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Editor Report: ‘Comment on egusphere-2024-552’, Shaun Lovejoy,
26 June 2024

Overall comments:

As a preface, I recognize that I am a invested protagonist in the science reported here, so
please take these comments as helpful suggestions, not in the spirit of anonymous referee
comments. This paper is a welcome update on a key question of atmospheric dynamics:
over what ranges are they scaling? The key finding is that observations of cloud radiances
over a huge range of horizontal scales are indeed scaling. This vindicates Richardson’s wide
range scaling hypothesis updated as confirmed by Lovejoy’s 1982 area-perimeter analysis (and
numerous spectral and other analyses since). Wide range scaling is incompatible with the
still prevalent 2D isotropic/3D isotropic paradigm that necessarily involves a “dimensional
transition” somewhere in the mesoscale. The question is which symmetry is dominant: the
scale symmetry or the rotational symmetry? Richardson believed it was scaling. Following
the isotropic 2D Kraichnan 1968 model, and Charney’s 1971 quasi-geostrophic variant, the
atmospheric community has largely considered isotropy to be the dominant symmetry, thus
implying an elusive dimensional transition/scale break somewhere near the mesoscale. This
paper contradicts the latter hypothesis but supports the former. It would be worth bringing
this out in the introduction, it will enhance the significance of the work.

Added to ln 132-137

Our findings
:::::::::
contradict

:::
the

::::::::
theories

:::::::::
proposing

:::::
split

:::
2D

::::
and

::::
3D

::::::::
isotropic

::::::::::
turbulence

:::::::
regimes

:::::::::
separated

::
by

::
a
:::::
scale

:::::
break

:::::
that

:::::
have

::::::::
prevailed

::::
over

::::
the

::::
past

::::::::
decades

:::::::
(Fiedler

:::
and

:::::::::
Panofsky,

:::::
1970;

::::::::
Nastrom

:::
et

:::
al.,

::::::
1984),

::::
and support the concept of a

::::::::::::
wide-ranging,

scale invariant 2D-3D intermediate
::::::::::
anisotropic turbulence regime proposed by Schertzer

and Lovejoy (1985), described in detail by Lovejoy and Schertzer (2013), that we show

:
.
:::
We

:::::
show

:::::
that

::::
this

::::::::::
anisotropic

::::::::::
turbulence

:::::::
regime applies to cloud perimeters over a

remarkable 10 orders of magnitude
:::::::
ranging

:
from the Kolmogorov microscale η to the

planetary diameter 2a.

My main issue with the paper is that it is monofractal – both in the theoretical model as
well as in the data analysis. This aspect with respect to both area-perimeter relations as well
as Korcak laws was considered in some detail in several appendices to [Lovejoy and Schertzer,
1991]: http://www.physics.mcgill.ca/ gang/eprints/eprintLovejoy/neweprint/NVAGlovejoy-
all.pdf The main conclusion relevant to this paper is that the interpretation of the area-
perimeter (A-P) exponent, is quite different when monofractal models (such as fractional
Brownian motion), or when multifractal models are used. In the former case (assumed here),
the cloud regions exceeding a threshold are assumed to be non fractal (they are assumed to
be true (2D) areas, with dimension = 2) so that the usual interpretation of the A-P exponent
= D/2 is valid. However if clouds are multifractal, then for any exceedance threshold that
define “clouds”, the A-P exponent is the ratio D(P)/D(A) of the perimeter dimension D(P)
to the fractal dimension of the exceedance set D(A). Since D(P) and D(A) will both decrease
with the brightness threshold that defines the sets, the ratio may be quite stable over a range
of thresholds, potentially explaining the robustness of the A-P exponent. The authors may
want to reflect and comment on this?
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The authors thank Dr. Lovejoy for this helpful explanation, and while we do not address this
comment specifically in the article because we do not measure the A-P exponent here, we did
add clarification on multifractals based on the reference provided.

Note that Section A.4.ii of Lovejoy and Schertzer 1991 suggests that the fractal dimension of
perimeters (to include ensembles) can be obtained through coarsening as long as the set rather
than the field is degraded. Rather than degrading the cloud reflectance value from which the
cloud mask is determined, we are only degrading the resolution of the binary cloud mask through
averaging. As stated, this method should work whether or not the field is multifratcal since it is
converted to a set with a well-defined dimension (2 for binary pixels).

We have revised several paragraphs of the introduction to address and clarify these points, while
also addressing the first minor comment below:

Fractal geometry is often used as a tool for characterizing the resolution-dependent
complexity of shapes. The fractal dimension D was first introduced by Richardson
(1961) to characterize the complexity of political borders and was later popularized by
Mandelbrot (1967) to describe how the length of a coastline changes depending on the
length of the ruler used to measure it. Generally, the perimeter p around an individual
fractal object can be related to the measurement resolution ξ through

p ∝ ξ1−D (1)

For the Euclidean case that p is independent of ξ then D = 1. At the other extreme, a
“space-filling” curve that passes through every resolved point in a unit area has D = 2.
Lovejoy (1982) first measured D for clouds by relating individual cloud perimeters p to

cloud areas a using the expression p ∝
√
a
D
. A measured value ofD = 1.35±0.05 ≈ 4/3

has since been adopted as the canonical value describing individual clouds (Siebesma
and Jonker, 2000; Christensen and Driver, 2021). A “monofractal” object has a
constant value of

:
,
::::::::
although

::::::::
various

:::::::
studies

::::
have

:::::::
shown

::::
that

:
D , and for the case

that its scaling of p with ξ (e.g., by a power-law) is the same at all length scales, it
is considered

:::
can

::::
vary

::::::::::::
considerably

:::::
from

:::::
cloud

::
to

::::::
cloud.

