar-orbiting (blue), full-disk (green), and global mosaic

(yellow) satellite datasets. The SAM numerical simulations are shown as pink diamonds (with brightness scaled by threshold value j). Legend

entries are sorted by increasing ξN with the associated negative Hurst exponent H obtained from a least squares linear regression of lnPξ

and lnξ (Eq. 8) and uncertainties evaluated for a 95% confidence interval. Linear regression was performed on the straightest portion of all

curves, found to be 7< ξ/ξN < 150, although the best fit lines are extrapolated to all points to show their relative distance to the fit.

4 Results: Cloud measurements

Alongside measurements of perimeter density Pξ, the more familiar quantity of cloud fraction Aξ is included as a point of

comparison. Figure 4 shows the cloud fraction and perimeter density obtained from satellite and model datasets at native

resolution ξN , termed AN and PN , and coarsened resolutions ξ normalized by ξN . Both ξN and the domain areas Ad span two

orders of magnitude: ξN from 0.1 km to 11 km, and Ad from 5.1× 106 to 4.4× 108 km2.300

4.1 Measured cloud fraction A

Global cloud fraction values AN in Fig. 4a range from 0.5 to 0.7, reflecting differences in cloud mask techniques. With

progressive coarsening, A changes by less than 5% before bifurcating at ξ/ξN ∼ 100. As ξ approaches ξ/ξN ∼ 1,000, A is

represented by a single pixel, with a value of either zero or unity (except for the polar-orbiting satellites, which are represented

by a 1×5 line). Interestingly, geostationary cloud fraction measurements with AN > 0.56 approach a value of unity, whereas305

MODIS 0.25 km and EPIC datasets with AN = 0.55 instead trend toward zero.

This bifurcation of cloud fraction reflects that as an image of a cloud field is coarsened to a single pixel, the coarsened pixel

value is determined by averaging and rounding to zero or unity the pixel values in the original image (illustrated in Sect. 3).

Conversely, a coarsening method in which the presence of any cloudy pixel in the original image results in a cloudy coarsened

pixel causes cloud fraction to converge to unity with coarsening (Di Girolamo and Davies, 1997). Due to this averaging310
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method, the value to which cloud fraction bifurcates depends on the native cloud fraction AN . Figure 3 shows four examples

of coarsening EPIC cloud masks to a single pixel, resulting in either a single clear or cloudy pixel. Although statistically the

initial cloud fraction value is a good indicator of whether the single pixel will be cloudy or clear, it is not the only factor.

For AN = 0.55, the single-pixel value of A depends more on the initial distribution of clouds. Where clouds are more evenly

distributed across the globe (Fig. 3b), smaller isolated structures vanish more quickly with coarsening and approach A= 0 for315

a single pixel. When clouds are more clustered (Fig. 3c), a coarsened single pixel has A= 1.

The application of vertical pixel thresholding in SAM results in a wide range of native cloud fraction values between

0.15<AN < 0.60. Larger threshold values j tend to exclude small and shallow clouds, and in turn, decrease the overall cloud

fraction. Bifurcation of A occurs for SAM at a native value of AN ≈ 0.45, notably smaller than the value at which bifurcation

occurs for satellite datasets at AN ≈ 0.55. This discrepancy suggests a difference between the clustering behavior of clouds320

viewed globally by satellite and those of modeled clouds for a region of tropical convection. A possible explanation for the

discrepancy is that models assume local thermodynamic equilibrium, which has been argued not to apply in the atmosphere

(Tuck, 2022).

4.2 Measured cloud perimeter density P

The resolution dependence of cloud perimeter density P can be defined more simply than for cloud fraction A. As shown in325

Fig. 4b, perimeter density Pξ has a power-law scaling with ξ in all datasets, independent of satellite orbit, domain size, and

resolution. For ξ > ξN , Pξ is well characterized by a linear regression of lnPξ to lnξ (Eq. 8). Linear regression is performed

only on data points in the straightest region of all curves, 7< ξ/ξN < 150, where biases due to interpolation (ξ/ξN < 7) and

the square shape of pixels at very coarse resolutions (ξ/ξN > 150) are ignored. The lines in the figure are shown extrapolated

to all points to demonstrate their relative distance to the least-squares fit, which can be assumed to more reliably reflect the330

physical fractal nature of the cloud ensemble. This power-law relationship Pξ ∝ ξ−H holds even past the point ξ/ξN ∼ 100

where cloud fraction values A tend to diverge. However, for very large ξ/ξN ∼ 1,000, Pξ can deviate from the power-law

regression to lower values, reflecting the fractal nature of the problem: complex cloud structures cannot be fully represented by

coarse Euclidean geometries such as a single square pixel. This low bias in Pξ for values of ξ/ξN between ∼ 100 and ∼ 1000

can also be seen in the fourth and fifth columns of Fig. 3. There, for ξ/ξN = 243 the images appear pixelated, but maintain335

their general structure. However, for ξ/ξN = 729, the cloud mask consists of either a single cloudy or a clear pixel. The value

of ξ/ξN at which P begins to depart from the linear regression corresponds to the coarsest resolution for which the complexity

of the cloud edge can still be reliably measured.

