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 14 

Abstract 15 

The root zone is the upper part of the unsaturated zone, where water and 16 

nutrients are accessible to plants, controlling hydrological responses, vegetation 17 

dynamics, biogeochemical processes, and land-atmospheric interaction. The root 18 

zone storage capacity (Sumax) represents the maximum subsurface moisture 19 

volume that can be accessed by the vegetation’s roots, controlling the 20 

partitioning of precipitation into storage, runoff and percolation. Previous work 21 

has illustrated that Sumax varies spatially, largely responding to climatic 22 

conditions. It can be therefore expected that Sumax varies temporally as well in 23 

response to climate change. However, this hypothesis has not been tested. In this 24 

study, we utilized a conceptual hydrological model and a dynamic parameter 25 

identification analysis method, to quantify the temporal trends of Sumax for 497 26 

catchments in the USA. We found that 423 catchments (85%) showed increasing 27 

Sumax, which averagely increased from 178 to 235 mm between 1980 and 2014. 28 

The increasing trend was also validated by multi -sources data and independent 29 

methods. Our results suggest that ecosystems dynamically adapt their root zone 30 

in response to climate change, which significantly affects hydrological processes 31 

and water resources availability.  Moreover, the increase of Sumax significantly 32 

correlates to hydroclimatic indicators and vegetation dynamics. These results 33 

highlight the importance of considering the co-evolution of climate, ecosystems, 34 

and hydrology. 35 

  36 
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1. Introduction 37 

The root zone water storage capacity (Sumax) is the size of a 38 

conceptualized bucket in the unsaturated zone of the soil in which vegetation 39 

buffers water during wet periods to sustain transpiration during dry periods (Gao 40 

et al., 2014a). The real shape of the Sumax is hard to determine, as it consists of a 41 

complex of pores and fissures in the substrate and extends both laterally and in 42 

depth. Generally, this volume is normalized by the area, and it is therefore 43 

represented as a depth. The Sumax forms a crucial link between ecosystems and 44 

hydrological processes (Dralle et al., 2018; de Boer-Euser et al., 2019a; Gao et 45 

al., 2023). It controls the partitioning of precipitation in flow generation and 46 

plant use. It forms a core parameter in conceptual hydrological models (Fenicia 47 

et al., 2011; Seibert and Vis, 2012; Zhao, 1992; Gao et al., 2023). The accurate 48 

estimation of Sumax is essential for global and regional hydrological simulation, 49 

land surface processes, and dynamic vegetation modeling.  50 

Observing Sumax directly is impractical. Traditional methods use field 51 

measurements of rooting depth and soil texture to estimate plot scale Sumax, 52 

under the assumption that soil properties determine plant available moisture 53 

(Jackson et al., 1996；Schenk and Jackson, 2002). However, this method is 54 

labor intensive, costly and destructive. Moreover, it only provides local and 55 

sparse estimates with large uncertainty of upscaling. More importantly, this 56 

method provides instantaneous measurements, which cannot reflect the dynamic 57 

response of the root zone to climate change or human activities.  58 

An inverse approach to determine Sumax is to look at ecosystem performance 59 

and what it does to buffer against dry spells. The water-balance based Mass 60 

Curve Technique (MCT) provides a powerful tool to derive the root zone storage 61 

capacity by observable land surface moisture fluxes, including precipitation, 62 

snowmelt, evaporation, runoff, and human-induced irrigation (Gao et al., 2014a; 63 

Wang-Erlandsson et al., 2016). Another inverse approach to determine Sumax is 64 

by parameter calibration (Fenicia et al., 2008a; Gharari et al., 2014; Merz et al., 65 

2011), which can serve as a benchmark in well -gauged catchment-scale studies. 66 

This method also has uncertainties, mostly associated to model parameter 67 

equifinality and the difficulty of relating model parameters to catchment 68 

characteristics. However, such problems can be attenuated through specific 69 

modelling choices, and this method can provide useful indications of otherwise 70 

unobservable properties.  71 

It is well documented that, because of climate change and land-use 72 

management, ecosystems have adjusted their above-ground biomass, leading to a 73 

greening trend at global-scale (Lele and Krishnaswamy, 2019; Chen et al., 74 

2019). However, little is known about terrestrial ecosys tems’ root zone adaption 75 

to these changes. To explore the root zone dynamics, we used multi -source 76 

datasets to determine temporal changes of Sumax and compared them to other 77 

environmental indicators.  78 

In this study, we utilized a large-scale catchment dataset of 497 catchments 79 

in the USA. We used two independent approaches for Sumax estimation. The first 80 
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one uses a parsimonious conceptual hydrological model (FLEX), which is 81 