::::
For

:::::::::
example,

:::::::
Batista

::::::
Tomás

::
et

:::
al.

::::::
(2016)

::::::
found

::::::::
distinct

::::::
fractal

::::::::::
dimension

::::::
values

:::
for

::::::
cirrus

::::
with

::::::::
ragged,

:::::::
tenuous

:::::
edges

::
of

:::::::::
D = 1.37,

::::::::
whereas

:::
for

:::::::::::::
cumulonimbus

:::::
with

:::::::::
smoother

::::::
edges,

:::::::::
D = 1.18.

::::::
Other

:::::::
analyses

:::
of

::::::::
cumulus

:::::
fields

:::::
have

:::::
found

:::::::::
D = 1.28

::::::
(Zhao

::::
and

:::
Di

:::::::::
Girolamo,

:::::::
20019)

::::
and

::::::::
D = 1.19

::::::::::
(Mieslinger

:::
et

:::
al.,

:::::
2019)

::::::
using

:::
the

::::::::::
expression

::::::::
p ∝

√
a
D
.

:::::::::
Generally,

:::
we

::::::
define

::::
here

::
a
::::::::::
geometric

::::::::
quantity

::::
that

:::::
does

::::
not

::::
vary

:::::
with

::::::
length

:::::
scale

::
as

:::::
being

:
“scale invariant.,”

::::
such

:::
as

::::
the

:::::::
scaling

::
of

::
p
:::::
with

::
ξ
:::
in

::::
Eq.

:::::
(1).

:
For such

scale invariance to apply to an atmospheric cloud field, this would require that the
physics controlling cloud shapes is unchanged with measurement resolution, at least
between the limits of possible cloud sizes. While clouds

::::::
Clouds

:
have been shown to

be broadly scale invariant for the number distributions of cloud perimeters (DeWitt et
al., 2024), cloud shapes might better be described as being multifractal, where

::::
areas

:::
and

::::::::::
perimeters

::::::::
(DeWitt

::
et

:::
al.,

::::::
2024)

:::::::
despite

:::::::
previous

::::::::::::
observations

::
of

:::::
scale

::::::
breaks

::::
that

::::::::
appeared

:::
to

::::::::
separate

:::::
small

::::
and

:::::
large

::::::
clouds

::::
into

::::::::
different

::::::::
physical

::::::::
regimes.

:::
In

:::::
their

:::::
study,

:::::::
DeWitt

::::
and

::::::::
Garrett

::::::
(2024)

:::::
argue

:::::
that

:::::
these

::::
scale

:::::::
breaks

:::
are

::::::::
artifacts

::::
that

::::
owe

::
to

:::
the

:::::::::
treatment

:::
of

::::::
clouds

::::
that

:::
are

:::::::::
truncated

:::
by

:::
the

:::::
edge

::
of

:::
the

:::::::::::::
measurement

:::::::
domain.

::::::::
Although

::::
the

:::::
initial

::::::
result

::
of
::::::::
Lovejoy

::::::
(1982)

:::::::
showed

::
a

::::::::
constant

:::::
value

::
of
:::
D

:::
for

::::::
length

:::::
scales

:::::::
ranging

:::::
from

:
1
:::
to

:::::
1,000

:::
km,

::::::::::
suggesting

::
a

:::::::::::
wide-ranging

:::::
scale

:::::::::
invariance

:::
of

::::::
clouds,

:::
the

:::::
value

::
of

:
D is a continuous function of threshold used to define cloud (Lovejoy and

Schertzer, 1990, 1991; Marshak et al., 1995; Lovejoy and Schertzer, 2006). Various
studies have shown that D can vary considerably from cloud to cloud and even within
different regions of the same cloud. For example, Batista Tomás et al. (2016) found
distinct fractal dimension values for cirrus with ragged, tenuous edges of D = 1.37,
whereas for cumulonimbus, with smoother edges, D = 1.18. Other analyses of cumulus
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fields have found D = 1.28 (Zhao and Di Girolamo, 20019) and D = 1.19 (Mieslinger

et al., 2019) using the expression p ∝
√
a
D
.

:::
has

::::::::::
sometimes

::::
been

::::::::
observed

:::
to

::
be

:::::::
greater

::
for

::::::
larger

:::::::
clouds.

