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Abstract 10 

     Urban flooding may lead to significant socio-economic impacts and loss of life. To afford 11 

preventative actions, researchers have implemented various modeling techniques to gain insight 12 

into urban flood occurrences. Using New York City (NYC) as the study area, data-driven 13 

techniques, specifically statistical and neural network models with increasing spatio-temporal 14 

complexity, are formulated and tested, assessing the potential relative contribution of different 15 

modeling constructs. Zones, based on flood characteristics, are first delineated using the 16 

unsupervised machine learning technique of spectral clustering. Then, the models are applied to 17 

each cluster, with comprehensive performance evaluation, as to understand which algorithmic, 18 

structural aspects contribute to the reduction of prediction errors. A chief discovery of this study 19 

is the emergence of the Graph Wavenet (GWN) as the most effective model due to its proficiency 20 

in capturing spatio-temporal aspects and implementing dynamic graph creation. Furthermore, it 21 

is seen that the enhancement of specific temporal and spatial components within a modeling 22 

technique proves beneficial, and a novel adoption of graph-based architectures is additive. 23 

Offering a unique exploration of spatio-temporal aspects, emphasizing the benefits of component 24 

enhancement and the adoption of graph-based architectures, this paper identifies modification 25 

techniques, which would allow for insights to prevail in urban flood modeling despite being 26 

confronted with limited data availability. 27 

1. Introduction 28 

     Urban flooding, a natural disaster with dynamic ramifications, requires circumspect 29 

consideration. At the onset of rainfall, as runoff traverses through an urban setting, numerous 30 

obstacles, including an inability to permeate structures, sidewalks, and streets, and restricted 31 

entry into drainage systems due to debris blockages, are experienced. Compounding the issue, 32 

additional rainfall in a brief timeframe overwhelms even the unobstructed drains, preventing 33 

water admission and exacerbating overflow departure attempts. Consequently, runoff either 34 

persists on the streets or seeps through gaps in homes and buildings. In the resulting 35 

circumstance of urban flooding, the community is harmed. Most egregiously, deaths may occur, 36 
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as without adequate warning, individuals are not able to implement precautionary measures, such 37 

as avoiding outdoor travel or relocating to higher elevated areas when indoors. Veritably, this 38 

tragic outcome was demonstrated during the post-tropical depression Ida event, where many of 39 

44 deaths within the New York City (NYC) metropolitan region were caused either by exposure 40 

to outdoor hazards, such as vehicular drownings or being swept away by the waters, or indoor 41 

below-ground dangers, such as drownings in flooded basements (Falconer, 2021; Plumer, 2021). 42 

Furthermore, in addition to fatalities, urban flooding exacts economic strain, as there may be 43 

destruction to the infrastructure, interruption to transportation services, and structural damage to 44 

the buildings and vehicles. Indeed, in the event of a large flooding disaster, direct costs may be 45 

incurred at the extent of billions of dollars; additionally, when examining smaller, frequent 46 

floods, long-term costs collect over the years by the chronic strains to the structural, plumbing 47 

and electrical systems (Agonafir et al., 2023). Hence, prioritizing the analysis of the diverse 48 

elements and influences on water behavior in an urban environment proves essential. 49 

     Now, as accurate flood forecasting models, allowing for the implementation of disaster 50 

deterrent measures, would offer significant health and financial relief, there is continuous 51 

progression in model development. Traditionally, hydrodynamic models have been widely used 52 

for flood prediction and risk assessment; however, the employment of these physics-based 53 

models is limited in certain metropolitans (Agonafir et al., 2023). Specifically, hydrodynamic 54 

models rely on extensive calculations to determine water flow, requiring detailed drainage 55 

network plans; as thus, in certain urban cities, such as NYC, where drainage details are 56 

unobtainable to researchers (Al-Suhili et al., 2019), the implementation of physics-based models 57 

becomes infeasible. Therefore, there has been a turn towards data-driven techniques to provide 58 

insight into water behavior when existing physical information is limited. With the provision of 59 

influencing variables, via statistical calculations and artificial intelligence (AI) capabilities, the 60 

models possess the ability to assess an occurrence and then create forecasts or ascertain 61 

vulnerabilities. Hence, the objective of understanding urban flooding is met without the need to 62 

simulate the exact water path. Ultimately, due to the convenience of use, data-driven techniques, 63 

particularly AI methods, have risen drastically in flood literature (Mosavi et al., 2018). 64 

Accordingly, an in-depth study into the efficiency of emerging AI techniques, within the field of 65 

urban flooding, affords complementation to the trend. 66 

     The mission of this study is formulated in consideration of the dire human and economic 67 

devastations of urban flooding, the modeling limitations due to data availability, and the recent 68 

advances in data-driven models to remedy the issues. Accurately assessing the intricacies of 69 

urban flood occurrence in NYC, by the employment of physical and crowdsourced data, this 70 

research provides a unique analysis of added components by presenting a cascade of statistical 71 

and neural network models, each with ascending complexities. In the exploration, a preliminary 72 

step involves the delineation of zones based on urban flood characteristics, using the 73 

unsupervised machine learning technique, spectral clustering. Then, a particular set of models, 74 

the Poisson Generalized Linear Regression (GLM), Feed Forward Neural Network (FFN), 75 

Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Graph Convolutional 76 

Network (GCN) and the Graph Wavenet (GWN), is selected as to assess the benefits of auxiliary, 77 

advanced spatio-temporal aspects, dynamic graph creation and convolutional node-messaging 78 
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capabilities. The conduction of the experiment follows such that every model, receiving identical 79 

time-series input data and undergoing training (8 years) and testing (2 years) using the same set 80 

of dates, is tasked with the production of daily predicted street flooding counts for the testing 81 

period. By goodness-of-fit determinations, model comparisons are performed and dissected to 82 

discover the impacts of additional complexities. Therefore, the comprehensive examination of 83 

diverse models imparts invaluable modeling guidance towards urban flood research in the data-84 

driven era. 85 

     Regarding existing urban flood literature, there is limited utilization of graph-structured 86 

artificial neural network (ANN) models. Moreover, of the few existing studies, an inclusion of 87 

pluvial, urban flooding is notably absent. For instance, in Farahmand et al., a spatial-temporal 88 

graph-based model (ASTGCN) for nowcasting in Harris County, Texas is developed (Farahmand 89 

et al., 2023). However, the examination is conducted on the singular flooding incident of 90 

Hurricane Harvey and its direct landfall onto the county, thereby effectively assessing the 91 

model’s accuracy only in regards to coastal flooding. In contrast, the research of this paper 92 

delves into urban flooding over a 10-year duration, encompassing both large-scale events and 93 

persistent, frequent flash flood and pluvial occurrences. Furthermore, the primary objective of 94 

Farahmand et al is to highlight the proficiencies of the new model, rather than to conduct an in-95 

depth exploration of the specific advantages of its added elements. In contrast, this research 96 

traverses a range of models, inspecting the benefits of each advancement. In another existing 97 

study, Wang et al, a graph-structed model is also created to benefit urban flood insights (Z. Wang 98 

et al., 2023). Nonetheless, the paper does not serve as a comparative analysis of varying models; 99 

also, the model developed identifies flood susceptibility, as opposed to producing forecasts. 100 

Finally, it is worth noting that Santos et al develops a graph-based, deep learning model for flood 101 

prediction (Oliveira Santos et al., 2023). Yet, the forecasts are for riverine flooding instead of 102 

urban flooding. As urban flooding involves multiple factors distinct from riverine flood variables 103 

(i.e., lack of infiltration and complex drainage networks), a model analysis specifically tailored 104 

towards urban concerns has more utility to metropolitan stakeholders. Therefore, this paper is the 105 

first of its kind to pioneer the adaptation of graph-based neural networks for urban, pluvial 106 

flooding, while conducting an expansive exploration of the spatio-temporal aspects within the 107 

domain.  108 

     This paper follows a structured sequence. In Section 2, the study initiates by discussing the 109 

study area of NYC and the urban characteristics which make it ideal for experimentation. Also, 110 

Section 2 demonstrates the data collection and pre-processing steps. Next, Section 3 delves, with 111 

extensive detail, into the methodology employed for each machine learning and statistical 112 

technique, laying a solid foundation for the thorough analysis presented in Section 4. Then, in 113 

Section 4, a detailed presentation and discussion of results unfold, exploring risk zones and 114 

model performances across diverse flood attributes and model features. Finally, in Section 5, 115 

conclusions are drawn, as the findings from the study are synthesized, offering a comprehensive 116 

overview of the outcomes and their implications for urban flood research. 117 
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2. Data pre-processing 118 