calibrated in a moving time window, using the Dynamic Identification Analysis 82 

method (DYNIA) approach (Wagener et al., 2003). The second approach is based 83 

on the MCT method, with the ERA-5 reanalysis grid-cell data as forcing, which 84 

provides the root zone storage capacity in different ecosystems required to 85 

overcome certain return periods of droughts, i.e. 5, 10, 20, 30, 40 years. We 86 

compared the values and trends of root zone storage capacities from these two 87 

independent methods and analyzed the temporal trends of Sumax in relation to 88 

environmental variables.   89 

2. Data and Methods 90 

2.1 Data 91 

The hydrometeorological data used in this study is the CAMELS 92 

(Catchment Attributes and MEteorology for Large-sample Studies) dataset 93 

(https://doi.org/10.5065/D6MW2F4D) (Addor et al., 2017). The CAMELS 94 

dataset comprises daily meteorological data and catchment attributes from 1980 95 

to 2014 for 671 catchments across the United States. It covers a wide variety of 96 

hydroclimatic conditions, including long streamflow time series from 97 

catchments with limited impact by human activities.  Catchment-scale 98 

precipitation and temperature were obtained from the Daymet data set (Thornton 99 

et al., 2012). Potential evaporation was estimated based on temperature data, 100 

using the Hargreaves equation (Hargreaves et al., 1985). The NDVI data is the 101 

current release of the NOAA Global Inventory Monitoring and Modeling System 102 

(GIMMS) long series (1981-2015) homogenized vegetation index product with 103 

version number 3g.v1 (https://doi.org/10.3334/ORNLDAAC/2187) (NCAR, 104 

2018; Pinzon and Tucker, 2014; Thornton et al., 2016). 105 

The catchments with missing daily data were eliminated, and only those 106 

with complete data were retained. This filtering resulted into 497 catchments 107 

(Figure 1). The 497 catchments were classified into 10 clusters according to  108 

Jehn et al. (2020), based on climate, hydrology and location. The 10 clusters are 109 

determined using a principal component analysis based on Ward's linkage 110 

method (Ward, 1963). Figure 1 and Table 1 present distribution maps and 111 

detailed information for 10 clusters, while Figure 2 illustrates the temporal 112 

trends of hydroclimatic variables and NDVI for these 10 clusters.  113 

ERA5 reanalysis precipitation, evaporation , snowmelt and irrigation data 114 

are also used as part of the methodology in order to provide an independent 115 

validation (https://cds.climate.copernicus.eu/cdsapp#!/software/app-c3s-daily-116 

era5-statistics?tab=app). In particular, this data will be used as input for the 117 

MCT method (see Section 2.4), to estimate the temporal variation of root zone 118 

storage capacity.  119 
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2.2 Model calibration approach 120 

2.2.1 Model description 121 

The first approach for estimating Sumax is based on model calibration. The model 122 

used in this research is based on the FLEX hydrological model (Fenicia et al., 123 

2009; Fenicia et al., 2011; Gao et al., 2014b). The model is composed of 124 

reservoirs, lag functions and junction elements to represent different 125 

hydrological functions constructed with the flexible modelling framework 126 

SUPERFLEX (Fenicia et al., 2011).  It includes five reservoirs  (Figure 1): a 127 

snow reservoir (Sw), an interception reservoir (S i), a root zone reservoir (Su), a 128 

fast-response reservoir (S f) and a slow-response reservoir (Ss). The water budget 129 

equation and structural equation of different reservoirs are shown in Table 2. 130 

There are 10 free parameters that need to be calibrated, as shown in Table 3, 131 

which describes the role of each parameter and the bound of its value.  132 

Precipitation is stored in snowpack or interception reservoirs before 133 

entering the root zone reservoir. Snow accumulation and melting are calculated 134 

based on a degree day factor algorithm. When the temperature is below the 135 

threshold temperature T t (°C), precipitation P (mm day-1) occurs as snowfall (Ps, 136 

mm day-1), and increases the storage in snow reservoirs Sw. When the 137 

temperature is above the threshold temperature T t, the amount of snow melting 138 

M can be calculated from the parameter FDD (mm d-1 ℃ -1) (Eq. (7)). 139 

The precipitation retained in the interception reservoirs is directly returned 140 

to the atmosphere by evaporation. The interception evaporation E i (mm d -1) is 141 

the same as potential evaporation Ep (mm day-1) if there is water in the 142 

reservoir. The storage volume in the interception reservoir  is S i and the 143 

maximum storage capacity is Imax (mm) (Eqs. (8) to (10)). 144 

The core of this hydrological model is the root zone module, which 145 

determines the partitioning of effective precipitation (Pe) into either runoff 146 

generation (Ru) or evaporation (Ea).  147 

The actual evaporation Ea (mm d−1) in the soil is determined by potential 148 

evaporation Ep, actual storage in root zone Su, Sumax (mm) and parameter Ce (-) 149 