:
Cahalan and Joseph (1989) reported D = 1.27 for small clouds and

D = 1.56 for large clouds, supported by Benner and Curry (1998) who found D = 1.23
and D = 1.34 respectively. Furthermore, after reexamining the data in Lovejoy (1982),
Gifford (1989) noted that D increases from 1.35 to 1.77 for the largest clouds with
areas > 2.5 × 104 km2. Inclusion of holes in the measured cloud areas (Peters et al.,
2009) and merged clouds (Cahalan and Joseph, 1989) have been theorized to affect

:::
The

:::::::::
apparent

::::::::
increase

::
in

:::::::::
measured

:::
D

:::
for

::::::
larger

::::::
clouds

::::::::
suggests

::
a
:::::::::
violation

::
of

:::::
scale

:::::::::
invariance.

:::::::::
However,

::::
this

::
is
::::::
likely

:::::::
another

:::::::
artifact

::
of

::::
the

::::
data

::::::::
analysis

:::::::::
methods.

::::
The

::::::::
inclusion

::
of

:::::::
interior

::::::
cloud

:::::
holes

::
in

::::
area

::::
and

::::::::::
perimeter

:::::::::::::
measurements

:::
has

:::::
been

::::::
shown

::
to

:::::::::::
overestimate

:
calculations of D .

:::::
using

:::
the

::::::::::
expression

::::::::
p ∝

√
a
D

:::::::
(Peters

:::
et

:::
al.,

:::::
2009;

::::::::
Brinkhoff

::
et

::::
al.,

:::::
2015).

::::::::
Because

:::::::
interior

:::::
holes

::::
tend

:::
to

::
fill

:::::
when

:::::::
imaged

::::
with

:::::::::::
increasingly

:::::
coarse

::::::::::
resolution,

::::
this

:
ξ
:::::::::::
dependence

::
of

::
a
::::::
results

::
in
:::
an

::::::::::
inaccurate

:::::
value

::
of

::
D

::
–
:::
the

:::::
error

::
of

:::::
which

::::
can

:::
be

:::::::::
calculated

:::::
using

:::::::::::
multifractal

::::::::
analysis

::::::::
(Lovejoy

::::
and

:::::::::
Schertzer,

::::::
1991).

:

The multifractal nature of clouds and their apparent size and type dependence of
::::::
Clouds

::::
have

:::::
been

::::::
shown

::
to

:::
be

:::::::::::
multifractal,

::::
such

:::::
that D seem to contradict the argument that

cloud geometries are scale invariant. Additionally, a monofractalD does not account for
multifractal parameters that account for

:
is
::
a
::::::::::
continuous

::::::::
function

::
of

:::::::::
threshold

:::::
used

::
to

:::::::::
distinguish

:::::::
clouds

::::
from

:::::
clear

:::::
skies

::::::::
(Lovejoy

::::
and

:::::::::
Schertzer,

:::::
1990,

:::::
1991;

:::::::::
Marshak

::
et

:::
al.,

:::::
1995;

:::::::
Lovejoy

::::
and

:::::::::
Schertzer,

::::::
2006).

:::::::
Studies

::
of

::::
the

::::::::::
multifractal

::::::::::
properties

::
of

::::::
clouds

:::
are

:::::
useful

:::::::
because

:::::
they

:::
can

:::
be

::::
used

:::
to

::::::::::::::
mathematically

:::::::
account

:::
for

:
turbulent intermittency

(the variability of turbulent fluctuations), notably observed in measurements of water
mixing ratio (Tuck, 2022). However, scale invariance might be a reasonable assumption
for describing a large ensemble of clouds considered over a sufficiently long period of
time and space, especially if turbulent intermittency might be reflected by the geometric
intermittency of multiple and varied cloud types in the ensemble. Indeed, the topic of
whether or how scale invariance applies to atmospheric structures has

:::
We

:::::
argue

:::::
that

:
a

::::::::::
monofractal

:::::::::::
assumption

::
is

::::::::
sufficient

:::
for

:::
the

::::::::
primary

::::::::::
conclusions

::
of

::::
this

:::::
study

::
in

:::::::
Section

:::
5.4.

:

Added Section 5.4 Multifractal considerations to the Discussion:

:::::::
Because

:::::
each

::
of

::::
the

:::::::
satellite

::::::
cloud

::::::
masks

::::::::::
considered

:::
in

::::
Fig.

::
4
:::
is

:::::::::
generated

:::::
using

::
a

:::::
single

:::::::::
respective

:::::
cloud

:::::::::
definition

:::::::::
threshold,

:::
the

::::::
above

:::::::
analysis

::
is

:::::::::
implicitly

:::::::::::
monofractal.

::::::::
Adopting

::
a
::::::::::::
monofractal

::::::::
analysis

::
of

::
a
:::::
field

:::::
that

::
is

:::::::::::
multifractal

::::
for

:::::
such

:::::::::
quantities

::
as

:::::
cloud

::::::::::
brightness

::::
can

:::
be

::::::::::::
problematic.