2.1 Study area 119 

     Situated along the northeastern coast of the United States, NYC emerges as the metropolitan 120 

landscape—distinctly impervious and densely populated. Lacking efficient infiltration with 121 

approximately 72% impervious cover, and encompassing a mere 800 square kilometers, while 122 

boasting roughly 8 million residents (City of New York, 2022; U.S. Census Bureau QuickFacts, 123 

2012.), NYC embodies urbanization. Moreover, crucial details, such as the locations and widths 124 

of stormwater inlet drains and digitized maps of the sewer network are notably absent from 125 

public records. This lack of drainage data poses a challenge to hydro-hydraulic flood modeling 126 

and emphasizes the need for alternative methods to mitigate flooding issues within the city. 127 

Moreover, NYC holds economical influence, contributing approximately $1.8 trillion annually to 128 

the U.S. gross domestic product (Bureau of Economic Analysis, 2021). Therefore, the intricate 129 

urban fabric, intertwined with the economic significance and challenges of minimally accessible 130 

data, poses NYC as the ideal study area for the application of data-driven techniques in urban 131 

flooding.     132 

      NYC has 59 localized, politically based districts, called Community Boards (DISs). DISs 133 

manage zoning and land-use policies and address general municipal concerns (City of New York, 134 

2023a). By borough, the breakdown of DISs is the following: 12 in Manhattan, 12 in the Bronx, 135 

18 in Brooklyn, 14 in Queens, three in Staten Island. Due to the quantity and extent of the 136 

districts, they serve as an ideal starting point for variable aggregation and clustering analysis. In 137 

this study, shapefiles were downloaded from NYC Open Data (City of New York, 2023b), and 138 

the processing of data was conducted by ArcGIS and Python. In the proceeding sections, the 139 

methods of aggregation are further detailed.  140 

2.2 Dynamic Variables 141 

2.2.1 NYC 311 Platform 142 

     NYC311, a crowdsourcing platform, provides gainful insights into sewer related conditions in 143 

NYC. Observations of city issues are reported by residents of the city, where the date, time, and 144 

longitude and latitude coordinates of the incident are listed. Hence, the detailed temporal and 145 

locational information affords researchers the opportunity to employ data-driven techniques for 146 

analyses. For this study, NYC311 street flooding (SF), sewer backups (SB), and catch basin 147 

blockages (CB) reports, ranging from January 1, 2010 through December 31, 2019, were 148 

downloaded from the NYC Open Data website: http://data.cityofnewyork.us (Dates after 2019 149 

were excluded, as the COVID pandemic is assumed to have an impact on reporting behavior, 150 

particularly in NYC, where residents and visitors relocated and returned at various intervals). For 151 

each report type, daily counts were aggregated to the DIS level. SF complaints, witnessed 152 

incidents of street flooding, served as the response variable. SB and CB reports were chosen for 153 

inclusion, as they are known influences towards SF (Agonafir et al., 2021; City of New York, 154 

2022a). Specifically, SB indicate an internal issue within the drainage network, where it is 155 

overtaxed (Schmitt et al., 2004).); moreover, Agonafir et al has shown that SB reports are a 156 

significant predictor towards SF reports in almost half of NYC zip codes (Agonafir et al., 2021). 157 
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Thus, the addition of SB may strengthen a model’s ability to make predictions. Also, in the 158 

Agonafir et al study, CB was found to have consequence on SF in roughly half the NYC zip 159 

codes (Agonafir et al., 2021). When a catch basin is blocked or clogged, runoff is not efficiently 160 

extracted into the stormwater drains, thereby allowing for ponding. In brief, from the NYC311 161 

platform, the dynamic (values varying with time) infrastructural predictors, SB and CB, and the 162 

predictand, SF, were obtained. SF, SB, and CB counts were totaled per day per DIS by using the 163 

timestamps and longitude and latitude coordinates.  164 

2.2.2 Radar and Gauge Data 165 

     Precipitation, rain and snow, drive urban flooding occurrence. While it is apparent that rainfall 166 

is the primary contributor (Agonafir et al., 2023; Qin et al., 2013; Schmitt et al., 2004; Sharif et al., 167 

2006; Valeo & Ho, 2004), snowmelt also has influence, as when large amounts of snow liquifies, 168 

streets may be flooded (Semádeni-Davies & Bengtsson, 1998; Valeo & Ho, 2004). Concerning 169 

rainfall, there are intense rainstorms (large amounts of rain in a brief time interval), which 170 

contribute to flash floods, and there are prolonged rainy days, where the rainfall may not be 171 

intense, yet there is sufficient amount of water over a longer duration. In both cases, the capacity 172 

of the stormwater drains may become exceeded (Agonafir et al., 2023). Therefore, this study 173 

used three predictor variables representing precipitation: Max Hourly Rainfall (MR), Total Daily 174 

Rainfall (TR), and Snowfall (SN). Now, there are also varied methods of rainfall collection: in-175 

situ (gauge) and remote sensing (radar and satellite). Some benefits of in-situ measurements 176 

include not being encumbered with cloud top reflectance, thermal radiance, retrieval algorithm 177 

and overpass frequency issues (AghaKouchak et al., 2009); whereas radar data is advantageous 178 

in terms of spatial distribution (Thorndahl et al., 2017), capturing precipitation amounts at more 179 

locations within an area. As both techniques are considered standard measurement methods, this 180 

study employed radar data for the MR and gauge data for the TR and SN variables. Each of the 181 

precipitation variables were determined at the DIS level.  182 

     The radar rain data was taken from the National Center for Atmospheric Research 183 

(NCAR)/Earth Observing Laboratory (EOL) website, and the gauge rain and snow data were 184 

retrieved from NOAA’s Climate Data Online. For the radar, the resolution is 4 km by 4 km, and 185 

the gridded data is Stage IV, benefiting from manual quality control (EOL, 2022). Hourly totals 186 

were gathered for the dates ranging from January 1, 2010 through December 31, 2019. Then, the 187 

maximum hourly value (MR) was taken for each radar point for each day. Ultimately, the MR 188 

values were assigned to each DIS based on the radar point’s proximity to its centroid. Now, 189 

regarding the gauge data, the Global Historical Climatology Network (GHCN) by NOAA’s 190 

National Centers for Environmental Information (NCEI) provides daily climatology details from 191 

land surface stations globally (National Centers for Environmental Information, 2023). With 192 

respect to the daily rain totals (TR) and snow totals (SN), data was collected from the GHCN 193 

station, NY CITY CENTRAL PARK, NY US, for the dates ranging from January 1, 2010 194 

through December 31, 2019. These are direct measurements provided by the station. The TR and 195 

SN 24-hour amounts were assigned to each DIS. Therefore, by a combination of radar and gauge 196 

determinations, precipitation, representing rainfall intensity, total rainfall, and total snowfall, 197 

were assigned to each DIS at the daily level as predictors for the models. 198 
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2.3 Static Features 199 

     There are multiple factors driving the occurrence of urban flooding. First, there are 200 

topographical variables, such as slope (SLP) and elevation (ELV). Regarding slope, the greater 201 

the incline of a surface, the greater the velocity and discharge of water; hence, at the bottom of 202 

the slope, the water will pond quickly (Bruwier et al., 2020). Concerning elevation, studies have 203 

also shown lower elevated areas to be at a higher risk of flooding. For one, lower elevated areas 204 

are more vulnerable to storm surges from coasts and rivers, and secondly, as mentioned prior, 205 

lower elevated areas may be located at the edge of a sloped surface (Ouma & Tateishi, 2014; 206 

Woodruff et al., 2013). In addition to the topographical, there are urban features, specifically the 207 

quantity of buildings (BLD) and the extent of building footprint (FTP), which affect flooding. 208 

Buildings are an impervious surface, such that water is unable to infiltrate through the ground. 209 

Moreover, multiple studies have found buildings to have a dominating influence on urban 210 

flooding, compared to other common flood factors (Agonafir et al., 2022; Bruwier et al., 2020; J. 211 

Lin et al., 2021). Another variable included represents percent impervious (IMP); it depicts the 212 

percentage of all impervious surfaces, such as buildings, sidewalks, and streets, within a 213 

neighborhood. Next, a variable representing the area (SIZ) of the DIS was included in the study. 214 

The size of a region does not increase flooding occurrence, yet, larger areas have more 215 

opportunity for flooding occurrences, leading to higher flood counts; thus, the machine learning 216 

model will benefit from the information. Lastly, concerning locational, latitude (LAT) and 217 

longitude (LNG) coordinates, the variables allow for a directionality indication of flood 218 

occurrence. For instance, Agonafir et al found that street flooding in NYC had a southern and 219 

eastern locationality of increased flood incidents (Agonafir et al., 2022). While the exact cause of 220 

flooding is not given by the location, the variable allows for a geographical pattern to be learned 221 

within machine learning models. Overall, physical features including slope, elevation, building 222 

extent, area and geographical coordinates are useful variables in understanding urban flooding 223 

via modeling. 224 

     For the physical features, shapefiles were downloaded from NYC Open Data and processed 225 

via ArcGIS analysis tools. For the SLP and ELV variables, a shapefile of elevation points was 226 

downloaded, and the mean elevation in meters (m) and mean degree of slope were determined 227 

per DIS. Also, a shapefile, providing the number of buildings, was retrieved, and the total 228 

number of buildings per square kilometer (km2) area of each DIS was tallied to represent the 229 