(Eq. (12)). Runoff generation (Ru) is determined by the amount of effective 150 

precipitation (Pe), the actual storage in root zone (Su), and the root zone 151 

moisture storage capacity (Sumax). In equations (13) and (14), Cr (-) represents 152 

the runoff coefficient, β (-) is the spatial diversity factor, and Ru (mm) 153 

represents the generated flow during rainfall events, obtained by multiplying the 154 

effective rainfall and snowmelt Pe (mm) entering the soil module by the runoff 155 

coefficient Cr. 156 

The generated runoff Ru is divided through the parameter D (-) into fast 157 

response runoff and slow response runoff (Eq. (15) and Eq. (16)). Equations (17) 158 

and (18) were used to describe the time lag between storm and fast runoff. R f 159 

(mm) is the generated fast runoff, T lag (d) is a parameter which represents the 160 

lag-time between storm and fast runoff generation, c(i) is the weight of the flow 161 

in i-1 days before and R fl (mm) is the runoff into the fast-response reservoir S f 162 

after convolution. Slow runoff Rs (mm) into the slow-response reservoir Ss. 163 
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A linear equation was used to conceptualize the flows in the fast response 164 

reservoirs and slow response reservoirs. In equations (20) and (22), Sf and Ss 165 

represent the fast and the slow reservoirs; K f (d) and Ks (d) represent the fast 166 

and slow receding coefficient; Q f and Qs represent the fast and slow runoff, 167 

respectively, while simulated runoff Qm is the sum of the Q f and Qs. 168 

2.2.2 Dynamic parameter identification and model evaluation  169 

The assessment of the temporal variation of parameters is based on the 170 

Dynamic Identification Analysis method (DYNIA) proposed by Wagener et al. 171 

(2003). DYNIA is based on a Monte Carlo framework and employs a Latin 172 

hypercube sampling technique. In this study, we generated 40,000 sets of 173 

parameter combinations within the feasible range for the 10 parameters. Each 174 

set of parameters is associated to a streamflow simulation, for which a 175 

performance metric is calculated. In this study, the Kling-Gupta efficiency 176 

(KGE) proposed by Gupta et al. (2009) and modified by Kling et al. (2012) was 177 

used to calculate the model simulation performance. Model performance was 178 

calculated using a five-year moving window, using the first year of each period 179 

as a warm-up. For each period and each catchment, the optimal model (with 180 

highest KGE) was selected. Subsequently, we considered the 10 catchments 181 

clusters provided by Jehn et al. (2020), and averaged the optimal parameters for 182 

all catchments in the same cluster and period. The simulation results of temporal 183 

trends for all 10 parameters of 10 clusters are shown in Figure 4. 184 

 185 

2.3 MCT method 186 

As an alternative to model calibration, root zone storage capacity has been 187 

determined through the mass balance method using merely climatic data. This 188 

storage capacity is referred to as SR, which is subsequently compared to the 189 

model-derived Sumax as an independent validation.  190 

The MCT method estimates SR based on the principle of the water balance (Gao et al., 191 

2014a; Wang-Erlandsson et al., 2016). When the outflow (Fout) from the root zone (i.e. 192 

evaporation) exceeds the inflow (Fin) (i.e. infiltration), then the water deficit is calculated by 193 

computing the difference between the two. This water deficit requires plants to draw water 194 

from storage (SR). Vegetation’s canopy interception (I) is also considered in the MCT method, 195 

to make corresponding comparison with the calibrated FLEX. 196 

Fin represents the sum of net precipitation (P-I), snowmelt (SM), and irrigation (IRR): 197 

𝐹in = 𝑃 − 𝐼 + 𝑆𝑀 + 𝐼𝑅𝑅     (18) 198 

Since E in ERA-5 data is the total evaporation, including canopy interception, the 199 

evaporation from root zone (Fout) must subtract the amount of interception from the total 200 

evaporation:  201 

𝐹out = 𝐸 − 𝐼   (19) 202 

The difference between outflow and inflow then equals P + SM + IRR - E, where the 203 

interception drops out. This difference is accumulated on a daily scale: 204 
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𝐴(𝑡n → 𝑡n+1) = ∫ 𝐹out − 𝐹in𝑑𝑡

𝑡n+1

𝑡n

     (20) 205 

Where A(tn→tn+1) represents the water deficit on day tn+1. The sum of daily water deficits 206 

constitutes the cumulative water demand: 207 

𝐷𝑒(𝑡n+1) = max (0, 𝐷𝑒(𝑡n) + 𝐴(𝑡n → 𝑡n+1))(21) 208 

De(tn+1) represents the cumulative water deficit on day tn+1. The accumulation of De only 209 

occurs during periods when Fout > Fin, while a reduction in De occurs when Fout < Fin. 210 