::::::
Most

::::::::::::
importantly,

::
if
::::
the

:::::
cloud

::::::::::
brightness

::::
field

::::
were

:::::
itself

::::::::::
coarsened

::
by

:::::::::
averaging

:::::
over

::::::::
adjacent

::::::
pixels,

::::
the

:::::::::
threshold

:::::::
applied

::
to

:::::
define

::::
the

::::::::
presence

::
of

::
a

:::::
cloud

::::::
would

::::
need

:::
to

:::
be

::::::::
adjusted

::
to

:::::::
account

::::
for

:::
the

:::::::::
inevitable

:::::::::
smoothing

::
of

:::::
very

::::::
bright

::::::
regions

:::::
with

:::::
dark

:::::::
regions.

:::::
Here,

:::
this

::::::::::::
complication

::
is
:::::::
limited

:::::::
because

:::
we

::::
are

::::::::
averaging

::::::::
adjacent

::::::
pixels

::
in

::
a
::::::
binary

:::::
cloud

:::::
mask

::::::
rather

:::::
than

:
a
::::::::::
brightness

:::::
field,

:::::::
leading

::
to

::
a

:::::
more

::::::::
accurate

::::::::::::
measurement

::
of

:::
the

::::::
fractal

::::::::::
dimension

::::::::
(Lovejoy

::::
and

:::::::::
Schertzer,

:::::
1991,

:::::
Sect.

:::::::
A.4.ii),

:::::
even

:::
as

::
it

::::
still

::::
does

:::
not

::::::::
consider

::::
how

::::
the

::::::
fractal

::::::::::
dimension

:::::
varies

:::
as

::
a

::::::::
function

::
of

:::::::::
threshold.

::::
To

:::::::
address

:::
this

:::::::::
question,

:::
we

:::::::
applied

:::::::
various

:::::::::
threshold

::::::::::
parameters

::
j
::
to

::::::
define

:::::::
cloudy

:::::
pixels

:::::
from

:::
the

::::::::
modeled

:::::
cloud

::::
field

::
in

::::::
SAM.

::::
The

:::::::::
parameter

:
j
::
is
::::
the

:::::::
number

::
of

::::::
cloudy

::::::
pixels

::
in

::::
each

::::::
vertical

::::::::
column

::
of

::::
the

:::
3D

:::::::
volume

::::::::
required

::
to

::::::
assign

::
a
:::::::
cloudy

:::::
pixel

::
in

::::
the

:::::::::
horizontal

:::
2D

:::::
cloud

::::::
mask.

::::
The

:::::::
vertical

::::::::::
resolution

::
of

:::::
each

:::::
pixel

::
is

:::
100

:::
m

::
in

::::
the

:::::::
vertical

:::::::
portion

::
of

:::
the

::::::::::
simulation

:::::::
domain

::::
that

::::::::
contains

::::
the

:::::
most

::::::
cloudy

:::::::
pixels.

:::
As

::::::
shown

::
in

:::::
Fig.

:::
3a,

::::::::
changing

:::
the

:::::::::
threshold

:::::
value

:::
of

:
j
:::::::
results

::
in

::
a

::::
wide

::::::
range

::
of

::::::::::
horizontal

:::::
cloud

::::::::
fractions

::::::::
spanning

:::::::::::::::
0.15 < A < 0.60.

:::::
The

:::::::::::
multifractal

::::::
nature

:::
of

::::::
clouds

::
is

:::::::
evident

::
in

:::::
Fig.

::
6:
:::
H

:::
and

::::
De ::::::::

decrease
::
by

:::::
0.11

::
as

::::
the

:::::::::
threshold

:::::::::
parameter

::
j
:::::::::
increases

::::
from

::
1
:::
to

:::
15.

::::::
What

:::::::
remains

::::
clear

::
is
:::::
that,

:::::::::::
independent

::
of
::::
the

::::::::
threshold

:::::::::::
considered,

:::
the

::::::
central

::::::::::
conclusion

::
of

:::
this

::::::
article

::::::::
remains

::::::::::
unchanged,

::::::
which

::
is
:::::
that

:::::::::
measured

::::::
values

:::
for

::
H

:::
are

::::::::::::
intermediate
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::
to

:::::
those

::::::::
expected

:::
for

::::
2D

::
or

:::
3D

::::::::
isotropic

:::::::::::
turbulence.

:

Minor comments (The line numbers are with respect to the second version of
the manuscript).:

Line 55. “The multifractal nature of clouds and their apparent size and type dependence
of D seem to contradict the argument that cloud geometries are scale invariant.” This is a
nonsequitor: by definition, multifractals are scale invariant. What did you mean to say?

See revisions in the previous comment. This statement is removed and clarification is added
regarding multifractals and scale invariance.

Line 60: “Indeed, the topic of whether or how scale invariance applies to atmospheric struc-
tures has been the topic of decades of debate (Lovejoy and Schertzer, 2018).” In the turbulence
community, scale invariance itself is a mainstay for all the theories, the question is the type
and range(s) of the scaling: the standard 2D isotropic / 3D isotropic turbulence model with
dimensional transition somewhere in the meso-scale versus a single wide range but anisotropic
scaling regime (the 23/9D) model. The debate is about the type of scaling: anisotropic or
isotropic, the limits of the scaling regime(s) and the values of the scaling exponents.
Note: there is no Lovejoy and Scherzter 2018, you seem to be referring to Lovejoy and Schertzer
2013; please change this throughout the text.