BLD variable. Regarding the FTP variable, a shapefile of building footprints was used, and via 230 

ArcGIS, for each building footprint, the area in km2 was calculated. In each DIS, the sum of the 231 

footprint areas was determined. For the SIZ, LAT, and LNG variables, with the DIS shapefile, 232 

the values were determined via geometry processing tools of each DIS polygon, where SIZ was 233 

calculated in km2, and the LAT and LNG represent the centroid points of each polygon. 234 

Therefore, by geoprocessing, the static features for the analysis were collected. 235 

3. Methodology 236 

     With the overarching goal being the achievement of a model, which produces profound 237 

insights on urban flooding despite limited data, this study investigates the value of added 238 

components, ascending in complexity. The methodology is outlined as a flowchart in Fig. 1. The 239 
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preliminary step for this analysis was the delineation of meaningful zones. Borders of zip codes, 240 

DISs, or boroughs are not based on topographical or urban flood characteristics. Therefore, while 241 

the DIS serves as a sufficient starting point for data aggregation, a further outlining of risk zones 242 

based on flood factors, as opposed to political or postal bordering, has more utility in modeling 243 

endeavors. Accordingly, a spectral clustering technique was applied to identify areas of similar 244 

flood vulnerability characteristics. Specifically, the features used as inputs to the clustering 245 

algorithm were SLP, ELV, BLD, FTP and IMP. Then, six clusters (zones) based on likeness were 246 

created (Fig. 2), and the dynamic and static variables were aggregated from the DIS to the cluster 247 

level. Thus, with zones of NYC regions aligned on related flood factors, predictive modeling was 248 

able to be performed.  249 

 250 

 251 

Fig. 1 A flow chart outlining key processes. 252 

 253 
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 254 

Fig. 2 The six zones delineated by urban flood risk characteristics. Fig. 2a depicts the mapping of the zonal spreads 255 
per DIS. Fig. 2b-f are box plots depicting the range of flood characteristics of DISs within each zone. For each zone, 256 
the extent of the mean slope, mean elevation, number of buildings per DIS area, the sum of total building footprint 257 
area per DIS area, and mean percent of impervious cover of each DIS are shown in Fig. 2b, 2c, 2d, 2e, and 2f, 258 
respectively. Fig. 2g are the bar plots illustrating the sum of the total SF reports in each zone over a 10-year period. 259 

     The first set of models were created to predict street flooding occurrence (SF) based on daily 260 

values of climatic (MR, TR, SN) and infrastructural influences (SB and CB) over a 10-year time 261 

span. The research begins with a classical model - the GLM. Features of GLMs include the 262 

provision of a link function and likelihood function; in addition, GLMs possess the ability to 263 

work with count data and nonlinearities (Hardin & Hilbe, 2007). Next, the research moves to a 264 

more complex, yet classical AI-based model – the FFN. FFNs introduce a layered architecture 265 

(input, hidden and output layers) of neurons, which gives the models the ability to sense an 266 

environment for subtle patterns (Fine, 2006; Setiono, 2001). Also, FFNs have the benefit for 267 

adaptability, where elements may be added, allowing for varying capabilities. Particularly, the 268 

architecture of FFNs provides the basis for the RNN and CNN. For instance, with the RNN, 269 

there is the feed forward mechanism as found in the FFN; however, the RNN is also equipped 270 

with a feedback loop, thereby enhancing short term memory and temporal dependency learning 271 

(Fei & Lu, 2018; Schmidt, 2019). Regarding the CNN, the feed forward process comprises of 272 

convolutional and pooling layers, where spatial (patterns across neighboring time steps) aptitude 273 

is achieved via filtering kernels (Albawi et al., 2017; Durairaj & Mohan, 2022; Koprinska et al., 2018; 274 

M. Sun et al., 2017). When working with time-series data, coordinates of observation values are 275 

created, and the spatial capability refers to the comprehension these numerical relationships in 276 

time, which is processed in parallel, as opposed to in sequence as with the RNN (K. Wang et al., 277 

2019). Hence, the RNN and CNN are both capturing temporal dependencies; however, the 278 

mechanism of temporal incorporation differs. This study investigates the RNN and CNN to 279 

explore the effects of each added component towards the forecasting of SF within this specific 280 

data set. Overall, the beginning models, varying in architecture, temporal capabilities, utilize the 281 

time-series predictors to make predictions on the response variable representing street flooding in 282 

the urban setting. 283 

     Graph-based neural networks consider locational aspects. Since there is a geographical 284 

component to urban flooding, as localized areas of susceptibility are to be discovered, this model 285 
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study further explores the benefits of the graph neural network architecture. For the GCN, the 286 

predictors remain as MR, TR, SN, SB, and CB, with the response variable as SF. As there are 287 

only 6 nodes in this study, all within a reasonably close geographical proximity, the model was 288 

created so that each cluster is connected to all other clusters. Each cluster represents a node, and 289 

via edges, external information is communicated among the nodes, thereby bridging potential 290 

gaps within each node’s incomplete internal data (Jiang et al., 2023; Piao et al., 2022; Scarselli et 291 

al., 2009; Y. Wang et al., 2023). Ensuingly, this study explores the GCN and the GWN. For the 292 

GCN, the inputs are as described above. A tensor creates a fully-connected graph, where features 293 

from neighboring nodes are aggregated to assess how conditions in one zone may have affect 294 

another zone. The process is achieved via two graph convolutional layers. Lastly, the graph 295 

neural network architecture is transfigured to the GWN. Here, the GWN had been adapted from 296 

Sun et al (A. Y. Sun et al., 2021). Considered the most complex model of this study, the GWN 297 

incorporates all the aspects of the previous neural network models - locational, spatial, and 298 

recurrent elements - while also introducing novel features of its own, such as gated layers and the 299 

self-adaptive adjacency (SAA) matrix. Moreover, due to the SAA, the GWN is able to 300 

incorporate static features. For this study, the following static characteristics were fed into the 301 

GWN: SIZ, SLP, ELV, LAT, LNG, BLD, FTP, and IMP. 302 

     For every model in the exploration, the coefficient of determination (R2) was used as a 303 

validation measure. The dataset of variables was partitioned into training and testing sets. The 304 

training data ranged from January 1, 2010 through January 1, 2018; the testing data ranged from 305 

January 2, 2018 through December 31, 2019. Each model made predictions spanning the testing 306 

date range; the predictions were compared to the observed, and the R2 was ultimately computed. 307 

Hence by evaluating the goodness of fit, model comparisons were conducted.   308 

3.1 Spectral Clustering 309 

     Spectral clustering, an unsupervised machine learning technique, partitions groups based on 310 

similarities. For this study, the SpectralClustering tool from the sklearn module is utilized in 311 

Python (Scikit-learn, 2023). The data points of each DIS are SLP, ELV, BLD, FTP and IMP. Each 312 

feature was transformed independently via Standard Scaler, processing for a mean of zero and 313 

standard deviation of one, as to prevent disproportional influence on the algorithm's 314 

computation. Here, the features were represented as x1, …, xn. For each vertex (DIS), edges were 315 

constructed from xi to its k-nearest neighbor, xij. The Euclidean distance [t(xi, xj)] between each 316 

unique pair of xi and xj was calculated (Scikit-learn, 2023). Then, a measure of similarity (sij) 317 

was determined as follows (Scikit-learn, 2023): 318 

𝑠𝑖𝑗 = 𝑒−10 × 𝑡(𝑥𝑖,𝑥𝑗)2
… (1) 319 

Edges were created between each pair, and similarity is used as the edge weight. The purpose of 320 

similarity weights is for the edges between a pair of points in the same group to have greater 321 

weights than the edges between a pair of points that lie in separate groups (von Luxburg, 2007). 322 

An unnormalized Laplacian graph was formed, with the matrix defined by Luxburg as follows 323 