Notably, the value of PN for the native resolution ξ/ξN = 1 does not always align with the best-fit line, especially for the case

of EPIC. As discussed in DeWitt et al. (2023)
::::::::::::::::
DeWitt et al. (2024), EPIC employs an on-board averaging and post-processing340

interpolation that artificially smooths the edges of clouds to compress data for transmission. This interpolation results in the

artifact that PN is lowered due to the reduced edge complexity. A similar phenomenon is observed to a lesser degree for the

other satellite datasets. To avoid this issue, the PN data points are not included in the linear regression.
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For satellite datasets, values of H lie in the range 0.71<H< 0.84, with a mean value of H=0.78 with uncertainty evaluated

at the 95% confidence interval of 0.09. The ensemble fractal dimension that corresponds to the total cloud perimeter given by345

Eq. (11) is De =H+1 = 1.78± 0.09, larger than the canonical value D ≈ 4/3 often observed for individual clouds obtained

using the expression p∝
√
a
D. Calculated values of H from the satellite datasets do not appear to depend on the type of

satellite orbit or resolution, but they are significantly larger than those found for modeled clouds. Pξ measured from SAM

follows a power-law with exponent values ranging from 0.60<H< 0.71 depending on threshold value j. The average value

of H= 0.67± 0.08 is two standard deviations smaller than the the satellite datasets.350

Note that modeled values of H lie closer to the value of 1/3 expected for 3D isotropic turbulence than inferred from the

satellite datasets, perhaps reflecting the smaller domain area and atmospheric regime or assumptions used in LES models of

subgrid-scale turbulence or local thermodynamic equilibrium. In general, increasing the threshold value j (which determines

the minimum vertical cloud thickness required for 2D cloud masking) leads to smaller values of H, reflecting the multifractal

nature of clouds. For example, for a detection threshold of j = 0, all cloudy pixels in the domain are considered and H= 0.71.355

Meanwhile, for the highest detection threshold value of j = 15, and H= 0.61. The latter case requires that only the largest

overlapping cloud structures are included in the analysis, leaving most small, shallow clouds omitted. The smallest clouds are

only observed with the finest resolution, resulting in a shallower linear regression slope for more highly thresholded cloud

scenes.

5 Discussion360

To summarize the observations, global cloud perimeter density P is much more sensitive than cloud fraction A to measurement

resolution ξ, but the dependence is also much more simply mathematically characterized. The observed power-law scaling re-

lating P to ξ is remarkably similar for imagery from a wide range of satellite platforms. We measured an ensemble fractal

dimension of De = 1.78± 0.09, corresponding to a Hurst exponent of H= 0.78± 0.09. Similarly, from DeWitt et al. (2023)

::::::::::::::::
DeWitt et al. (2024), De =Dβ ≃ 1.68± 0.06 derived from satellite observations of the perimeter distribution power-law ex-365

ponent β = 1.26± 0.06 and assuming D = 4/3 for individual clouds.

To account for how the dimensionality of turbulence may help explain the difference between the measured value of De =

1.78±0.09 for satellite observations (Fig. 4) and the theoretical value of 5/3 implied by Eq. (12), we compare De with canonical

values of H associated with 2D, 3D, and “intermediate" turbulent regimes and explore “limiting cases" that correspond to

possible upper and lower bounds of Pξ evaluated at the planetary scale and the Kolmogorov microscale.370

5.1 Scaling exponents for 3D, 2D, and intermediate turbulence regimes

As introduced in Sect. 1, the theory of 3D isotropic turbulence predicts that the length dependence of turbulent diffusivity

follows K ∼ ε1/3ℓ4/3, i.e., Richardson’s 4/3 law. Within the context of resolved clouds, we express ℓ as the resolved eddy

length ξ, assuming that the smallest resolved cloud features are shaped by turbulent eddies of that size. In this case, the
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turbulent diffusivity scaling expression for cloud edges resolved at scale ξ is375

Kξ,3D ∝ ξ4/3 (13)

Following from Eq. (3), K ∼ ℓ1+H, the implied scaling exponent for velocity fluctuations in 3D isotropic turbulence is H =

1/3.