Corrected the year in the reference throughout and revised ln 67-73:

:::::
While

:::
the

::::::
fractal

::::::::::
dimension

:::
and

:::::
scale

:::::::::
invariance

:::
are

:::::::::::
intrinsically

::::::
linked,

:::::
their

::::::::::
relationship

::
to

:::::::::
turbulent

:::::::::
structures

:::
in

:::
the

:::::::::::
atmosphere

::
is

::::
less

:::::
clear.

:::::
Two

::::::::::
paradigms

::
of

::::::::::
turbulence

::::::
scaling

::
in

:::
the

:::::::::::
atmosphere

::::
have

:
been the topic of decades of debate(Lovejoy and Schertzer,

2013). The
:
:
:::::
split

:::
2D

::::
and

::::
3D

::::::::
isotropic

:::::::
scaling

:::::::
regimes

::::
for

:::::
large

::::
and

:::::
small

::::::
scales

:::::::
(Fiedler

::::
and

::::::::::
Panofsky,

:::::
1970;

:::::::::
Nastrom

:::
et

:::
al.,

:::::::
1984),

::::
and

:::::::::::::
wide-ranging

::::::::::
anisotropic

::::::
scaling

::::::::
(Lovejoy,

::::::
2023)

::::
Both

::::::::
theories

:::::::::
originated

::::
from

::::
the pioneering work of Richardson

(1926)
::::::::::
Richardson

::::::
(1926),

:::::
who showed that the turbulent eddy diffusivity K, measured

using the relative motion of pairs of particles separated by distance ℓ, followed a power-
law with a 4/3 exponent from the millimeter scale for molecular diffusion to the length
scale of atmospheric cyclones (ℓ ∼ 103 km), K ∝ ℓ4/3, termed the Richardson “4/3
law” of atmospheric diffusion.

Line 72: Eq. 2 needs an absolute value sign around the difference. In addition, H is only the
usual Hurst exponent in the nonintermittent (Gaussian) case. In equation, the H is inspired
by Hurst, but is not the same. Also, if fluctuations are defined by other wavelets (i.e. not the
differences as indicated), then H can in principle take any real value, the range −1 < H < 0
being particularly important in the macroweather regime.

Added absolute value signs in Eq (2) and specified further about H in the footnote (ln 80):

For turbulent scalars, the function tends to be a power-law given by

S(ℓ) = |∆Θ(ℓ)| =
〈
|Θ(x+ ℓ)−Θ(x)|

〉
∝ ℓH (2)

where brackets indicate averaging over many iterations of the experiment, and H is the
Hurst exponent1 bounded by

:::
with

::::::::
bounds 0 < H < 1 (Schertzer and Lovejoy, 1984;

Hentschel and Procaccia, 1984; Lovejoy and Schertzer, 2012).

1The Hurst exponent has various
::::::::::
mathematical

:
applicationsin other fields, but here we employ its common usage in the field

of fractal geometry
:::
(for

:::
the

:::::::::::::
non-intermittent

::::
case)

:
to relate

::
the

::::::
scaling

::
of

:
turbulent fluctuations with

:::::
respsect

:::
to separation

distance ℓ.
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Line 83: The law eq. 3 ignores intermittency, it is at best an average law. Statistics of other
orders will presumably define a hierarchy of (multifractal) exponents. Your mention of the
dimensionality is in fact a reference to the 2D isotropic/ 3D isotropic versus 23/9D debate.

Revised ln 87-92:

The dimensional approximation that K ∼ ℓv (Tennekes and Lumley, 1972) results in
K ∼ ε1/3ℓ4/3, reproducing Richardson’s 4/3 power-law, and implying that the rela-
tionship between diffusivity and the Hurst exponent H

:::::
(again

::::::::
ignoring

:::::::::::::
intermittency)

follows
K ∼ ℓ1+H (3)

As Sect. 5 elaborates, the value of H depends
:::::
differs

::::::
based

:
on the dimensionality of

the turbulence .
::::
(e.g.,

::::
the

::::
case

::
of

:::
2D

::::::::
isotropic

::::::::::::
turbulence).

:

Line 94: The correct reference for the spurious nature of the scale breaks in aircraft data is
[Lovejoy et al., 2009]

Corrected this reference.

Line 100: The expression “intermediate turbulence regime” is unfortunate since readers will
likely think this is a regime intermediate in spatial scales whereas I understood (only later in
the text) that you meant intermediate in the value of the dimension (i.e. 3 > 23/9 > 2). The
key point to make here is that rather than 2 isotropic regimes separated somewhere in the
meso-scale, a single (much wider scale range) anisotropic regime was proposed.

Revised ln 108-112:

Specifically,
:::::::
Lovejoy

::
et

:::
al.