(von Luxburg et al., 2008): 324 

𝐿 = 𝐷 − 𝑆 … (2) 325 
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S was the similarity matrix: S: = (𝑠𝑖𝑗)
𝑖,𝑗=1,…,𝑛

 and D was the diagonal matrix with passes: dij: 326 

= 𝑠𝑖𝑗 ∑ 𝑠𝑖𝑗
𝑛
𝑗=1 . With the computation of L, eigenvalue decomposition was initialized. The solver 327 

used was ARPACK, which computes k eigenvectors of L: v1, …, vk (von Luxburg, 2007). Here, 328 

k is six (the number of desired flood zones). Let V be the matrix, where the eigenvectors were 329 

columns, and qi represented the vector in the i-th row of V, then via the k-means algorithm, the 330 

points, (𝑞𝑖)𝑖=1,…,𝑛  were grouped into clusters (von Luxburg, 2007). Hence, with the preceding 331 

machine learning technique, each of 59 DISs were grouped into six zones (labeled 0, 1, 2, 3, 4, 332 

and 5), based on the physical and urban traits.  333 

     There are physical characteristics which influence a region’s susceptibility to SF complaints. 334 

The primary intent of the spectral clustering application is informed delineation. Nevertheless, a 335 

further advantage is the depiction of regions sharing similar extents of known, physical, flood 336 

factors, as detected in the Random Forest model by Agonafir et al (Agonafir et al., 2022) and 337 

discussed in previous urban flood literature. The Standard Scaler function was employed so that 338 

each attribute holds comparable influence. Hence, for this study, the purpose of spectral 339 

clustering model is not to serve as a discovery or predictive model, as it is preparing the data for 340 

the statistical model and supervised machine learning explorations.  341 

     By spectral clustering, six zones were designated based on the flood factors. The quantity of 342 

six was chosen, as to provide a higher degree of localization compared to county or borough 343 

levels. To illustrate the prevalence of each trait within a zone, box plots were created (Fig. 2b-f). 344 

Each box plot is comprised of the values of the DISs within the specified zone. The plots 345 

illustrate the range of SLP, ELV, BLD, FTP and IMP. Also, the total SF complaints, over the 10-346 

year timespan, for each zone is depicted in Fig. 2g. Since each DIS now belongs to a zone, the 347 

data must also be aggregated to the zonal level. For the dynamic variables, SF, SB, and CB, the 348 

totals of each DIS with a zone were taken, and for MR, the mean of the DIS values within a zone 349 

were calculated. For TR and SN, the measurements were previously taken from a single source; 350 

hence, no aggregation was needed. For the static attributes [only used as an input to the GWN], 351 

SLP, ELV, LAT, LNG, BLD, FTP, and IMP, mean values for each DIS within a zone were 352 

determined, and for SIZ, the sum of the areas of each DIS in a zone was calculated. Therefore, 353 

the dynamic predictors and response variables and the static characteristics for each zone were 354 

prepared for the performance of predictive modeling.   355 

3.2 Poisson Generalized Linear Regression Model 356 

     The GLM used in this study is the Poisson GLM (hereafter referred to as GLM). Here, the 357 

GLM uses a log link function and a Poisson distribution of the exponential family. For each 358 

zone, the target variable and the explanatory variables were expressed at i-th observations as 359 

follows: 360 

𝑆𝐹𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖) … (3) 361 

     where, 362 

𝜆𝑖 = 𝑒𝛽𝑖
0+𝛽𝑖

1𝑆𝐵𝑖+𝛽𝑖
2𝐶𝐵𝑖+𝛽𝑖

3𝑀𝑅𝑖+𝛽𝑖
4𝑇𝑅𝑖+𝛽𝑖

5𝑆𝑁𝑖 … (4) 363 
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The βk coefficients represent the strength of change in the log-relative rate of the SF for a one-364 

unit change in the associated predictor variable, and β0 is the intercept, which is the baseline rate 365 

when the predictors are zero. 366 

3.3 Feed Forward Neural Network 367 

     The FFN, applied to each zone independently, is composed of three layers: input, hidden, and 368 

output. Fig. 3 depicts the architecture. The input layer has the two infrastructural and the three 369 

climatic predictors; each predictor is normalized using the Python sklearn’s Standard Scaler 370 

function. For this model, at each time step, there are 32 neurons within the hidden layer, and each 371 

predictor feeds forward to all neurons. For each connection, via the Adam optimizer gradient 372 

descent method, weights, 𝜔, are initialized; moreover, for all neurons, a distinctive bias, b, is 373 

computed by random initialization. Then, for every neuron, i, there is a weighted sum 374 

calculation, as follows: 375 

𝑆𝑖 = 𝑆𝐵𝜔𝑆𝐵𝑖 + 𝐶𝐵𝜔𝐶𝐵𝑖 + 𝑀𝑅𝜔𝑀𝑅𝑖 + 𝑇𝑅𝜔𝑇𝑅𝑖 + 𝑆𝑁𝜔𝑆𝑁𝑖 + 𝑏𝑖 … (5)      376 

The sum then enters into the ReLU activation function, 𝜎𝑅. Activation functions aid in 377 

understanding nonlinear relationships. The ReLU was chosen, as it is known for its accuracy and 378 

is widely used in deep learning modeling (Dubey & Jain, 2019). The next step in the FFN is the 379 

forward movement of information from the last hidden layer to the output layer. Similar to the 380 

last weighted sum calculation, the weighted sum at the output neuron is computed: 381 

𝑆𝑜𝑢𝑡𝑝𝑢𝑡 = (∑ 𝜔𝑖𝜎𝑖
𝑅) + 𝑏 … (6)     382 

From the output layer, the data enters a linear function and produces the predicted counts of SF. 383 

The model was constructed via the Pytorch NN module (PyTorch, 2023c). The model was run 384 

with a learning rate of 0.001, batch size of 32 and 100 epochs. 385 

 386 
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 387 

Fig. 3 The FFN architecture. 388 

3.4 Recurrent Neural Network 389 

     The RNN architecture, built upon a network of neurons, is similar to the FFN structure. 390 

However, there is a difference within the hidden layer composition, where, as opposed to 391 

possessing only feed forward (FF) layers, the RNN includes a preceding Long Short-Term 392 

Memory (LSTM) layer (Fig. 4). First, a concatenated input vector of the predictors, X at each 393 

time step enters each neuron. X is then concatenated with the hidden state vector, H, at the 394 

previous time step. Then, via gradient descent optimization, unique (per neuron) input weight 395 

and bias are calculated. The input gate, i, controls the extent of input information entering the 396 

cell state (Schmidt, 2019; Tsantekidis et al., 2022), and the computations for each neuron, n, of 397 

the 16 neurons of the RNN layer are as follows: 398 

𝑖𝑛,𝑡 = 𝜔𝑖,𝑛[𝐻𝑡−1,𝑛, 𝑋𝑡] + 𝑏𝑖,𝑛 … (7) 399 

After the initial computation, the input enteres the sigmoid activation, 𝝈𝑺 function: 400 

𝐼𝑛,𝑡 = 𝜎𝑛
𝑆(𝑖𝑛,𝑡) … (8) 401 

Now, the forget gate, f, also receives the input vector of predictors; yet, it’s function is to filter 402 

out irrelevant information from the previous cell state (Schmidt, 2019) .The calculations for f are 403 

as follows: 404 
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𝑓𝑛,𝑡 = 𝜔𝑓,𝑛[𝐻𝑡−1,𝑛, 𝑋𝑡] + 𝑏𝑓,𝑛 … (9) 405 

Then, the sigmoid function is applied: 406 

𝐹𝑛,𝑡 = 𝜎𝑛
𝑆(𝑓𝑛,𝑡) … (10) 407 

With the productions of the input gate and the forget gate, the cell state, C, is computed. In the 408 

cell state computations, the tanh activation function, 𝜎𝑇are applied: 409 

𝐶𝑛,𝑡 = 𝐹𝑛,𝑡𝐶𝑛,𝑡−1 + 𝐼𝑛,𝑡𝜎𝑛
𝑇𝜔𝑐,𝑛[𝐻𝑡−1,𝑛, 𝑋𝑡] + 𝑏𝑐,𝑛 … (11) 410 

Additionally, the input vector of predictors also pass through the output gate. The role of the 411 

output gate is to control the flow from the cell state to the hidden state and ultimately producing 412 

the output of the LSTM neuron (Chung et al., 2014). The output gate calculations are shown 413 

here: 414 

𝑜𝑛,𝑡 = 𝜔𝑜,𝑛[𝐻𝑡−1,𝑛, 𝑋𝑡] + 𝑏𝑜,𝑛 … (12) 415 

𝑂𝑛,𝑡 = 𝜎𝑛
𝑆(𝑂𝑛,𝑡) … (13) 416 

Finally, with the product of the output gate, the hidden state, the information that passes to the 417 

next layer (the FF layer), is computed. The figuration was as follows: 418 

𝐻𝑛,𝑡 = 𝑂𝑛,𝑡𝜎𝑛
𝑇𝐶𝑛,𝑡 … (14) 419 

The process continues through the FF layer to predict SF counts. Here, the FF had 16 neurons. 420 