Additionally, De has a minimum value of 0. The required root zone storage capacity SR 211 

represents the maximum value of De: 212 

𝑆R = max (𝐷𝑒(𝑡0), 𝐷𝑒(𝑡1), 𝐷𝑒(𝑡2), … , 𝐷𝑒(𝑡end), )(22) 213 

To account for the impacts of multi-year droughts, we allow the deficit De 214 

accumulation continues in the end of the end, and extends into the following 215 

year. Then the maximum De of that year is regarded as the year's SR. Since Sumax 216 

is simulated using a five-year time window, to make fair comparison, the 217 

maximum SR value over the same five-year period was compared with Sumax.  218 

Different ecosystems have different strategies to cope with drought. For 219 

instance, forests, due to their longer lifetime, have a strong drought adaptation 220 

requirement, resulting in a root zone storage capacity to overcome a drought that 221 

may occur once in 20-40 years, while shrubs, having a shorter lifetime, exhibit 222 

weaker adaptation demands, lasting through droughts occurring less frequently 223 

than once every 20 years.  Grasslands, on the other hand, can go dormant and 224 

may accept a much higher probability of drought. Seasonal crops may permit a 225 

probability of failure of once in 5 years. As a result , we calculated SR for 226 

different drought return periods (SR10y, SR20y and SR40y) by applying the Gumbel 227 

distribution to the yearly SR (Gumbel, 1935). Many studies have shown that the 228 

MCT method for estimating SR is reliable (de Boer-Euser et al., 2016, 2019b; 229 

Sakschewski et al., 2021; Wang et al., 2021; Wang-Erlandsson et al., 2016). The 230 

MCT method utilizes the ERA-5 dataset, introduced in Section 2.1.  231 

2.4 Correlation analysis  232 

The Spearman correlation coefficient was utilized to quantify the 233 

correspondence between temporal trends of Sumax and catchment environmental 234 

changes. For each catchment, we calculated the time series correlation between 235 

the catchment's precipitation P, runoff Q, temperature T, potential evaporation 236 

Ep, runoff coefficient Q/P, evaporation coefficient E/P=1-Q/P (assuming the 237 

delta of water storage at annual scale is small), aridity index AI, precipitation 238 

seasonality index SI, NDVI and Sumax. Each indicator is representative of a 5 239 

years period, with 7 data points in each regression. Results are shown in  section 240 

3.3. 241 
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3.Results 242 

3.1. Climate and environment changes 243 

First we analyzed the changes in climate and vegetation data for t he 497 244 

study catchments from 1980 to 2014.  We adopted the clusters provided by Jehn 245 

et al. (2020) to classify 497 catchments into 10 clusters, according to 246 

catchments characteristics in terms of climate, hydrology and location. These 10 247 

clusters capture the unique hydrologic behavior of the continental United States 248 

and represent catchment groups with distinctly different hydrologic behavior. 249 

Figure 2 shows the spatially mean variations of precipitation P, runoff Q, 250 

temperature T, potential evaporation Ep, and NDVI for the catchments in 10 251 

clusters. 252 

The average annual precipitation of clusters 3, 5, 6, and 7 generally exceed 253 

1500 mm/yr, and clusters 1, 4, and 7 are the second largest with above 1000 254 

mm/yr. Clusters 2, 8, and 9 are drier, with the lowest precipitation (<1000 255 

mm/yr). The runoff characteristics of the catchments also reflect this 256 

precipitation pattern. From 1980 to 2014, all clusters experienced an upward 257 

trend in mean temperature, with cluster 3 showing the most significant increase 258 

of nearly 2°C. There were interannual variations in potential evaporation in 10 259 

clusters, but no clear trends were observed. Except for clusters 3, the mean 260 

NDVI of the remaining clusters displayed an upward trend. There was a 261 

noticeable abrupt change occurring around 1990. Specifically, the most 262 

significant increase in NDVI took place before and after this time.  263 

3.2. Spatial Patterns of Sumax and SR 264 

We compared the Sumax parameter of the FLEX model (representing the root 265 

zone storage capacity in catchment scale by parameter calibration) with the SR 266 

obtained from the MCT method (representing the root zone storage capacity in 267 

grid scale by land surface fluxes measurements, modeling and data 268 

assimilation), both exhibit similar spatial patterns in terms of magnitude and 269 

range (Figure 3).  270 

Consistently with the predefined clusters, we found that catchments in the 271 

same cluster tend to behave similarly and catchments in different cluster can 272 

have different behavior. In particular, within clusters 1, 3, and 9, Sumax exhibits 273 

the highest consistency with the 10-year drought return period (SR10y) results. 274 

Clusters 4 and 7 are most aligned with SR20y. Conversely, clusters 2, 5, 6, 8 and 275 

10 are closest to SR40y. The average root zone storage capacity for all catchments 276 

in the CAMELS dataset is most in line with the results for a 20 -year drought 277 

return period (SR20y).  278 

Clusters 2 and 8 represent arid catchments with larger Sumax values 279 

(>200mm), where vegetation often possesses deeper root systems to meet their 280 

water needs and avoid water stress.  Cluster 9 is highly similar to Cluster 8 in 281 

terms of catchment characteristics but features higher forest coverage, with the 282 

https://doi.org/10.5194/egusphere-2024-550
Preprint. Discussion started: 11 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

8 

 

widest range in Sumax distribution (200-300mm). The Sumax values in Clusters 5, 283 

