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ABSTRACT 13 

 14 

The World Food Programme, in collaboration with the Mozambique National Meteorology Institute, is 15 

partnering with several governmental and non-governmental organizations to establish an advanced early 16 

warning system for droughts in pilot districts across Mozambique. The "Ready, Set & Go!" system is 17 

operational in Mozambique for activating anticipatory action (AA) against droughts based on predefined 18 

thresholds, triggers, and pre-allocated financing. The system uses bias corrected and downscaled seasonal 19 

forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) as core information 20 

to anticipate severe reductions in rainfall during the rainy season. This information guides the 21 

implementation of actions to reduce the impacts of rainfall deficits in the critical window between a 22 

forecast and the onset of the drought event. Within this window of opportunity, the system releases an 23 

alert for readiness (Ready) and activation (Set) preceding the mobilization of anticipatory action on the 24 

ground (Go). With the recent adoption of the Southern African Development Community Maputo 25 

Declaration on Bridging the Gap between Early Warning and Early Action, member states have committed 26 

to enhancing the reach of early warning system by leaving no one behind. Therefore, there is a need to 27 

assess the opportunities and limitations of the Ready, Set & Go! system to scale up drought AA 28 

information to all districts in Mozambique. This study describes the Ready, Set & Go! system which uses 29 

ensemble forecasts of the Standardized Precipitation Index to trigger anticipatory action against droughts 30 

on a seasonal timescale. The Ready, Set & Go! optimizes the use of seasonal forecast information by 31 

choosing triggers for anticipatory action based on verification statistics and on a double confirmatory 32 

process, which combines longer lead times with shorter lead time forecasts for issuing drought alerts. In 33 

this study, we show the strengths of the system by benchmarking it against three simpler triggering 34 

approaches. Our findings indicate that the Ready, Set & Go! system has significant potential to scale up 35 

AA activities against severe droughts throughout the entire rainy season, covering on average 76% of the 36 

Mozambican districts. This approach outperforms the three benchmarked methods, demonstrating 37 

higher hit rates, extended lead times, and a lower false alarm. If efforts are concentrated on the first part 38 

of the rainy season, national coverage against severe droughts could be expanded to 87% of all districts. 39 

By aligning with the objectives outlined in the Maputo Declaration and the Early Warning for All initiative, 40 

this research contributes to safeguarding communities against the adverse impacts of climate-related 41 

events, aligning with the ambitious goal of universal protection by 2027. 42 

 43 

https://au.int/sites/default/files/pressreleases/42156-other-Maputo_Declaration_Final_AUC_11_Sept-2022.pdf
https://au.int/sites/default/files/pressreleases/42156-other-Maputo_Declaration_Final_AUC_11_Sept-2022.pdf
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1. INTRODUCTION 45 

Mozambique experienced in 2015/16 one of its worst drought events in decades, which affected the food 46 

security of approximately 2.3 million people leading to its government to declare a state of national 47 

emergency (OCHA, 2017). This El Niño induced drought caused an exceptional lack of precipitation in two 48 

consecutive rainy seasons, which resulted in significant losses in rain-fed yields, below-average irrigated 49 

crops, poor pasture conditions and high cattle mortalities (WFP, 2016). The dryness propagated into water 50 

reservoirs in southern Mozambique, where the impact on water levels remained for five years (ECHO, 51 

2021). 52 

 53 

Mozambique is a country exposed and vulnerable to multiple hazards due to its geographical location and 54 

latitudinal extent.  Its climate is affected by several modes of climate variability such as the El Niño-55 

Southern Oscillation (ENSO; Rapolaki et al., 2019; Blamey et al., 2018), Indian Ocean Dipole (IOD; Ashok 56 

et al., 2001; Manatsa et al., 2011; Saji et al., 1999) and the Subtropical Indian Ocean Dipole (SIOD; (Behera 57 

& Yamagata, 2001). These climate modes of variability modulate the frequency and intensity of the 58 

various weather systems that are directly associated to multiple natural hazards happening as a single or 59 

consecutive risk (e.g., Hart et al., 2010; A. J. Manhique et al., 2015; Atanásio João Manhique et al., 2021; 60 

Mawren et al., 2020; Rapolaki et al., 2019; Reason & Keibel, 2004). Impacts of single and consecutive 61 

hazards including flooding, cyclones and droughts are exacerbated by poverty and weak institutional 62 

development, where climate related disasters are one of the main driving forces of inequalities and food 63 

insecurity in the country (Baez et al., 2019; De Ruiter et al., 2020). In Mozambique, nearly 25% of its 64 

population live in areas with a high probability of experiencing a climate shock (World Bank, 2018). 65 