The RNN model underwent 1000 epochs, with a batch size of 32, a learning rate of 0.007, and a 421 

sequence length of 6 days. The model was constructed via the Pytorch LSTM module (PyTorch, 422 

2023b). 423 
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 424 

Fig. 4 The hidden layer structure of the RNN. 425 

3.4 Convolutional Neural Network 426 

     The CNN is also comprised of an input, hidden and output layer. The input layer and the 427 

output product are the same as the FFN; hence, the main difference from the FFN is the 428 

composition of the hidden layers. Particularly, the CNN has two convolutional layers, a global 429 

average pooling layer and a FF layer. For the first convolutional layer, there are 16 kernels (or 430 

filters), f, of size one (Each kernel is applied independently to each predictor at each time step). 431 

Each filter produces an output, c, by generating a unique bias and weight at each time step, t, and 432 

for each predictor. Therefore, in the CNN, the convolutional layers involve the weighted sum of 433 

predictors over time for each filter; this differs from the FNN, as in the FNN, the predictions are 434 

based on the weighted sum of predictors without considering the time dimension. Fig. 5 435 

illustrates the hidden layers of the CNN. The overview of computations are depicted here: 436 

𝑐𝑓,𝑡 = 𝜔𝑓,𝑡,𝑆𝐵𝑆𝐵 + 𝜔𝑓,𝑡,𝐶𝐵𝐶𝐵 + 𝜔𝑓,𝑡,𝑀𝑅𝑀𝑅 + 𝜔𝑓,𝑡,𝑇𝑅𝑇𝑅 + 𝜔𝑓,𝑡,𝑆𝑁𝑆𝑁 + 𝑏𝑓,𝑡 … (15) 437 

The output of the first convolutional layer enters the second convolutional layer, c*, via the 438 

ReLU activation function and computes the following: 439 

𝐶𝑓,𝑡 = 𝜎(𝑐𝑓,𝑡) … (16) 440 

The second convolutional layer has 32 kernels, f*. For each filter output, c*, at a time step, the 441 

calculation is shown: 442 
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𝑐𝑓∗,𝑡
∗ = ∑ 𝜔𝑓∗,𝑡,𝐶𝑓,𝑡

𝐶𝑓,𝑡

16

𝑓=1

+ 𝑏𝑓∗,𝑡 … (17) 443 

The output of each kernel in the second convolutional also enters the ReLU function to gain 444 

enhanced pattern recognition: 445 

𝐶𝑓∗,𝑡
∗ = 𝜎(𝑐𝑓∗,𝑡

∗ ) … (18) 446 

After exiting the second convolutional process, there is input into the global average pooling 447 

layer. For each of the 32 channels, p, an average, g, is taken across all time steps (3,652 days): 448 

𝑔𝑝 =
1

3652
∑ 𝐶𝑓∗,𝑡

∗

3652

𝑡=1

     𝑓𝑜𝑟 𝑓∗ = 𝑝 … (19) 449 

Now, the pooling output units are then processed by a feed forward layer of 32 neurons, 450 

producing predicted SF counts. The model was run with a learning rate of 0.001, batch size of 32 451 

and 100 epochs. The model was constructed via the Pytorch CONV1D module (PyTorch, 452 

2023a). 453 

 454 

Fig. 5 The hidden layer structure of the CNN. 455 
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3.5 Graph Convolutional Neural Network 456 

     The main contribution of graph-based methods is the sharing of information via neighbors. 457 

The input predictors are the same as the previous models; however, as opposed to assessing each 458 

node’s predictors singularly and running separate models for each, the input vector includes all 459 

the nodes and their respective predictor values at each time step. Within the model, individual 460 

assessments occur, and SF counts are produced for each node. At the hidden layer, the GCN 461 

begins the process by the creation of edges, the advanced communication channels between 462 

nodes of locational proximity. In this study, each cluster represents a node, and the edges are 463 

constructed such that each node is fully connected to every other node. Fig 6 illustrates the edges 464 

connecting the clusters (nodes) of this study. An input vector of the dynamic predictors, X at 465 

each time step is entered into each node, c. Additionally, X is also messaged into neighboring 466 

nodes, N (those nodes connected to the node by edges), via aggregation by edge weights. The 467 

messaging, m, calculation, for a node is as follows: 468 

𝑚𝑐 = ∑ 𝜔𝑐,𝑖𝑋𝑖
𝑖∈𝑁𝑐

… (20) 469 

After messages are aggregated, feature representation is updated at the next time step: 470 

𝑋𝑐,𝑡+1 = 𝑓(𝑋𝑐,𝑡𝑚𝑐) … (21) 471 

The aggregated updated node representations occur within the graph convolutional layers. The 472 

model is constructed via the Pytorch Geometric GCN module (PyTorch Geometric, 2023). There 473 

are two convolutional layers, of which the model acquires knowledge of the effect each 474 

neighbor’s feature may have on another. The ReLU activation function was employed. The 475 

learning rate was 0.001, and the GCN underwent 100 epochs. 476 

 477 

Fig. 6 The graph structure of the GCN. 478 
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3.6 Graph Wavenet 479 

     The GWN is graph-based, with sophisticated recurrent and convolutional aspects. The key 480 

advances from the GCN, RNN, and CNN are the additions of the adjacency matrix, A, dilation 481 

factors, l, and skip connections. The input set of dynamic predictors and the output of predicted 482 

SF counts are similar to the other graph-based models. Although, for the GWN, the arrangement 483 

of the input differs. The input is a vector, D, which includes the nodes and the dynamic 484 

predictors per node for each sequence, q. Here, the sequence is 6; thus, the vector includes 485 

information from t, t-1, and so forth until t-5. D then enters the A, along with the static attributes 486 

(SIZ, SLP, ELV, LAT, LNG, and BLD), T. With the data, A makes informed decisions towards 487 

graph construction and the determination of node neighbors, via edges. Moreover, for each 488 

unique filter, A creates a unique transformed input vector for a particular node. Now, for each 489 

node, n, there is a transformed input vector, described as follows: 490 

𝑋𝑛,𝑓 = 𝑓(𝐷, 𝑇, 𝑞) … (22) 491 

The transformed vectors for each node then enter convolutions. Recall from the CNN section, 492 

that the convolution operation, c, is a function of the predictors, weights and biases, where the 493 

weights and biases are unique for each time step and filter. It is similar here; however, for the 494 

GWN, it is also a function of the dilation factor. For the GWN, the output of the convolution 495 

operation will be referred to g: 496 

𝑔𝑛,𝑓 = 𝑓(𝑋𝑛,𝑓 , 𝜔𝑓 , 𝑏𝑓 , 𝑙) … (23) 497 

Next, g is split, where one enters into the tanh activation function, and the other is processed by 498 

the sigmoid activation function. While information passes through the sigmoid and tanh 499 

activation functions in the RNN, this occurs at sequential steps. Whereas, for the GWN, the 500 

transformations by the sigmoid and tanh activation functions are brought together in element-501 

wise multiplication. The determinations of the output tensors of the sigmoid activation function, 502 

GS, and the output of the tanh activation function, GT, are shown here: 503 

𝐺𝑛,𝑓
𝑆 = 𝜎𝑓

𝑆(𝑔𝑛,𝑓) … (24) 504 

𝐺𝑛,𝑓
𝑇 = 𝜎𝑓

𝑇(𝑔𝑛,𝑓) … (25) 505 

An element-wise multiplication, M is then performed on both tensors. 506 

𝑀𝑛,𝑓 = 𝐺𝑛
𝑆 ⊙ 𝐺𝑛

𝑇 … (26) 507 

The input tensor, M, then passes through a 1X1 convolution, where a point-wise convolution 508 

operation takes place, reducing the hidden dimensions from 11 to one. The output, P, is described 509 

here: 510 

𝑃𝑛,𝑓 = 𝑓(𝑀𝑛,𝑓 , 𝜔𝑛,𝑓 , 𝑏𝑛,𝑓) … (27) 511 

Now, during this process, the original input tensor X is also preserved. It is added, elementwise, 512 

to P, as to produce a residual connection, r. In this way, the output not only learns from the 513 
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transformed input, via convolutions and gating mechanisms, but it also learns from its original 514 

input. 515 

𝑟𝑛,𝑓 = 𝑃𝑛,𝑓 ⊕ 𝑋𝑛,𝑓 … (28) 516 

Meanwhile, there is another part of the output of the 1x1 convolution with a different utility. This 517 

output, known as a skip connection, will be designated as s: 518 

𝑠𝑛,𝑓 = 𝑓(𝑀𝑛,𝑓, 𝜔𝑛,𝑓 , 𝑏𝑛,𝑓) … (29) 519 

     At this point, the calculations have been shown at the filter level. As explained in the CNN 520 

section, the calculations of each filter are aggregated to the layer level. Hence, describing the 521 

calculations at the layer level, the residual connection exiting the layer, y, will be denoted as R, 522 

and the skip connection exiting y will be denoted as S. For this model, R exits the filter and is 523 

utilized in subsequent skip connections, and S exits the filter, and residual connections from 524 

previous layers are incorporated to form a feedforward output, K. Let z represent the quantity of 525 

layer skips, then the calculation of K is as follows: 526 

𝐾𝑦 = 𝑠𝑛,𝑓,𝑦 ⊕ ∑ 𝑅𝑛,𝑓,𝑦−𝑧

𝑍

𝑧=0

… (30) 527 

The final output then undergoes a ReLU activation function, and the model prepares predictions 528 

for SF counts on the testing dates. The process is shown in Fig. 7. For this study, the 529 

hyperparameters for the GWN included a 0.01 learning rate, batch size of 15, and 50 epochs. 530 