For 2D isotropic turbulence, where vertical motions are negligible, due to e.g., stratification, the diffusivity scaling exponent

can be obtained from dimensional analysis with the conserved property being enstrophy E — the integrated 2D vorticity380

squared — instead of ε. The dependence of E on the eddy length scale ℓ is E(ℓ)∼ Φ2/3ℓ3 where Φ is the enstrophy flux density

with units s−3 (Kraichnan, 1967; Charney, 1971). The velocity scaling exponent is v ∼ Φ1/3ℓ, and substituting v into K ∼ vℓ,

the 2D turbulent diffusivity scaling becomes

Kξ,2D ∼ ξ2 (14)

and from Eq. (3), the implied scaling exponent for velocity fluctuations in 2D turbulence is H= 1.385

The framework of generalized scale invariance (Schertzer and Lovejoy, 1985) allows for the derivation of an “elliptical

dimension" Del that applies to an “intermediate" 23/9D model of anisotropic turbulence at all scales in the atmosphere, rather

than distinct regions of 2D isotropic turbulence at large scales and 3D isotropic turbulence at smaller scales. This continuous

scaling accounts for the horizontal-vertical anisotropy of the atmosphere due to stratification and is determined by comparing

velocity fluctuations ∆vH and ∆vV in the horizontal and vertical directions. Because stratification is only observable in vertical390

velocity perturbations, it is has been observed that horizontal velocity fluctuations follow the
::::::::::::
corresponding

::
to

:::
the

:::::::::
horizontal

::::::
velocity

::::::::::
component

::::
with

::::::::
subscripts

::
H

::::
and

::
V

::::::::
indicating

:::
the

::::::::
horizontal

::
or

:::::::
vertical

::::::::
separation

:::::::
between

:::::::::::::
measurements.

:::::::::
Horizontal

::::::
velocity

::::::::::
fluctuations

::::
have

:::::
been

:::::
widely

::::::::
observed

::
to

::::::
follow

:
a
:
3D scaling ∆vH ∼ ε1/3ℓ1/3 up

:::::
where

:
ℓ
::::::
ranges

::::
from

:::::
order

:::
∼1

::
m to

the planetary scale (Lovejoy and Schertzer, 2013). The Bolgiano-Obukhov law (Bolgiano Jr, 1959; Obukhov, 1959) describes

the corresponding vertical scaling relationship in buoyancy-forced turbulence ∆vV ∼ ϕ1/5ℓ3/5, where ϕ is analogous to the395

potential energy dissipation rate ε in the vertical dimension with units m2 s−5. To account for this anisotropy in the vertical, H

:::
Hz for the combined turbulence case was derived from the ratio of the horizontal and vertical Hurst exponents HH = 1/3 and

HV = 3/5, resulting in HH/HV = 5/9∼ 0.56
:::::::::::::::::::::::
Hz =HH/HV = 5/9∼ 0.56. From Eq. (11), the elliptical dimension becomes

Del = 14/9 = 1.56 (for the volume, 23/9 = 14/9+1. See Lovejoy (2023) for a review.) From Eq. (3), the turbulent diffusivity

for this intermediate 23/9D regime then scales as400

Kξ,int ∼ ξ14/9 (15)

::::
Note

::::
that

::::
Eqs.

::::
(13)

::::
and

::::
(14)

::::::::::
correspond

::
to

:::
the

::::::::
isotropic

:::::
cases

::
of

::::
2D

:::
and

:::
3D

::::::::::
turbulence,

:::::
while

::::
Eq.

::::
(15)

::::::::
combines

::::
the

::::::
vertical

:::
and

:::::::::
horizontal

::::::::::
components

:::
of

::
H

::
to

:::::
arrive

::
at
:::
an

:::::::::
anisotropic

::::
case

:::
of

:::::::
turbulent

:::::::::
diffusivity

:::::::::
expression

::::
that

::::::
applies

::
at

:::
all

:::::
scales.

:
Lovejoy et al. (2007) (L07) analyzed 5 m vertical resolution dropsonde wind datasets to determine the relationship

∆vV ∼ ℓHV

V where ℓV is the vertical separation between measurements. The observed Hurst exponent ranged from HV = 0.60405

— in agreement with the Bolgiano-Obukhov 3/5 scaling for ℓV < 1 km — to H= 0.77 for ℓV < 13 km, the tropospheric
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Theory

Turbulence Regime H De

(Pξ ∼ ξ−H) (Kξ ∼ ξ−De )

3D Isotropic Turbulence Eq. (13) 1/3 (0.33) 4/3 (1.33)

De = 5/3 Eq. (12) 2/3 (0.67) 5/3 (1.67)

23/9D Elliptical Dimension (GSI)

HH/HV Eq. (15) 5/9 (0.56) 14/9 (1.56)

2D Turbulence Eq. (14) 1 2

Observations

Vertical wind structure functions HV (L07)

Tropopause: 12.6 km 0.77 1.77

Surface to 10 km 0.60 to 0.75

Measured cloud perimeters (Figure 4b)

Satellite 0.78± 0.09 1.78

SAM 0.67± 0.08 1.67

Table 3. Theorized values (top) of H and De from the expressions Pξ ∼ ξ−H (Eq. 8), Kξ ∼ ξDe (Eq. 10), and H=De − 1 (Eq. 11), for

the cases of 3D isotropic turbulence, De = 5/3, the 23/9D elliptical model from generalized scale invariance (GSI), and 2D turbulence.

Observations (bottom) include HV from Lovejoy et al. (2007) for vertical wind profiles and the measurements obtained here shown in Fig.