6, and 7 are approximately 200mm. These catchments share similar 284 

characteristics (Jehn et al., 2020) and are all located in the West Coast forest 285 

region (Figure 1), known for abundant precipitation and strong seasonality. 286 

Cluster 6 exhibits the most pronounced seasonality among all clusters, with the 287 

majority of precipitation occurring in winter. By the end of summer, catchments 288 

in this cluster are nearly completely dry. On the contrary, catchments in Clusters 289 

3, 4, and 10, characterized by higher relative humidity and vegetation cover, 290 

exhibit lower Sumax values. 291 

3.3. Temporal variation of Sumax and SR  292 

The temporal variations of 10 the parameters of the FLEX model, calculated 293 

using the DYNIA method, are shown in Figure 4. Except for the trend of Sumax, 294 

there are some other interesting trends. For example, the threshold temperature,  295 

T t, controlling the split of snowfall and rainfall, dramatically increased in  the 296 

catchments of cluster 3, which have large amount snowpack. We believe it is 297 

worthwhile to conduct further studies to understand the impacts of climate 298 

change on this essential snow-related parameter. However, since this is out the 299 

scope of this study, we did not implement detailed research, and focused t his 300 

study on the temporal change of Sumax。 301 

The DYNIA results reveal that from 1980 to 2014,  the annual average Sumax 302 

for all 497 catchments increased from 178 mm to 235 mm, marking a 32% 303 

increase, with a linear regression rate of 1.91 mm/yr (Figure 5). Across the 10 304 

clusters, all Sumax values exhibited an overall increasing trend. Specifically, 305 

Clusters 1, 2, 9, and 10 showed noticeable upward trends, with Cluster 9 306 

demonstrating the most significant increase, having a linear slope of 2.73 307 

mm/yr. In contrast, Cluster 3 displayed the smallest growth in Sumax, with a slope 308 

of only 0.03 mm/yr. Cluster 3 is characterized by a relatively small number of 309 

catchments, only 6 in total, and is notable for its abundant snowfall (Jehn et al., 310 

2020). As shown in Figure 4, snow processes may play a more significant role 311 

than the root zone in influencing Sumax. The increase of Sumax suggests that the 312 

ecosystems in these catchments adapted to environmental change by increasing 313 

their root zone storage capacity (Dai, 2011; Gamelin et al., 2022). 314 

The SR values obtained from the MCT method are highly comparable to 315 

Sumax. The annual average SR20y for all 497 catchments also exhibited an 316 

increasing trend, rising from 190 to 222 mm, with a linear regression rate of 317 

1.07 mm/yr. From 1980 to 2014, SR increased by 32 mm, which is considerably 318 

less than the increase in Sumax derived from calibration. Among the 10 clusters, 8 319 

clusters displayed an increasing trend in SR, consistent with the trend in Sumax. 320 

The only exceptions were Clusters 6 and 7, which showed decreasing trends 321 

with SR40y and SR20y slopes of -0.74 mm/yr and -0.19 mm/yr, respectively. We 322 

will discuss the possible reasons in the discussion.  323 

Furthermore, from the perspective of individual catchments, Sumax increased 324 

in 85 % (423) of the catchments and decreased in 15 % (74) of the catchments 325 

(Figure 6a). Catchments with increase in Sumax were distributed throughout the 326 

United States, while catchments with decrease in Sumax were concentrated in the 327 
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western and central regions of the United States. This indicates that the 328 

widespread increase of Sumax occurs in most catchments in the United States.   329 

Figure 6b demonstrated the comparison of the trends of SR and Sumax in 497 330 

catchments. Among these, 400 catchments exhibit an increasing trend in SR, 331 

while 97 catchments show a decreasing trend. In two-thirds (69%) of the 332 

catchments, both Sumax and SR display consistent increasing trends. Additionally, 333 

17 catchments (3%) exhibit consistent decreasing trends in both Sumax and SR. 334 

28% of the catchments demonstrated opposing trends between Sumax and SR. 335 

Overall, root zone storage capacity (Sumax and SR) obtained using different 336 

methods and different data exhibit similar trends and magnitudes in most 337 

catchments (72%). The comparable results obtained by multi -sources datasets 338 

and independent methods suggest that the trend changes in Sumax do represent the 339 

significant ecohydrological changes, rather than the result of parameter 340 

uncertainties resulting from model calibra tion.  341 

3.4. Relationship between environmental change and Sumax variation 342 

When comparing the variability of Sumax with other indicators, it can be 343 

seen that the temporal variation of Sumax exhibits a positive correlation with P, 344 

T, Ep, E/P, SI and NDVI in most catchments (Figure 7). The median correlation 345 

coefficients range from 0.07 to 0.46. On the contrary, the temporal variation of 346 