 531 

Fig. 7 A diagram depicting GWN configuration. 532 
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4 Results and discussion 533 

4.1 Risk Zones 534 

     Spectral clustering, an unsupervised machine learning technique, created six zones based on 535 

the flood attributes of each DIS. Fig 2 shows the predominance of each of the five characteristics 536 

within a zone and plots total SF occurrence in each zone. By a visual analysis of the plots, 537 

elements of risk are conveyed. For instance, zone 2 is shown to have the highest mean incline 538 

(Fig. 2b), allowing for water to flow, as opposed to ponding. Moreover, zone 2 has the greatest 539 

elevation (Fig. 2c) and the least number of buildings per unit area (Fig. 2d). A higher elevation 540 

and lower quantity of buildings are known to reduce urban flood susceptibility. Subsequently, the 541 

physical qualities of zone 2 may serve as a plausible explanation for the zone having the lowest 542 

total SF complaints (Fig. 2g). Similarly, zonal characteristics may also explain SF occurrence in 543 

zone 1. When viewing Figs. 2b-d and Fig 2g, it is shown that zone 1 has the opposite extent, with 544 

the flattest surface (low slope), lowest elevation, and the second highest number of buildings per 545 

square unit; notwithstanding, zone 1 has the most SF reports. Thus, the extensive flood risk 546 

characteristics of zone 1 may be the antecedent for its high complaints. Concerning the 547 

remaining zones, the prevalence of a combination of flood attributes is not as strongly skewed. 548 

For example, zone 0, which has a low SF total, ranges mediumly in SLP, ELV, and BLD; 549 

although, it prevails on the higher end for FTP, and it has the greatest IMP. Regarding zone 3, 550 

there are no extremes in flood characteristics; yet, zone 3 has the second highest total SF. With 551 

zone 4, it has the highest BLD and FTP; yet the values of the other flood attributes extend 552 

moderately. Lastly, concerning the box plot of zone 5, it does not depict many extremes in flood 553 

characteristics, except a relatively low FTP and high IMP. Regarding total SF, zone 5 retains low 554 

SF reports (slightly higher than that of zone 0). Overall, via visual inspection, it appears that 555 

some flood characteristics, particularly BLD, SLP, and ELV, maintain stronger effects on total SF 556 

reports. This was also found in (Agonafir et al., 2022), where the random forest algorithm 557 

detected the relative importance of BLD, SLP, and ELV to be greater than IMP and FTP. For the 558 

zones with moderate flood characteristics, modeling forecasting techniques, specifically machine 559 

learning methods, have utility, as the algorithms possess the ability to detect intricacies within a 560 

learned environment.  561 

4.2 Model Results  562 

4.2.1 Validation Results of Models 563 

     The evaluation of the models with varying complexities is conducted via the assessment of R2 564 

values. Each model utilized a training set between 2010 to 2018 to produce daily predictions for 565 

the testing range from 2018 through 2019, and goodness-of-fit was determined. Each model, 566 

aside from the GLM, underwent 50 runs, and the average of the mean and median R2 values of 567 

all nodes were tabulated in Table 1. The model results are mapped, at the zonal level, in Fig. 8. 568 

Ordered from least to greatest, the results, depicting the mean R2, for the models are the 569 

following: GLM (0.26), FFN (0.35), RNN (0.36), CNN (0.36), GCN (0.43), and GWN (0.51). 570 

Thus, the GWN is the model with the best performance. Moreover, the delta between the model 571 

with the lowest R2 (GLM) and the highest (GWN) is found to be significant at a value of 0.25. 572 
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Furthermore, when only comparing ANNs, there is a 0.16 delta between the GWN’s R2 (highest) 573 

and FNN’s R2 (lowest). Lastly, inspecting the difference in R2 between the simplest introduction 574 

of the feed forward (FFN) to the statistical model (GLM), there is a 0.09 delta, and between the 575 

simplest graph neural network (GCN) to the GLM, there exists a 0.08 delta. Contiguously, the 576 

results bring forth apparent connections. Firstly, there is notable performance improvement from 577 

the feed forward models (FFN, RNN, and CNN) to the GWN, while minimal (in some zones) to 578 

no improvement exists from the FFN to the RNN or to the CNN. This indicates that LSTM and 579 

convolutional layers benefit from the extensive structural detail, such as gating mechanisms, 580 

dilations, and skip connections, of the GWN. Secondly, as illustrated by the increase in R2 581 

achieved by the FFN when comparing to the GLM, a simple machine learning model 582 

outperforms the generalized linear regression model. Finally, there is an overall improvement 583 

from the introduction of the graph architecture to the feed forward process, as highlighted by the 584 

mean performance of the GCN being greater [by 0.07] than the RNN, and CNN. This suggests 585 

that the graph-based structure assists in environmental learning for certain datasets. Principally, 586 

due to the substantial differences in model performance, this exploration proves that careful 587 

consideration must be taken when choosing an appropriate technique for forecasting endeavors. 588 

 589 

Fig. 8 Maps of the mean R2 values for each of the models in the exploration. The R2 values of the GLM, FFN, RNN, 590 
CNN, GCN and GWN are shown in Fig. 8a, 8b, 8c, 8d, 8e, and 8f, respectively. 591 

 592 

Table 1. A listing of the R2 values for each model at each zone and the mean and median 593 

determinations. 594 
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Zones 0 1 2 3 4 5 Median Mean  

GLM 0.20 0.20 0.24 0.38 0.25 0.27 0.25 0.26  

FFN 0.26 0.39 0.17 0.57 0.39 0.34 0.35 0.35  

RNN 0.25 0.39 0.23 0.56 0.40 0.33 0.36 0.36  

CNN 0.26 0.39 0.22 0.57 0.40 0.34 0.36 0.36  

GCN 0.37 0.45 0.28 0.58 0.44 0.44 0.43 0.43  

GWN 0.35 0.59 0.31 0.72 0.55 0.52 0.54 0.51  

Median 0.26 0.39 0.24 0.57 0.40 0.34   

Mean 0.28 0.40 0.24 0.56 0.41 0.37  

 595 

 596 

Fig. 9 The bar plots of the mean R2 of each model at each zone. 597 

4.2.2 Zonal Analysis 598 

     As spectral delineation has created each zone with varying physical traits, analyzing the 599 

results at the zonal level provides additional insights into model strengths. First, it is essential to 600 

inspect the relationship between R2 (Fig. 9) and total SF per zone (Fig. 2g). There appears to be a 601 

general trend, where R2 values are greater in zones with a larger quantity of total complaints. For 602 

instance, zones 0 and 2 have lower total SF reports, and the R2 values for these zones are also the 603 

lowest. Moreover, zone 3 has the second highest quantity of complaints, and it has the best 604 

performance of all models. Thus, more available response data appears to be a benefit to the 605 

models. Moreover, the graph-based models significantly boost the quality of predictions, 606 

especially in the cases of zones 0 and 5. This may be attributed to the message-passage capability 607 

of separate nodes (zones), such that a zone is not only learning its specific environment, but also 608 
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gaining a sense of the surroundings. Nonetheless, while there appears to be a positive link 609 

between quantity of complaints and validation values, there are other factors influencing model 610 

performance. For instance, zone 1 has the highest number of SF reports; yet, the mean R2 values 611 

are lower (0.40) than those of zone 4 (0.41), which has less than half the complaints. In addition, 612 

zone 5 outperforms zone 0 in all models [by a difference of 0.09 mean R2], despite having a 613 

similar quantity of SF reports. These observations indicate the presence of other factors 614 

influencing zonal differences in modeling prediction aptitude. For example, concerning zone 1, 615 

additional variables may prove useful as model inputs. Specifically, zone 1 is comprised of 616 

regions mostly along the waterbodies of the Long Island Sound, Lower New York Bay, Jamaica 617 