4b. Values of H for each case are compared in Fig. 6. Decimal values are shown alongside the derived fraction values for ease of comparison

with observations.

depth. Increasing values of HV as ℓV approaches the tropospheric depth were argued to be consistent with more 2D turbulent

structures influenced by upper-level jet shear.

Table 3 summarizes previously derived expressions for the scaling exponents H and De for 3D, 2D and intermediate turbu-

lence, along with their relationship to P through Eq. (8), for comparison with the satellite and numerical model results obtained410

here. The exponent values in Eqs. (13)-(15) are labeled De following Eq. (10).

Observational values from Sect. 4 and from L07 are similar to the theoretically obtained values of De = 5/3 from Eq. (12)

and the 23/9D model implying De = 14/9 = 1.56, and not to either of 2D or 3D isotropic turbulence. The De = 5/3 case is

closest to the value of De = 1.78± 0.09 obtained from satellite observations (Fig. 4b) and particularly to the range of values

seen in SAM simulations (1.61<De < 1.72).415

5.2 Limiting cases: cloud perimeter density at the turbulent microscale and the planetary scale

Because cloud shapes and sizes are determined by objective physical processes that are independent of subjective measurement

resolution, in principle it should be possible to infer information about cloud geometries from the physical properties of the
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planet and its atmosphere. To this end, we examine order-of-magnitude “limiting case" values for P evaluated at the smallest

and largest possible conceivable scales for clouds, expressed in terms of basic planetary and atmospheric parameters, and420

compare these with the observations shown in Fig. 4b.

Given the turbulent nature of fractal cloud edges, the Kolmogorov microscale η is the smallest theoretical resolution length

scale ξ, for which P is anticipated to be a maximum. Substituting ξ with η in Eq. (6) yields

Pη =
Nη

Kη
(16)

For the planetary scale (denoted with ⊕), Eq. (5) becomes P⊕ ∼NH/K⊕ where H atmospheric scale height. The planetary-425

scale diffusivity is K⊕ = LU where L= 2a and U =NH is the characteristic speed of the production and dissipation of moist

convective potential energy in cloud edge circulations (described in Sect. 2). Thus

P⊕ ∼ 1

2a
(17)

This result is similar to the case where Earth is resolved as a single point source of light, or a “Pale Blue Dot," as coined

by Sagan (1994). The extremely idealized case of perimeter density resolved by a single pixel is P⊕ = P⊕/A⊕. Considering430

either a square with side length ξ = 2a (P = 8a/(4a2)) or a circular dot with diameter 2a (P = 2πa/(πa2)), gives

P⊕,PBD =
2

a
(18)

In either case, P⊕ is a function only of planetary radius a. Furthermore, each variable in Eq. (16) can be estimated from basic

physical planetary properties, including the atmospheric composition, temperature, and pressure, as described in Appendix A.

5.3 Comparison between observations and theory435

Figure 5 presents observations and theoretical predictions of Pξ. Theoretically derived estimates of Pξ are obtained from Eq.

(8) for three cases: 3D turbulence (H= 1/3 and De = 4/3), 2D turbulence (H= 1 and De = 2), and the intermediate case

De = 5/3. For clarity, the 23/9D case, which has a line nearly the same as the De = 5/3 case, is not included in Fig. (5).

Satellite and SAM measurements are clearly aligned with the case that De = 5/3, as predicted by Eq. (12), lying distinctly

between the curves corresponding to De = 4/3 for 3D isotropic turbulence and De = 2 for 2D turbulence. The limiting case440

for the Kolmogorov microscale Pη marks the intersection of Pξ from Eq. (8) where ξ = η.

What is striking is how well the predicted value of De = 5/3 connects the highly idealized limiting case values of P⊕ and

Pη to the observed scaling for Pξ. The alignment is particularly remarkable considering that Pη and P⊕ are obtained only from

the physical properties of the planet and its atmosphere, and are separated by 10 orders of magnitude. This correspondence

suggests that the statistical aspects of cloud geometries and atmospheric turbulence, De and H, could in principle be inferred445

from knowing only a few basic physical parameters of a planet.

Figure 6 compares the observed and theoretical values of H. The scaling relationship connecting microscale values (η,Pη)

to planetary values (2a,P⊕), as well as the scaling relationships inferred from observations lie between 1/3<H< 1, the

limits for 3D and 2D turbulence. The values are most consistent with the case De = 5/3, and to a lesser extent with the 23/9D
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Figure 5. Measured perimeter density Pξ for the satellites and SAM shown as the same markers from Fig. 4, with the derived Pξ from Eq.