Sumax is negatively correlated with Q, Q/P and AI, and median range from -0.21 347 

to -0.46. The temporal variation of Sumax shows the strongest positive correlation 348 

with E/P (evaporation coefficient) and consequently the strongest negative 349 

correlation with Q/P (runoff coefficient), which in the long term equals 1-E/P. 350 

The significant correlation of Sumax with hydroclimatic indicators underscores 351 

the interdependency of vegetation and hydrology, emphasizing the importance of 352 

studying changes in root zone storage capacity for understanding hydrological 353 

responses under changing conditions.  354 

The correlations between environmental factors and Sumax can vary 355 

significantly among different clusters or catchments, even when the same 356 

combination of factors is present  (Figure 8). This variability can be interpreted 357 

as arising from differences in catchment topography and hydrological processes.  358 

For example, the results of our research demonstrate that Sumax and AI show a 359 

negative temporal correlation in most catchments. Theoretically, the availability 360 

of vegetation water is influenced by the humidity of the catchment, with larger 361 

Sumax observed in regions of higher aridity (Stocker et al., 2023). However, the 362 

trend of Sumax was negatively correlated with the AI in most of the catchments in 363 

the clusters (1, 3, 5, 6, 7, 10) in wetter regions (Figure. 8g). This may be 364 

explained by the fact that in wet regions, where vegetation is less constrained by 365 

water availability, changes in Sumax are primarily influenced by other 366 

environmental factors than AI (Green et al., 2022). With climate becoming 367 

wetter (Figure 2), i.e. when the drought index decreases, root zone storage 368 

capacity may increase due to other factors such as rising temperature and 369 

nutrient availability, which would lead to an increase in NDVI, and 370 

consequently, greater vegetation water demand, resulting in an increase in Sumax. 371 

This ultimately creates a negative correlation between Sumax and AI. 372 
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Cluster 4, although located in a humid region, receives relatively low 373 

precipitation, primarily due to low AI caused by cooler temperatures in 374 

mountainous areas (Figure 2). Climate warming not only increased AI but also 375 

enhanced vegetation productivity, jointly driving an increase in root zone water 376 

demand. Hence, Cluster 4 tends to show a positive correlation. Only a few arid 377 

cluster catchments (2, 8, 9) are primarily dominated by the AI, leading to a 378 

positive correlation in most of the catchments.  379 

4. Discussions 380 

The comparison of the two independent approaches for estimating root zone 381 

storage, as shown in Figure 3 shows a consistent behavior between the ERA-5 382 

derived SR and Sumax. This result suggests that both approaches identify the same 383 

variable, which we associate to the root zone storage capacity. There are similar 384 

parameters determining the splitter of runoff generation and infiltration to meet 385 

water deficit (and eventually used for evaporation during dry spells) in 386 

hydrological models, such as the tension water capacity in the Xinanjiang model 387 

(Zhao et al., 1992; Hu et al., 2004), the maximum soil water storage (or field 388 

capacity in original version) in the HBV hydrological model (Lindström et al., 389 

1997; Seibert et al., 2022), and the maximum capacity of the production store in 390 

the GR4J model (Perrin et al., 2003) . Among these models, Xinanjiang model 391 

used a probability distribution curve to represent the catchment characteristic of 392 

storage capacity, thus with more solid physical foundation (Moore, 2007). That 393 

is the reason we chose the Xinanjiang curve as root zone storage capacity 394 

distribution in this study.   395 

Long-term catchment-scale streamflow and spot-scale lysimeter 396 

measurements revealed that root zone seepage matched perfectly with catchment 397 

runoff in the Rietholzbach research catchment  in Switzerland, although these 398 

two observations have large scale discrepancy (see Figure 4 in Seneviratne et 399 

al., 2012). Moreover, Nijzink et al. (2016) compared SR derived from water 400 

balance with the Sumax parameters of four hydrological models, revealing 401 

remarkably similar patterns in the three studied catchments in the United States. 402 

All these experimental and modeling studies using multi-source data and 403 

independent methods further confirmed that Sumax does represent the root zone 404 

storage capacity.  405 

For the trend of Sumax, we found that, over the years, Sumax is increasing in 406 

the United States and that this increase can be largely attributed to climate 407 

change. This corresponds to the results of Merz et al. (2011), who used the HBV 408 

model to simulate 273 catchments in Austria and found that the soil water 409 

storage parameter FC nearly doubled from 150 to 275 mm in 30 years and 410 

attributed it to increases in temperature and evaporation. 411 

As a survival strategy, plants adopt a cost minimization in the design of 412 

their root systems, aiming to meet the water demands of the canopy with the 413 

minimum allocation of root carbon (Milly, 1994). In the Mediterranean climate 414 

region with strong seasonality of precipitation, abundant rainfall during the wet 415 

season boosts vegetation productivity, leading to a deeper rooting system (Fan et 416 

https://doi.org/10.5194/egusphere-2024-550
Preprint. Discussion started: 11 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