Bay, and the Atlantic Ocean; furthermore, this sector also has the lowest elevation. Thus, the 618 

zone’s vulnerability to sea level rise could be heightened due to a combination of low elevation 619 

and proximity to water bodies. Accordingly, an additional variable expressing sea level rise may 620 

benefit modeling endeavors for the zone. Regarding zone 0, the lower performance within the 621 

cluster compared to zone 5 may be attributed to potential bias within the crowdsourced platform. 622 

Agonafir et al found that commuters who drive are more likely to report SF (Agonafir et al., 623 

2022). Given that zone 0 encompasses various Manhattan neighborhoods, and Manhattan is the 624 

borough with the highest influx of commuters (City of New York, 2019), employing both public 625 

transportation and vehicles, the crowdsourced response data may exhibit subtle inconsistencies, 626 

posing challenges in detecting flooding patterns. Hence, the model performance in a zone may be 627 

affected by the amount of SF complaints, an insufficient set of variables or bias in the 628 

crowdsourced platform. 629 

     Next, the zonal analysis will gear towards the examination of individual model performance. 630 

An evident observation of the model results is the GWN exhibiting the highest R2 [oftentimes, at 631 

a great margin] across all the zones, except for one. Now, as the sole deviation from this trend of 632 

GWN dominance occurs at zone 0, the continued examination at the zonal level will begin at this 633 

curious exception. In the case of zone 0, the GCN outperforms the GWN by a marginal delta of 634 

0.02. The difference is slight, as thus, considering the low volume of response data in the sector, 635 

the variation likely does not hold significance in model comparison. Nevertheless, within zone 0, 636 

there exist remarkable takeaways. The graph neural networks (GCN and GWN), when compared 637 

to the FFN, RNN, and CNN, demonstrate stronger prediction accuracies. As the differences 638 

range from 0.09 to 0.12 in R2 values at zone 0, the results pronounce the benefits of the graph 639 

structure. The graph neural networks add value by not only including locational elements, but by 640 

also allowing various areas to be connected and communicate with each other, and for a location, 641 

such as zone 0, with limited data, feeding a model with added information assists in the learning 642 

of environmental patterns. This merit of the graph-based architecture is additionally seen when 643 

inspecting the results of zone 1, 2, 4, and 5. Specifically, zone 5, also with low response data (the 644 

total SF complaints of zone 5 are less than a third of zone 3), obtains GCN and GWN R2 values, 645 

ranging from deltas of 0.10 to 0.19 greater than those of the non-graph-based ANN models. The 646 

region where there is a balance in model performance between the GCN and the FFN, RNN, and 647 

CNN is zone 3. Since zone 3 has a high number of SF complaints, the non-graph-based ANNs 648 

are not as encumbered by low data volume; hence, their performance is competitive with the 649 

GCN. Nonetheless, for all zones, the GWN transcends, and, due to key elements in the graph-650 
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based neural network structure, such as neighboring nodal data gains, the GCN also attains 651 

strong prediction results. 652 

     Also, at a zonal inspection, it is observed that the ANNs overwhelmingly outperform the 653 

GLM. The difference in R2 values from GLM to an ANN range from 0.05 to 0.17 for zone 0, 654 

0.19 to 0.39 for zone 1, 0.18 to 0.34 for zone 3, 0.14 to 0.30 for zone 4, 0.06 to 0.25 for zone 5. 655 

Hence, it is seen that the employment of even a simple neural network may have substantial 656 

benefits to data-driven urban flood modeling. The only exception to the observation lies in zone 657 

2. In zone 2, the GLM achieves a higher R2 than the FFN, RNN, and CNN by a difference of 658 

0.07, 0.01, and 0.02, respectively. Zone 2 has the lowest SF reports, at roughly half of the 659 

response data as that of zone 0 (the zone with the second fewest) and less than one-eighth the SF 660 

complaints as zone 1 (the zone with the highest SF complaints). Therefore, an inference is that 661 

the GLM is not necessarily outperforming the other ANNs; however, due to very limited 662 

response data, the other ANNs are not performing at their fullest aptitudes.  663 

     Finally, while the zonal analysis has illustrated the advantages of ANN modeling for urban 664 

flooding and the benefits of applying a graph-based structure, the examination principally 665 

underscores the aptitude of the GWN. In Fig. 9, the comparative analysis demonstrates that 666 

under conditions where the R2 values of the FFN, CNN, or RNN edge closely to those of the 667 

GCN, the GWN maintains a dominant performance. Conversely, when the validation 668 

determinations of the GCN ascend the other ANNs, the GWN upholds its position. The observed 669 

outcomes stem from the comprehensive nature of the GWN, incorporating key elements from 670 

preceding ANN models. These advanced features include the integration of convolutional and 671 

LSTM layers and the incorporation of the self-adaptive adjacency matrix within the graph 672 

architecture. Moreover, the structure within each component of the GWN are multiplexed, as 673 

opposed to simple additions. In a latter section, 4.3 Graph Wavenet Deconstruction, the ancillary 674 

complexities and their influence on model results will be explored in more detail. 675 

4.2.3 Feature Importance 676 

     To illustrate how flood-related factors affect a model's performance, a feature importance 677 

analysis is conducted. The infrastructural dynamic variables (SB and CB) are removed from each 678 

model, and the results are compared against the original R2 values of each model (when all the 679 

variables are present). Likewise, the climatic dynamic variables (MR, TR, and SN) are also 680 

removed and compared against the original R2 values. This approach, which assumes a linear 681 

relationship between input variables and the target variable, provides insights into the 682 

contributions of the variables in isolation. The difference in R2 values for each set of variable 683 

removal from the original R2 is divided by the original R2 to see the extent of effect. The results 684 

are shown in Fig. 10. While acknowledging the simplicity of this method and its reliance on 685 

linear relationships, it offers an interpretable way to rank the importance of dynamic predictors 686 

within the context of the models. 687 
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 688 

Fig 10 Plots of R2 decrease with variable exclusion. 689 

     There are a few notable observations of the feature importance results. First, the most 690 

perceptible effect is that of the climatic variables on the GLM. The GLM experiences significant 691 

decrease when the precipitation predictors are absent. As precipitation is the fundamental cause 692 

of urban flooding, without its representation, the simplistic calculations of the GLM do not 693 

suffice for strong prediction capabilities. Next, it is seen that the performance of the FFN is more 694 

reliant on the infrastructural variables than that of the CNN and RNN. An implication of this 695 

finding may be that the CNN and RNN models have more adept utilization of the seasonality and 696 

temporal nature of precipitation occurrence due to their enhanced spatial and sequential pattern 697 

recognition time-series data. Lastly, an observation is that the GWN appears to be less dependent 698 

on either set of variables. Of all the models, the R2 of the GWN decreases by the least relative 699 

extent for both exclusions. This strengthens the assertion that the GWN is more robust, as it 700 

possesses an improved capability of acquiring the environment, despite being given a lean set of 701 

variables. Nonetheless, there are differences in performance decline, as the GWN performs better 702 

with the set of infrastructural-only variables. This observation may be attributed to its graph-703 

based structure. Particularly, the graph-based models are aided by locational information, and the 704 

infrastructural predictors allow the models to sense the presence of chaos. If there are sewer 705 

backups and catch basin issues reported throughout the city, the models are alerted towards a 706 

more probable occurrence of street flooding. On an ending note, the feature importance plots 707 

identify model aptitude within a particular set of variables, further dissecting key model strengths 708 

and limitations. 709 
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4.3 Graph Wavenet Deconstruction 710 