(8) overlaid as gray (H= 1/3 and De = 4/3 for 3D turbulence), blue (De = 5/3), and red (H= 1 and De = 2 for 2D turbulence) dashed

lines. The average scaling exponents H are shown as solid green (satellite) and black (SAM) lines, with the mean and standard deviations in

the legend. The limiting case value of Pη from Eq. (16) is shown as a dark blue hexagram with the uncertainty indicated by shading. The

limiting case P⊕ at the planetary diameter ξ = 2a from Eq. (17) is a light blue hexagram and the Pale Blue Dot case from Eq. (18) is a light

blue circle.
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Figure 6. Visualization of theorized and observed H. Theorized values of H are shown as horizontal dashed lines for 2D turbulence (red), for

De = 5/3 (blue), Bolgiano-Obukhov scaling (black), the 23/9D model from generalized scale invariance (GSI) (purple), and 3D turbulence

(gray). Observations from Lovejoy et al. (2007) are shown (left) as horizontal gray dashed lines darkening as vertical separation distance ℓV

increases from ℓV < 158 m, to ℓV = 12.6 km corresponding to the top of the atmosphere (TOA). Observations from this work (middle) are

shown with symbols corresponding to Figs. 4b and 5 with the averages shown as horizontal green (satellite) and black (SAM) solid lines. On

the right are markers corresponding to the slopes from Pη (Eq. 16) to the values of P⊕ from Eqs. (17) and (18).

intermediate turbulence regime obtained from generalized scale invariance (Schertzer and Lovejoy, 1985; Lovejoy et al., 2007;450

Lovejoy and Schertzer, 2013) with H∼ 5/9.

Comparing the results here with observations of vertical wind structure functions by Lovejoy et al. (2007) (L07) in Fig. 6 and

Table 3, it is worth noting that the variation in
:::::
values

::
of

:
H with threshold j and with ℓV reflects the multifractal nature of clouds.

Values of H for the smallest vertical separation distances in L07 (ℓV ∼ 5 m, H= 0.60), and for cloud structures resolved

vertically in SAM (ξV ∼ 100 m, H= 0.67), correspond most closely to the Bolgiano-Obukov scaling H∼ 0.6. However, the455

value inferred from satellite observations (H= 0.78) is most consistent with L07 (HV = 0.77) inferred from vertical separation

distances of ℓV ∼H . Despite these variations in H, the observations of clouds reveal an intermediate turbulence regime that

excludes both of the purely 2D or 3D isotropic turbulence cases.

5.4
::::::::::

Multifractal
:::::::::::::
considerations

:::::::
Because

::::
each

::
of

:::
the

:::::::
satellite

::::
cloud

::::::
masks

:::::::::
considered

::
in

::::
Fig.

:
4
::
is

::::::::
generated

:::::
using

:
a
::::::
single

::::::::
respective

:::::
cloud

::::::::
definition

:::::::::
threshold,460

::
the

::::::
above

:::::::
analysis

::
is

::::::::
implicitly

:::::::::::
monofractal.

::::::::
Adopting

:
a
::::::::::
monofractal

:::::::
analysis

:::
of

:
a
::::
field

::::
that

:
is
::::::::::
multifractal

:::
for

::::
such

:::::::::
quantities
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::
as

:::::
cloud

::::::::
brightness

::::
can

::
be

::::::::::
problematic.

:::::
Most

::::::::::
importantly,

::
if

:::
the

:::::
cloud

:::::::::
brightness

::::
field

::::
were

::::
itself

:::::::::
coarsened

::
by

:::::::::
averaging

::::
over

:::::::
adjacent

:::::
pixels,

:::
the

::::::::
threshold

:::::::
applied

::
to

:::::
define

:::
the

::::::::
presence

::
of

:
a
:::::
cloud

::::::
would

::::
need

::
to

:::
be

:::::::
adjusted

::
to

:::::::
account

::
for

:::
the

:::::::::
inevitable

::::::::
smoothing

:::
of

::::
very

:::::
bright

::::::
regions

::::
with

::::
dark

:::::::
regions.

:

::::
Here,

::::
this

:::::::::::
complication

::
is

::::::
limited

:::::::
because

:::
we

:::
are

::::::::
averaging

:::::::
adjacent

:::::
pixels

:::
in

:
a
::::::
binary

:::::
cloud

::::
mask

::::::
rather

::::
than

:
a
:::::::::
brightness465

::::
field,

:::::::
leading

::
to

:
a
:::::
more

:::::::
accurate

:::::::::::
measurement

::
of
::::

the
:::::
fractal

:::::::::
dimension

:::::::::::::::::::::::::::::::::::
(Lovejoy and Schertzer, 1991, Sect. A.4.ii)

:
,
::::
even

::
as

::
it

:::
still

::::
does

:::
not

:::::::
consider

::::
how

:::
the

::::::
fractal

:::::::::
dimension

:::::
varies

::
as

:
a
::::::::
function

::
of

::::::::
threshold.

:::
To

::::::
address

:::
this

::::::::
question,

:::
we

::::::
applied

:::::::
various

:::::::
threshold

::::::::::
parameters

:
j
::
to

::::::
define

:::::
cloudy

::::::
pixels

::::
from

:::
the

:::::::
modeled

:::::
cloud

::::
field

::
in
::::::
SAM.