11 

 

al., 2017). During the dry season, vegetation may rely on tap roots to access 417 

groundwater (Dawson and Pate, 1996). In forest areas with sufficient water 418 

supply, rainfall thoroughly saturates the soil, and due to frequent surface 419 

wetting, the root systems do not require access to deep water. The spatial 420 

distribution of Sumax observed in this study is consistent with the results of Gao 421 

et al. (2014a), who calculated the root zone storage capacity for over 300 422 

catchments using Model Parameter Estimation Experiment (MOPEX) data. Both 423 

studies demonstrated the increase of Sumax in response to an increase of the 424 

aridity index, i.e. geospatially from the humid east coast to the dry inland 425 

regions of the United States. Additionally, this study extends the analysis of 426 

Sumax from spatial to temporal variability under changing environmental 427 

conditions. 428 

This study compared the root zone storage capacity calculated by two 429 

different methods and datasets (Sumax and SR). Disparities were observed 430 

between the two outcomes, such as significant differences in the magnitude of 431 

trend slopes between Sumax and SR. These disparities may be attributed to the 432 

presence of croplands in certain catchments, which are heavily influenced by 433 

human activities. The MCT method accounted for these human activities, such 434 

as irrigation and artificial reservoirs,  which increase water supply to the root 435 

zone during dry seasons, thereby alleviating water shortage and leading to SR 436 

reduction compared to natural ecosystems. On the other hand, the discrepancy 437 

may have resulted from scale mismatches, i.e. the Sumax at catchment scale and 438 

the SR derived from ERA5 data (spatial resolution of 0.5 degree) used by the 439 

MCT method. It is difficult to draw solid conclusion on which method is more 440 

reliable than the other. From the perspective of methodology, both methods have 441 

a strong physical basis. But the MCT method explicitly considers the human 442 

activities, such as irrigation, on atmospheric moisture fluxes; while they have 443 

implicit impact on DYNIA results through the runoff, although it is difficult to 444 

isolate the influence of human activities. From the perspective of forcing data  445 

uncertainty, MCT method in this study is based on the ERA-5 land surface 446 

reanalysis data; while DYNIA method is based on observed hydrological data, 447 

which is normally more reliable in a catchment scale study. There may be other 448 

reasons causing the different magnitudes. We still need more studies to 449 

understand this issue and close the gap between two independent methods.  450 

This study employed two methods to calculate root zone storage capacity, 451 

both methodologies calculated the total evaporation without differentiating 452 

between transpiration from vegetation and soil evaporation. Thus, this is a fair 453 

comparison. Moreover, soil evaporation constitutes a relatively small proportion 454 

of the terrestrial hydrological fluxes, around 6% of the total evaporation in a 455 

global scale analysis (see Good et al., 2015). This proportion is even lower in 456 

regions with vegetation cover, which is the predominant land cover in most 457 

catchments of this study. Hence, vegetation water use transpiration from root 458 

zone is an overwhelmingly major flux dominating dry spell evaporation.  459 

Our results show a positive correlation of Sumax with E/P and a negative 460 

correlation with Q/P (which in the long term equals 1- E/P) According to the 461 

Budyko framework (Marlatt et al., 1975; Donohue et al., 2006) (the relation 462 

between aridity Ep/P and E/P), the division of flow into runoff and evaporation 463 
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is highly influenced by Sumax (Cheng et al., 2017; Gentine et al., 2012; Luo et 464 

al., 2020; Gerrits, 2009). An increase in Sumax implies increased plant 465 

transpiration, leading to higher E/P and lower Q/P. As a result, catchments with 466 

decreased Sumax have higher Q/P and vice-versa. By establishing dynamic 467 

relationships between model parameters and environmental factors, it challenges 468 

the assumption of a static modeling framework. In contrast, allowing dynamic 469 

model parameters would allow to model the effect  of environmental changes on 470 

catchment hydrological characteristics.   471 

5. Conclusions 472 

In this study, we used a large sample dataset to estimate the temporal 473 

variation of Sumax through dynamic parameter identification of the FLEX 474 

hydrological model. The aim was to enhance our understanding of Sumax 475 

variation in a changing environment and to improve the model's ability to 476 

simulate under such conditions. We found that from 1980 to 2014, Sumax in most 477 

catchments across the United States showed a significant increasing trend. 423 478 

catchments (85%) showed increasing Sumax, and the average Sumax of the 497 479 

catchments increased from 178 to 235 mm, representing a 32% increase. 480 

The SR obtained through the MCT method exhibited similar spatial 481 

distribution and temporal patterns to Sumax, not only affirming the authenticity of 482 

Sumax growth without calibration-induced artifacts but also emphasizing that the 483 

hydrological model parameter Sumax indeed represents root zone storage capacity. 484 