     The GWN, extending beyond a basic encompassment of the characteristics of the ANN 711 

models in this study, elevates each fusion with intricate compositions and pathways. For 712 

instance, in its graph-based structure, although the foundational nodes and messaging through 713 

vertices (edges) are shared by the GCN, the GWN transcends with the incorporation of the 714 

advanced adjacency matrix. The matrix, skillfully integrating static attributes and facilitating 715 

early temporal review through sequenced data during the node-edge creation process, provides 716 

tailored inputs to each filter. Furthermore, in regards to the recurrent and convolutional aspects, 717 

the GWN builds upon the passage of information via dilation factors and residual and skip 718 

connections, exceeding the simplified structures of the RNN and CNN. Specifically, the RNN 719 

features a feedback mechanism via the LSTM layer, which learns information via a lookback 720 

period of six days. While the GWN also includes a lookback of six days, the temporal learning 721 

onsets at the adjacency matrix; additionally, the inputs proceed through gated activation 722 

functions and merge by element wise multiplication, as opposed to sequential summation 723 

processes. This careful procedure allows for improved biases and weights; moreover, it reduces 724 

the occurrences of vanishing gradients or exploding activations, which are known risks of RNN 725 

modeling (H. Lin et al., 2022; Rangapuram et al., 2018). Now, transitioning to the comparison of 726 

the convolutional structure between the GWN and the CNN, the layers of the GWN exhibit a 727 

higher level of knowledge transfer. First, the dilation factor of the GWN allows for different 728 

convolutional layers to capture varying time ranges (Rathore et al., 2021); therefore, each layer 729 

brings a distinctive evaluation of pattern recognition, allowing for a holistic perception of the 730 

temporal environment. Second, the residual and skip connections enable a direct extraction from 731 

layers with pertinent information. To prevent distortion of the vital information as it passes 732 

sequentially layer to layer until reaching the current layer, the skip connections allow the current 733 

layer to retrieve the information a previous (not immediately preceding) layer before it undergoes 734 

subsequent convolutions. As thus, the sophistication of the GWN convolutions allow for a more 735 

evolved and exclusive learning progression. Due to the complexity of the graph, recurrent and 736 

convolutional fundaments, the GWN not only incorporates, but ascends. 737 

     To highlight the improvements facilitated by the added components of the GWN, an 738 

additional model run is performed. In this GWN simulation (hereinafter referred to as GCR), the 739 

adjacency matrix is excluded, while preserving spatial and temporal aspects. The mean and 740 

median R2 values are determined to be 0.46 and 0.47, respectively (Table A1). When contrasting 741 

the GCR with the GWN, which achieves mean and median values of 0.51 and 0.54, respectively, 742 

the impact of excluding the adjacency matrix becomes evident. The GCR experiences a decrease 743 

of 0.05 in the mean and 0.07 in the median. Additionally, at the zonal level, every cluster 744 

demonstrates a reduction in performance. Furthermore, this isolation of the GWN from the 745 

adjacency matrix emphasizes the vital role played by the intricate convolutional and recurrent 746 

features of the GWN. Notably, the primary distinction between the GCN and GCR lies in the 747 

temporal and convolutional aspects. The results, wherein the GCR outperforms the GCN with a 748 

mean and median R2 difference of 0.03 and 0.04, respectively, emphasize the strengths of 749 

temporal and spatial learning introduced by the GWN. Therefore, as theorized, the success of the 750 

GWN may be attributed to the multiple traits within the algorithm. 751 
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4.4 Limitations and Future Considerations 752 

4.4.1 The FFN, RNN and CNN 753 

     The added complexities by the RNN and CNN yield minimal model performance. The FFN 754 

obtains a mean R2 value of 0.35, and the RNN and CNN each obtain mean R2 values of 0.36. 755 

Only in zone 2, there exists a substantive improvement by the RNN and CNN, where the R2 756 

values are 0.06 and 0.05 greater than the FFN, respectively. A plausible explanation for the 757 

limited benefits is the simplicity of the model layers, of which lack the detail and mechanisms 758 

needed to produce discernable results. This assertion gains credibility when considering the 759 

performance of the GWN, where an interleaved system of data flow, employing skip connections 760 

and advanced gating mechanisms, achieves superior prediction accuracy. Another contributing 761 

factor may be the absence of significant temporal dependency within the dataset. Given the 762 

nature of urban flooding, often ensuing in the form of a flash flood, where the onset and finality 763 

of the disaster occurs within a brief timespan of 6 hours (NWS, 2022), flooding on one day, 764 

oftentimes, does not exert influence on the following day. Simplified models designed to capture 765 

spatial and temporal dependencies may overlook these subtle patterns. Lastly, many of the 766 

variables, including the response variable, are retrieved from the NYC 311 dataset, and 767 

crowdsourced data is not as accurate in illustrating the environment as physical measurements. 768 

Thus, a simplified feedback loop or spatial assessment may not suffice. The limitations of the 769 

crowdsourced platform are further discussed in the next section. In summary, while the neural 770 

network architecture attains noticeable improvements in model performance, the basic LSTM or 771 

convolutional layers are not as advantageous; this may be attributed to the temporal nature of 772 

urban flooding and the limitations of crowdsourced data. 773 

4.4.2 The Crowdsourced Platform 774 

     Crowdsourcing has been applied in previous urban flood modeling initiatives, particularly in 775 

cities like NYC, where flood data is scarce. The incorporation of residential reports provides 776 

insights into flooding occurrences, of which, otherwise, would not be obtained. However, while 777 

this method is valuable, the leveraging of eyewitness accounts is not as exact as physical 778 

measurements. Also, another issue of crowdsourced data is the potential for bias – a greater 779 

inclination of certain types of people to report issues. For example, it has been indicated that 780 

certain socio-demographical attributes may be factors in SF complaints, thereby possibly 781 

indicating that a particular set of residents are more likely to utilize the platform (Agonafir et al., 782 

2022). Hence, there are bias concerns. Nonetheless, there exists strength in the reports, as they 783 

are taken by individuals observing an event. For instance, the bias attributed to socio 784 

demographics is a potential consideration, since it may also be inferred that specific 785 

neighborhoods prone to flood occurrences may be comprised of a certain set of socio-786 

demographics. Moreover, the validity of the crowdsourced data’s depiction of flooding 787 

occurrence is reinforced by the climatic, topographical, and infrastructural predictors holding 788 

substantial significance in the crowdsourced response variable, SF complaints (Agonafir et al., 789 

2021, 2022). Furthermore, the 311 NYC street flooding reports, at the very least, capture the 790 

concerns of residents inclined to report, potentially identifying those most at personal risk. 791 

Indeed, the attribute of commuters who drive holds a sizable relative importance in Agonafir et 792 
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al. (Agonafir et al., 2022), and as the leading cause of death from flooding is vehicular, accurate 793 

predictions in these regions may prove lifesaving. In essence, in metropolitans with limited data, 794 

crowdsourcing, despite some drawbacks, enables the continuity of predictive modeling, 795 

sustaining efforts that would otherwise cease. 796 

     Moreover, in metropolitans, particularly in the specific study area of NYC, flood sensors 797 

[measuring water levels] are being installed, enabling proximate applicability of this explorative 798 

analysis. The findings presented here accentuate the models best suited for the local landscape, 799 

with the GWN delivering promising results. Despite the constraints of the crowdsourced 800 

platform, the GWN attains an R2 of 0.72 for zone 3, demonstrating its potential. Anticipating 801 

even greater predictive accuracy with actual measurements from sensors, this study outlines 802 

techniques applicable to the urban city. Once physical data becomes accessible, this model 803 

exploration provides policymakers and stakeholders with an outline of the strengths and 804 

weaknesses of models, ascending in complexity, while also pinpointing the overall, most 805 

effective model for forecasting floods during a predicted rain event. 806 

5. Conclusions 807 

     By a diverse, novel pooling of machine learning techniques, this study advances our 808 

understanding of urban flooding, offering detailed insights into risk zones, comparing the 809 

performance of various models, and emphasizing the effectiveness of graph-based neural 810 

networks, particularly the Graph Wavenet. Listed below are the key appreciations of the 811 

research: 812 

• Spectral clustering has utilization in risk zone identification and border delineation. The 813 

analysis of these zones reveals relationships between specific physical characteristics 814 

(such as slope, elevation, and building density) and the occurrence of street flooding. 815 

Notably, zones with higher elevation and lower building density exhibited lower 816 

susceptibility to flooding, emphasizing the importance of urban characteristics in flood 817 

risk assessment. 818 

• Machine learning models demonstrate superior performance to the GLM. Unlike the 819 

GLM, which assumes linearity in the parameters, machine learning models offer greater 820 

flexibility by adapting to complex, nonlinear patterns present in the data. 821 

• By a systematic evaluation of the performance of varying flood prediction models, 822 

ranging from traditional statistical models to advanced neural networks, the GWN 823 

emerges as the most suitable model for urban flood forecasting in NYC, outperforming 824 

other models, including the GCN, CNN and RNN. Hence, there is significance in 825 

incorporating advanced spatio-temporal aspects and dynamic graph creation for accurate 826 

flood forecasting. 827 

• Via zonal analysis, graph-based structures are shown to be particularly beneficial in areas 828 

with sparse data, where traditional models may struggle. 829 

The discoveries of this research accord practical value onto urban stakeholders, especially in 830 

cities such as NYC, where water measurement sensors are currently being deployed. This 831 

synergy between advanced modeling techniques, particularly spatio-temporal graph neural 832 
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networks, and emerging sensor technologies ensures informed decision-making, enabling urban 833 

planners and emergency responders to safeguard communities, reduce economic losses, and 834 

enhance overall resilience to the challenges posed by urban flooding. 835 

6. Appendix A 836 

Table A.1 837 

Zones 0 1 2 3 4 5 Median Mean 

GCR 0.29 0.56 0.28 0.68 0.52 0.42 0.47 0.46 
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