:::::::
(2007)

::::::::::
(hereafter L07

:
), and more comprehensively Love-

joy and Schertzer (2013), provided evidence that
:
,
::::::
rather

:::::
than

::::
two

::::::::
separate

::::::::
isotropic

:::::::::
turbulence

::::::::
regimes,

:
the atmosphere is best characterized by a consistent intermediate

turbulence regime at all scales following the
:::::
single

::::::::::
anisotropic

::::::::::
turbulence

::::::
regime

:::::::::
spanning

::
all

::::::
scales

::
in

::::
the

:::::::::::
atmosphere.

:::::::::
Following

::::
the

:
framework of generalized scale invariance

(GSI), which accounts for stratificationin ,
:
the “23/9D” elliptical model of turbulence in

the atmosphere
:
is
:::::::::::::
characterized

::
by

::
a
:::::::::
dimension

::::::::::::
intermediate

::
to

::::
2D

:::
and

::::
3D (Schertzer

and Lovejoy, 1985).

and ln 129-137:

Section 4 presents the values of the ensemble fractal dimension obtained using several
satellite and numerical model datasets. Section 5 interprets the significance of the
results by comparing them to the expected values of De and H for 2D and 3D isotropic
turbulence, as well as for an intermediate

::::::::::
anisotropic

:
turbulence regime that combines

the two
:
is
::::::::::::
intermediate

::
to

:::
2D

::::
and

:::
3D

:
at all scales. Our findings

::::::::
contradict

::::
the

:::::::
theories

::
of

::::
split

:::
2D

::::
and

:::
3D

::::::::
isotropic

::::::::::
turbulence

:::::::
regimes

:::::::::
separated

:::
by

:
a
:::::
scale

::::::
break,

::::::
which

::::
have

::::::::
prevailed

::::
over

:::
the

:::::
past

:::::::
decades

:::::::
(Fiedler

::::
and

:::::::::
Panofsky,

:::::
1970;

::::::::
Nastrom

::
et

:::
al.,

::::::
1984),

::::
and

support the concept of a
::::::::::::
wide-ranging, scale invariant 2D-3D intermediate

:::::::::
anisotropic

turbulence regime proposed by Schertzer and Lovejoy (1985), described in detail by
Lovejoy and Schertzer (2013), that we show

:
.
:::
We

:::::
show

::::
that

::::
this

::::::::::
anisotropic

::::::::::
turbulence

::::::
regime

:
applies to cloud perimeters over a remarkable 10 orders of magnitude

::::::
ranging

from the Kolmogorov microscale η to the planetary diameter 2a.

Line 104: The 23/9D model proposes that the volume of NONfractal structures scales as
L23/9. 23/9 is an upper bound on the dimension of the (sparse) fractal structures (i.e. rather
than the usual upper bound of D =3). In the 23/9D model, only structures with D < 23/9 are
fractal. Also, the exponent is Hz, not H so that it is NOT a Hurst exponent. In the equation
“D = 2.55 = 2+H” , H is in fact a RATIO of exponents Hz =Hhor/Hvertical. I’m puzzled
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because later in the paper, this fact is acknowledged. In terms of the spectral exponents B,
the relationship is Hz = (Bvertical-1)/(Bhorizontal-1) (this is true for both monofractal and
multifractal variants of the 23/9D model). I could also note that the relationship B = 1+2H
is only valid for the Gaussian (nonintermittent, nonmultifractal) case (this should be stated),
otherwise the are intermittency corrections that are (inconsistently) invoked later (line 111).

Revised ln 112-118:

Power spectra of radar reflectivity, cloud radiance, wind speed, and temperature all
revealed length-scaling exponents that lie between purely 2D and 3D turbulence cases,
consistent with an intermediate

:::::::::
anisotropic

:
turbulence regime predicted to have a

(fractal) volume dimension of D = 2.55 = 2 +H where H ≈ 0.55
:::::::::::::::::
D = 2.55 = 2 +Hz

:::::
where

::::::::::
Hz ≈ 0.55

::
is

:::
the

:::::
ratio

::
of
::::::::::
horizontal

::::
and

:::::::
vertical

::::::
values

::
of

:::
H

:::::::::
(discussed

:::::::
further

::
in

:::::
Sect.

::
5)

:
(Schertzer and Lovejoy, 1985; Lovejoy and Schertzer, 1985; Lovejoy et al.,

1993; Lovejoy, 2021).. In these cases,
:::
For

:::
the

:::::::::
Gaussian

:::::
case,

::::::
which

::::
does

::::
not

:::::::
include

::::::::::::
intermittency

::
or

:::::::::::
multifractal

::::::::
aspects, H is calculated from the power spectrum of the

observed phenomenon, E(k) ∼ k−B , where B = 2H + 1.
::
In

:::
the

:::::::
23/9D

::::::
theory,

::::::
which

:::::::::::
incorporates

:::
the

:::::::
vertical

::::
and

::::::::::
horizontal

:::::::
aspects

::
of

::::::::::
separation,

:::::::::::::::::::::::
Hz = (BV − 1)/(BH − 1).