:::
The

:::::::::
parameter

:
j
::
is

:::
the

:::::::
number

::
of

::::::
cloudy

:::::
pixels

::
in

::::
each

::::::
vertical

:::::::
column

::
of

:::
the

:::
3D

::::::
volume

:::::::
required

::
to

::::::
assign

:
a
::::::
cloudy

::::
pixel

::
in

:::
the

:::::::::
horizontal

:::
2D

:::::
cloud

:::::
mask.

:::
The

:::::::
vertical

::::::::
resolution

::
of

::::
each

:::::
pixel

:
is
::::
100

::
m

::
in

:::
the

::::::
vertical

::::::
portion

::
of

:::
the

:::::::::
simulation

::::::
domain

::::
that

:::::::
contains

:::
the

::::
most

::::::
cloudy

:::::
pixels.

:::
As

::::::
shown470

::
in

:::
Fig.

:::
4a,

::::::::
changing

:::
the

::::::::
threshold

:::::
value

::
of

::
j
::::::
results

::
in

:
a
:::::
wide

:::::
range

::
of

:::::::::
horizontal

:::::
cloud

:::::::
fractions

::::::::
spanning

:::::::::::::::
0.15<A< 0.60.

:::
The

::::::::::
multifractal

::::::
nature

::
of

:::::
clouds

::
is
:::::::
evident

::
in

:::
Fig.

:::
6:

::
H

:::
and

:::
De::::::::

decrease
::
by

::::
0.11

::
as
:::

the
::::::::
threshold

:::::::::
parameter

:
j
::::::::
increases

:::::
from

:
1
::
to

:::
15.

:::::
What

::::::::
remains

::::
clear

::
is
::::
that,

:::::::::::
independent

::
of

:::
the

::::::::
threshold

::::::::::
considered,

::::
the

::::::
central

:::::::::
conclusion

::
of

::::
this

::::::
article

:::::::
remains

:::::::::
unchanged,

::::::
which

:
is
::::
that

::::::::
measured

::::::
values

::
for

:::
H

:::
are

::::::::::
intermediate

::
to

:::::
those

:::::::
expected

:::
for

:::
2D

::
or

:::
3D

::::::::
isotropic

:::::::::
turbulence.

:

6 Conclusions475

The measured relationship between the ensemble cloud perimeter density Pξ seen from space and the resolution at which it is

imaged ξ yields an “ensemble fractal dimension" De, a scaling exponent analogous to the individual cloud fractal dimension

D. We conclude that De represents the degree to which turbulence is 2D or 3D, and corresponds simply to the Hurst exponent

H, the basis of a scaling law for quantifying turbulent fluctuations of atmospheric scalars, through De =H+1.

Global cloud measurements of P from various satellite orbit types and a Large Eddy Simulation (LES) of tropical convection480

follow a consistent power-law scaling with respect to ξ across five orders of magnitude. The associated scaling exponent of

H= 0.78± 0.09 that we obtained from satellite measurements lies between the theoretical values for isotropic 2D and 3D

turbulence, consistent with a model of anisotropic 23/9D turbulence (Schertzer and Lovejoy, 1985).

Measured values of the ensemble fractal dimension De are also greater than the value of D ∼ 4/3 that is often assumed to

apply to individual clouds. The value obtained from SAM De = 1.67± 0.08 is equal to the theorized value of De ∼ 5/3 im-485

plied by Eq. (12)). The measured value from satellite imagery De = 1.78±0.09 is intermediate to the value of De = 2 expected

for 2D turbulence and De = 4/3 for 3D turbulence. It is similar to a value of De = 1.68 suggested by DeWitt et al. (2023)

:::::::::::::::::
DeWitt et al. (2024) for cloud ensembles, and to a theoretically derived value of Dµ ≈ 5/3 obtained by Hentschel and Pro-

caccia (1984) for intermittent turbulence. The value of De from satellite data is significantly greater than that obtained from

analysis of a detailed LES model of a tropical cloud field, suggesting natural cloud ensembles are more geometrically complex.490

Values of P evaluated at the Kolmogorov microscale η and the planetary diameter 2a purely from physical parameters lie

remarkably in line with satellite observations and LES model calculations, despite being separated by 10 orders of magnitude in

ξ. The value of Pη was only inferred from the molecular composition, temperature, and pressure of clouds and the atmosphere,

while P⊕ was inferred from the planetary radius a and the atmospheric depth H and stability N .
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Globally distributed, the total perimeter of clouds has a resolution dependence in satellite and numerical datasets, one that495

can be tethered to physically parameterized values evaluated at the Kolmogorov microscale and the planetary diameter, that

points to existence of an intermediate 2D/3D turbulence regime that applies at all conceivable tropospheric scales. Observations

of clouds on other planets in the solar system could help identify whether the observed scaling is specific to present-day Earth or

in fact general to stratified atmospheres. Any generalization of the scaling laws could prove useful for constraining predictions

of cloud behaviors in a future climate state on Earth, or for exoplanetary studies where — like Earth’s “pale blue dot" — only500

coarse-resolution physical parameters are available.