This indicates that the constantly changing climate significantly changes the 485 

ecohydrological processes of the catchment, compelling vegetation to adjust its  486 

root zone storage capacity to adapt to the environment.  487 

Furthermore, the temporal correlation analysis between Sumax and 488 

environmental factors reveals a significant negative correlation between Sumax 489 

and both runoff and runoff coefficient. This indicates a strong connection 490 

between ecosystem dynamics and hydrological processes. In summary, using 491 

multi-source datasets and independent methods, we found a significant increase 492 

of root zone storage capacity in the United States, indicating ecosystems’ 493 

adaptation of belowground biomass in response to environmental change. It 494 

shows that it is important to consider a dynamic root zone in hydrological and 495 

land surface modeling studies.  496 
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 743 

 744 

Figure 1 Maps of the 497 CAMELS catchments  in the United States, adopted the 745 
clusters provided by Jehn et al. (2020).  746 

 747 

Figure 2 Five-year average temporal trends (mean values) for 10 clusters of 748 
precipitation P, runoff Q , temperature T, potential evaporation Ep, and NDVI. 749 
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 750 

Figure 3 The Box-Whisker plots display the spatial distribution of Sumax and SR 751 
(including SR10y,  SR20y,  and SR40y, representing the required root zone storage capacity 752 
to overcome certain return periods of droughts, i.e. 10, 20 and 40 years) across 497 753 
study catchments within 10 clusters.  The bottom and top edges of the box representing 754 
the 25th and 75th percentiles, respectively. The solid line s represent the median 755 
values, while the upper and lower whiskers extend to the furthest data points that are 756 
not outliers.757 
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Figure 5 The temporal variations of Sumax and SR  (including SR10y,  SR20y,  and SR40y, 

representing the required root zone storage capacity to overcome certain return periods 

of droughts, i.e. 10, 20 and 40 years) across 497 study catchments within 10 clusters.  
Solid lines represent the average change trend of Sumax or SR for all catchments within 

each cluster. Dashed lines indicate the fitted regression lines, with corresponding 

regression coefficients marked in the same color.  
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Figure 6 (a) The trend of Sumax variation across 497 study catchments: 423 (85%) 

catchments exhibit an increasing trend, while 74 (15%) catchments show a decreasing 

trend. (b) The comparative trends of S umax and SR  across 497 study catchments.  

Different colored points represent clusters .  

23

https://doi.org/10.5194/egusphere-2024-550
Preprint. Discussion started: 11 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

 

Figure 7 The Box-Whisker plot displays the Spearman temporal correlation 

coefficients between the Sumax model parameters and environmental elements for 497 

catchments over a calibration period of seven 5 -year cycles. Precipitation P, runoff Q, 

temperature T, potential evaporation Ep, runoff coefficient Q/P, evaporation 

coefficient E/P=1-Q/P  (assuming the delta of water storage at annual scale is small), 

aridity index AI, precipitation seasonality index SI. The bottom and top edges of the 

box representing the 25th and 75th percentiles, respectively. The solid  red lines 

represent the median values, while the upper and lower whiskers extend to the furthest 

data points that are not outliers.  
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Figure 8 The Box Whisker plot displays the Spearman temporal correlation 

coefficients between Sumax and environmental elements over a calibration period of 

seven 5-year cycles across 10 clusters of 497 research catchments.  The bottom and top 

edges of the box representing the 25th and 75th percentiles, respectively. The solid 

lines represent the median values, while the upper and lower whiskers extend to the 

furthest data points that are not outliers.  

  

25

https://doi.org/10.5194/egusphere-2024-550
Preprint. Discussion started: 11 March 2024
c© Author(s) 2024. CC BY 4.0 License.



 

Table 1 Properties of catchment clusters (Jehn et al., 2020).  

Cluster Number of  

catchments 

Main region Dominating attribute 

1 188 Southeastern and Central Plains Aridity 

2 86 Central Plains (with scattered 

catchments all over western US) 

Green vegetation 

fraction maximum 

3 6 Northwestern Forested Mountains Fraction of precipitation 

falling as snow 

4 38 Northwestern Forested Mountains 

and Florida 

Precipitation 

seasonality 

5 6 Northern Marine West Coast 

Forests 

Forest fraction 

6 14 Marine West Coast Forests Aridity 

7 20 Western Cordillera (Part of Marine 

West Coast Forests) 

Fraction of precipitation 

falling as snow 

8 55 Great Plains and North American 

deserts 

Precipitation 

seasonality 

9 38 All southernmost states of the US Aridity 

10 46 Appalachian Mountains Mean elevation 
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Table 3 Description of FLEX model parameters and range of values.  

Parameter Explanation Range Units 

FDD Degree day factor 1-7 mm/(d℃-1) 

Tt Threshold temperature -2-4 ℃ 

Imax Maximum Si storage 1-5 mm 

Sumax Root zone storage capacity 30-700 mm 

Ce Threshold of soil moisture content 0.1-1 - 

β Spatial diversity factor 0-1 - 

D Splitter factor 0-1 - 

Kf Fast runoff timescales 1-10 d 

Ks Slow runoff timescales 10-200 d 

Tlag Lag-time between storm and fast runoff 0.8-10 d 
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