:

Line 110: Eq. 4 applies to the fractal dimension of the geometric set of points on the graph
(x,B(x)) where x is the position in a 1-D cloud transect), B is the brightness of 1-D transects
through monofractal cloud such as a fractional Brownian motion (fBm) cloud with structure
function exponent H. In this case, the fractal dimension of the set of “zero-crossing points”
(the intersection of the line B=T = constant with the cloud brightness B(x) is D = 1-H for
any threshold T. That is why fBm is a monofractal function. If this fBm model is extended
to two dimensional space B(x,y) then the codimension is still H, so that the dimension of the
zero-crossing sets (the perimeter set) is independent of the brightness threshold.

Revised ln 123-125

Equation (4) has also been related directly to cloud perimeter fractal dimension as
adjusted for intermittency µ through Dµ = 2−H (Hentschel and Procaccia, 1984).

:
is
::::
the

:::
2D

:::::::
analog

::
of

::::
the

::::::
fractal

::::::::::
dimension

::
of

::
a
:::::::::
geometric

:::
set

:::
of

::::::
points.

:::::
For

::::::::
example,

:::::
given

::::::::
(x,Θ(x))

::::::
where

::
x

::
is

:::
the

::::::::
position

::
in

::
a
:::
1D

::::::::
transect

::::
and

::
Θ

::
is
::::
the

:::::::::
measured

:::::
cloud

:::::::::
brightness,

::::
the

::::
1D

::::
case

:::::::::::
D = 1−H

:::::::
extends

:::
to

::::
the

:::
2D

::::::
cloud

:::::::::
perimeter

::::::::
(Θ(x, y)

:::
as

::::::::::
D = 2−H

:::::::::
(Hentschel

::::
and

::::::::::
Procaccia,

::::::
1984).

Line 150: The nondimensionalization is not only a question of convenience. If the process is
multifractal, the key scale is the outer scale and the dissipation plays the role of small cut-off.
At any intermediate scale (between the smallest dissipation scale and the outer scale, only the
outer scale intervenes, not the inner scale.

Removed from ln 23 because we clarify in more detail later

(defined as either the pixel side length in a satellite image or the grid spacing in a
modelfollowing Garrett et al. (2018)). ).

Removed the following (ln 165)

Note that ξ is normalized here by η rather than its common normalization by an outer
scale L (Lovejoy, 2023). We choose this normalization to more conveniently relate Pξ

to Kξ and Kη.

and added the following as a footnote:

6



::::
Note

:::::
that

:
ξ
::
is
:::::::::::
normalized

::::
here

:::
by

::
η
::::::
rather

:::::
than

:::
the

:::::
more

:::::::::
common

::::::::::::
normalization

:::
by

:::::
outer

::::
scale

:::
L,

:::
the

:::::::
largest

:::::
eddy

::
of

:::
the

:::::::::
turbulent

:::::
flow,

:::::
from

::::::
which

::::::
energy

::
is

::::::::::
transferred

::
to

:::::::
smaller

::::::
eddies

::
of

:::::::::::
observation

:::::
scale

:::::
ℓ = ξ

::
in

::::
the

::::::
energy

::::::::
cascade.

::::::::
Because

:::
the

::::::
choice

::
of

::::::::::::
normalization

:::::::
length

::::
scale

:::::
does

::::
not

:::::
affect

:::::::::::
calculations

::
of

::::
the

:::::
value

::
of

:::
H

::
or

::::
De,:::

we

::::::
choose

::
η

::
to

::::::
relate

:::
Pξ::

to
::::
Kξ ::::

and
::::
Kη.:::::

This
::
is
::::::::::
consistent

::::
with

::::
the

:::::::::
approach

:::::
taken

:::
by

:::::::
Krueger

::
et

:::
al.

:::::::
(1997);

::::::::
Garrett

::
et

:::
al.

:::::::
(2018)

::::
who

:::::::
focused

:::
on

:::
the

:::::::::::
relationship

::::::::
between

:::::
cloud

:::::::::::::
measurements

::
at

:::::
scale

::
ξ

::::
and

::::::::
turbulent

:::::::::
processes

:::
at

:::
the

:::::::::::
Kolmogorov

::::::::::
microscale

::
η.

Line 184: The intermittency correction arises because turbulence is multifractal, not monofrac-
tal.

Revised ln 195-200:

However, while D = 4/3 is consistent with values seen for individual clouds, a larger
value is required for cloud ensembles, in which case the inequality D < De predicted
by Mandelbrot (1977); DeWitt et al. (2024) applies. To allow for an

:::::::::::
Mandelbrot

::::::
(1977);

:::::::
DeWitt

:::
et

::
al.

:::::::
(2024)

:::::::
applies.