Code and data availability. The VIIRS and EPIC datasets were downloaded from NASA Earthdata (https://www.earthdata.nasa.gov/, NASA,

2023) and all others from the ICARE Data Center in Lille, France (https://www.icare. univ-lille.fr/, ICARE, 2023). Code used to analyze

data and generate figures is available from the first author upon request.
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Appendix A: Variables and parameters505

Values of the parameters and variables used for calculation of P in Eqs. (8) through (17) are shown in Table A1. Uncertainty

in Pη and η owes to the range of possible values of ε, ν, and Kη . Diffusivity and kinematic viscosity are proportional to

atmospheric pressure p, so uncertainties include the range of values corresponding to the temperature T and p between the

surface (T = 300 K, p= 1 bar) and the top of the troposphere (T = 200 K, p= 0.1 bar).

The Brunt-Väisälä frequency N for a dry adiabat is typically expressed as a function of gravity g and vertical temperature510

profiles, but can also be expressed in terms of physical planetary parameters as N ∼ g
(

S(1−α)
4σ

)−1/8

c
−1/2
p (Read et al., 2016)

where S is the solar constant, α is the planetary albedo, σ is the Boltzman constant, and cp is the specific heat at constant

pressure. The value for a moist adiabat shown here is slightly less than, but of the same order of magnitude as the value for a

dry adiabat of 0.01 s−1 (Mapes, 2001).

Parameters Symbol Units Value Notes

Planetary radius a km 6.37× 103

Scale height H km 8.50

Brunt-Väisälä frequency N s−1 6.00× 10−3 Evaluated for a moist adiabat (Mapes, 2001)

Kolmogorov microscale η km 2.19× 10−6 η ∼ (ν3/ε)1/4

TKE dissipation rate ε km2 s−3 3.00× 10−9 10−10 < ε < 10−8 (Kantha and Hocking, 2011)

Kinematic viscosity of air ν km2 s−1 1.86× 10−11 1.5× 10−11 < ν < 1.3× 10−10

Diffusion coefficient of air Kη km2 s−1 2.42× 10−11 2.3× 10−11 <Kη < 9.7× 10−11 (Schwertz and Brow, 1951)

Table A1. Values of variables and parameters described in the text used to determine theoretical values of P shown in Fig. 5.

Author contributions. KNR: methodology, formal analysis and writing (original draft, review and editing). TJG: Conceptualization, funding515

acquisition, supervision, methodology, writing (review and editing). TDD: methodology and analysis, writing (review and editing). CB:

writing (review and editing). SKK: funding acquisition, writing (review and editing). JCR: methodology, writing (review and editing).

Competing interests. The authors declare that they have no conflict of interest.

24



References

Ackerman, S. A., Strabala, K., Menzel, W., Frey, R., Moeller, C., and Gumley, L.: Discriminating clear sky from clouds with MODIS, J.520

Geophys. Res., 103, 32 141–32 157, 1998.

Ackerman, S. A., Holz, R. E., Frey, R., Eloranta, E. W., Maddux, B. C., and McGill, M.: Cloud detection with MODIS. Part II: Validation, J.

Atmos. Oceanic Technol., 25, 1073–1086, 2008.

Alder, B. and Wainwright, T.: Decay of the velocity autocorrelation function, Physical review A, 1, 18, 1970.

Batista-Tomás, A., Díaz, O., Batista-Leyva, A., and Altshuler, E.: Classification and dynamics of tropical clouds by their fractal dimension,525

Quarterly Journal of the Royal Meteorological Society, 142, 983–988, 2016.

Benner, T. C. and Curry, J. A.: Characteristics of small tropical cumulus clouds and their impact on the environment, Journal of Geophysical

Research: Atmospheres, 103, 28 753–28 767, 1998.

Bolgiano Jr, R.: Turbulent spectra in a stably stratified atmosphere, Journal of Geophysical Research, 64, 2226–2229, 1959.

Brinkhoff, L., von Savigny, C., Randall, C., and Burrows, J.: The fractal perimeter dimension of noctilucent clouds: Sensitivity analysis of530

the area–perimeter method and results on the seasonal and hemispheric dependence of the fractal dimension, Journal of Atmospheric and

Solar-Terrestrial Physics, 127, 66–72, 2015.

Cahalan, R. F. and Joseph, J. H.: Fractal statistics of cloud fields, Monthly Weather Review, 117, 261–272, 1989.

Ceamanos, X., Six, B., and Riedi, J.: Quasi-Global Maps of Daily Aerosol Optical Depth From a Ring of Five Geostationary Meteorological

Satellites Using AERUS-GEO, Journal of Geophysical Research: Atmospheres, 126, e2021JD034 906, 2021.535

Celani, A., Cencini, M., Mazzino, A., and Vergassola, M.: Active versus Passive Scalar Turbulence, Phys. Rev. Lett., 89, 234 502,

https://doi.org/10.1103/PhysRevLett.89.234502, 2002.

Charney, J. G.: Geostrophic turbulence, Journal of the Atmospheric Sciences, 28, 1087–1095, 1971.

Christensen, H. M. and Driver, O. G.: The Fractal Nature of Clouds in Global Storm-Resolving Models, Geophysical Research Letters, 48,

e2021GL095 746, 2021.540

Clauset, A., Shalizi, C. R., and Newman, M. E.: Power-law distributions in empirical data, SIAM review, 51, 661–703, 2009.

Derrien, M. and Gléau, H. L.: MSG/SEVIRI cloud mask and type from SAFNWC, International Journal of Remote Sensing, 26, 4707–4732,

https://doi.org/10.1080/01431160500166128, 2005.

Derrien, M. and Gléau, H. L.: Improvement of cloud detection near sunrise and sunset by temporal-differencing and region-growing tech-

niques with real-time SEVIRI, International Journal of Remote Sensing, 31, 1765–1780, https://doi.org/10.1080/01431160902926632,545

2010.

DeWitt, T. D. and Garrett, T. J.: Finite domains cause bias in measured and modeled distributions of cloud sizes, EGUsphere [preprint],

https://doi.org/10.5194/egusphere-2024-67, 2024.

DeWitt, T. D., Garrett, T. J., Rees, K. N., Bois, C., and Krueger, S. K.: Observations of climatologically invariant scale-invariance describing

cloud horizontal sizes, EGUsphere, 2023, 1–20, https://doi.org/10.5194/egusphere-2023-943, 2023.550

DeWitt, T. D., Garrett, T. J., Rees, K. N., Bois, C., Krueger, S. K., and Ferlay, N.: Climatologically invariant scale invariance seen in

distributions of cloud horizontal sizes, Atmospheric Chemistry and Physics, 24, 109–122, 2024.

Di Girolamo, L. and Davies, R.: Cloud fraction errors caused by finite resolution measurements, Journal of Geophysical Research: Atmo-

spheres, 102, 1739–1756, 1997.

25

https://doi.org/10.1103/PhysRevLett.89.234502
https://doi.org/10.1080/01431160500166128
https://doi.org/10.1080/01431160902926632
https://doi.org/10.5194/egusphere-2024-67
https://doi.org/10.5194/egusphere-2023-943


Fiedler, F. and Panofsky, H. A.: Atmospheric scales and spectral gaps, Bulletin of the American Meteorological Society, 51, 1114–1120,555

1970.

Fielding, M. D., Schäfer, S. A. K., Hogan, R. J., and Forbes, R. M.: Parametrizing cloud geometry and its application in a subgrid cloud-edge

erosion scheme, Quarterly Journal of the Royal Meteorological Society, 146, 1651–1667, https://doi.org/https://doi.org/10.1002/qj.3758,

2020.

Gage, K. S. and Nastrom, G. D.: Theoretical interpretation of atmospheric wavenumber spectra of wind and temperature observed by560

commercial aircraft during GASP, Journal of Atmospheric Sciences, 43, 729–740, 1986.

Garrett, T. J., Glenn, I. B., and Krueger, S. K.: Thermodynamic constraints on the size distributions of tropical clouds, Journal of Geophysical

Research: Atmospheres, 123, 8832–8849, 2018.

Gifford, F.: The shape of large tropospheric clouds, or “very like a whale”, Bulletin of the American Meteorological Society, 70, 468–475,

1989.565

Hentschel, H. and Procaccia, I.: Relative diffusion in turbulent media: the fractal dimension of clouds, Physical Review A, 29, 1461, 1984.

Heus, T., Van Dijk, G., Jonker, H. J., and Van den Akker, H. E.: Mixing in shallow cumulus clouds studied by Lagrangian particle tracking,

Journal of the Atmospheric Sciences, 65, 2581–2597, 2008.

Imre, A.: Problems of measuring the fractal dimension by the slit-island method, Scripta metallurgica et materialia, 27, 1713–1716, 1992.

Kantha, L. and Hocking, W.: Dissipation rates of turbulence kinetic energy in the free atmosphere: MST radar and radiosondes, Journal of570

Atmospheric and Solar-Terrestrial Physics, 73, 1043–1051, 2011.

Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A., and Randall, D. A.: Large-eddy simulation of maritime deep tropical

convection, Journal of Advances in Modeling Earth Systems, 1, 2009.

Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Cr Acad. Sci. URSS,

30, 301–305, 1941.575

Kopp, T. J., Thomas, W., Heidinger, A. K., Botambekov, D., Frey, R. A., Hutchison, K. D., Iisager, B. D., Brueske, K., and Reed, B.: The

VIIRS Cloud Mask: Progress in the first year of S-NPP toward a common cloud detection scheme, Journal of Geophysical Research:

Atmospheres, 119, 2441–2456, https://doi.org/https://doi.org/10.1002/2013JD020458, 2014.
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