:::
In

::
a

::::::
similar

:
adjustment to the individual fractal

dimension, Hentschel and Procaccia (1984) related the perimeter fractal dimension of
clouds toH through the expressionD = 2−H (Eq. 4), but required

::::
with a correction for

intermittency in turbulence
::::::::
turbulent

:::::::::::::
intermittency

:
(µ, where Dµ = (4 + µ)/3 ≈ 5/3

(described below). We obtain, from Eqs. (11) and (4), an adjustment to D for an
ensemble of clouds:

De = 3−D (4)

Line 188: The quantity 3-D is the fractal codimension of a fractal set embedded in a three
dimensional space. In (multifractal) turbulence, the codimension is in fact a function (not
a unique value) that depends on the threshold used to define the fractal set. At best this
equation is useable for a Gaussian model.

Revised ln 201-202:

The quantity 3−D has been described as the fractal intermittency of turbulence
::::::
defined

::
as

:::
the

:::::::::::::
intermittency

::::::::
exponent

:::
by

:::::::::
Hentschel

::::
and

:::::::::
Procaccia

::::::
(1984)

::::
and

:::
the

:::::::::::
multifractal

:::::::::::
codimension2 (Schertzer and Lovejoy, 1987)within a 3D volume (Mandelbrot, 1977;
Hentschel and Procaccia, 1984).

:::::
space.

:

Line 354: “Because stratification is only observable in vertical velocity perturbations”. I don’t
understand: the role of vertical velocity is not clear, and the data on vertical velocities is
inadequate. However, the fact of scale dependent stratification and the key Hz parameter
( the ratio of horizontal and vertical scaling exponents) has been estimated in several fields:
Temperature, potential temperature, humidity, horizontal velocity, lidar reflectivity (aerosols),
radar reflectivity (clouds). This is reviewed and summarized in ch. 6 of [Lovejoy and Schertzer,
2013], see in particular, table 6.5.

Removed this statement. The other points are addressed through minor clarifications in other
comments.

Eq. 15: The Richardson law is nearly equivalent to the Kolmogorov law. In the 23/9D model,
the standard Kolmogorov law holds in the horizontal (but not vertical), and therefore, we
expect the Richardson 4/3 law to hold in the horizontal (but not vertical). Using your eq. 8,
we expect the vertical exponent to be 1+3/5 = 8/5 rather than the horizontal value 4/3 (the
value 14/9 is not justified). Here you imply the existence of an isotropic Richardson law that
would certainly contradict the highly anisotropic 23/9D model.

2
:::
The

::::::::
difference

::::::
between

:::
the

::::::
spatial

::::::::
dimension

::
of

::
the

:::::::
domain

:::
and

:::
the

:::::
fractal

::::::::
dimension
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Revised ln 374-381:

To account for this anisotropy in the vertical, H
:::
Hz for the combined turbulence case

was derived from the ratio of the horizontal and vertical Hurst exponents HH = 1/3
and HV = 3/5, resulting in HH/HV = 5/9 ∼ 0.56

::::::::::::::::::::::::
Hz = HH/HV = 5/9 ∼ 0.56. From Eq. (11), the elliptical dimension becomes Del =
14/9 = 1.56 (for the volume, 23/9 = 14/9 + 1. See Lovejoy (2023) for a review.) From
Eq. (3), the turbulent diffusivity for this intermediate 23/9D regime then scales as

Kξ,int ∼ ξ14/9 (5)

::::
Note

::::
that

:::::
Eqs.

::::
(13)

::::
and

::::
(14)

::::::::::
correspond

::
to

:::
the

::::::::
isotropic

:::::
cases

::
of

:::
2D

::::
and

:::
3D

::::::::::
turbulence,

:::::
while

:::
Eq.

:::::
(15)

:::::::::
combines

:::
the

:::::::
vertical

::::
and

::::::::::
horizontal

:::::::::::
components

::
of

:::
H

::
to

::::::
arrive

::
at

:::
an

::::::::::
anisotropic

::::
case

::
of

:::::::::
turbulent

:::::::::
diffusivity

:::::
that

::::::
applies

:::
at

:::
all

::::::
scales.

:

Line 353: maybe stress that these exponents correspond to the horizontal velocity component
with the subscript only indicating the direction of the separation.

Revised ln 367-371:

This continuous scaling accounts for the horizontal-vertical anisotropy of the atmo-
sphere due to stratification and is determined by comparing velocity fluctuations ∆vH
and ∆vV in the horizontal and vertical directions. Because stratification is only
observable in vertical velocity perturbations, it is

::::::::::::
corresponding

::
to

::::
the

:::::::::
horizontal

:::::::
velocity

::::::::::
component

:::::
with

:::::::::
subscripts

::
H

::::
and

::
V

:::::::::
indicating

:::
the

:::::::::
horizontal

::
or

:::::::
vertical

::::::::::
separation

:::::::
between

:::::::::::::
measurements.

::::::::::
Horizontal

:::::::
velocity

:::::::::::
fluctuations

::::
have

:::::
been

::::::
widely

::::::::
observed

:::
to

::::::
follow

::
a 3D scaling ∆vH ∼ ε1/3ℓ1/3 up

:::::
where

::
ℓ
::::::
ranges

::::
from

:::::
order

::::
∼1

::
m

:
to the planetary scale (Lovejoy and Schertzer, 2013).
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