Therefore, the adoption of protective mechanisms and systems to anticipate and prepare the government 66 

and communities to climate shocks is crucial for building resilience and sustainable development. 67 

Recently, the national government has made climate risk management a priority strategy following the 68 

adoption of the Maputo Declaration on Bridging the Gap between Early Warning and Early Action, in 69 

which member states of the Southern African Development Community (SADC) have committed to take 70 

an active people-centered role to ensure all citizens access to effective Early Warning and Early Action 71 

systems (SADC, 2022). 72 

 73 

Since 2019, a multi-sector government-led anticipatory action (AA) trigger system against drought (WFP, 74 

2023b) has been under development in Mozambique coordinated by the Mozambique National Institute 75 

of Disaster Management (INGD) with the technical support of relevant actors, including the National 76 

Meteorological Institute (INAM) and the World Food Programme (WFP). Droughts are a slow, recurrent, 77 

and predictable phenomena (Guimarães Nobre et al., 2023) and yet, they cause an estimated yearly loss 78 

of US$20 million (Baez et al., 2019) to Mozambique. Drought early warning system (EWS) have a great 79 

potential to reduce some of these losses when AA is implemented ahead of a shock based on forecast 80 

information. Previous studies have assessed the skill of seasonal forecasts to predict the onset of droughts 81 

(Gebrechorkos et al., 2022; Guimarães Nobre et al., 2023; Trambauer et al., 2015; Winsemius et al., 2014) 82 

whereas only few have focused on an in depth interpretability of the forecast quality through the lenses 83 

of decision-making and practical implications. For instance, a reflection on the adequateness of lead time 84 
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of information for action, and/or definition of probabilistic trigger values for releasing drought alerts and 85 

advisories for AA are aspects largely missing in the scientific literature. 86 

 87 

AA approaches are gaining more traction with an increased number of institutions dedicating funding and 88 

pilot studies in Mozambique and elsewhere. There are currently anticipatory action initiatives and 89 

projects in 43 countries, supported by 179 organizations, including the Red Cross movement and UN 90 

entities such as the United Nations Office for the Coordination of Humanitarian Affairs and WFP 91 

(Anticipation Hub, 2024). However, the evidence on the benefits of acting earlier is still fairly new and 92 

limited. Overall, existing evidence based on pilot experiences in other parts of the world have mainly 93 

suggested a positive impact of AA at household level, with beneficiaries reporting higher crop productivity 94 

and less food insecurity during prolonged periods of drought (Weingärtner et al., 2020). In Mozambique, 95 

AA drought pilots are limited - to date - to eleven districts and further scale up of activities to the national 96 

level is desired. However, an assessment of the opportunities and limitations of the current drought AA 97 

trigger system is currently missing, especially given the 2023 El Niño scenario, which is expected to 98 

negatively affect the 2023-24 rainy season. In response to the need of assessing the potential to bring AA 99 

to scale, this study describes the operational triggering system for drought AA being piloted in 100 

Mozambique during the southern Africa rainy season 2023-24. This article presents the analytical routines 101 

involved in the definition and monitoring of triggers for AA as describes the technical methodologies of 102 

the system by outlining data processes, forecast application, decision-making and operational activities 103 

linked to the release of AA advisories to pilot areas. 104 

 105 

  106 
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2. CASE STUDY & METHODS  107 

2.1 Case Study  108 

We developed a methodology that is being piloted and scalable for triggering AA against droughts for all 109 

districts in Zimbabwe and Mozambique, although this study has a special focus on the latter. Currently in 110 

Mozambique, a government-led AA plan is in place for 11 pilot districts (see Figure 1). However, an  111 

anticipatory action system is desired for the whole country requiring the upscaling of the current set up. 112 

Concerning climatology, the rainy season in Mozambique lasts from October to May, although the largest 113 

amounts are experienced between November and April. The wettest months are December and January, 114 

however January alone is the wettest month across the country (WFP, 2018). Rainfall amounts increase 115 

from south to north. For instance, areas of low annual rainfall (less than 500 mm) include the southern 116 

provinces of Maputo, Gaza, Inhambane and the southern half of Tete, whereas areas of high total rainfall 117 

(over 2000 mm) include the provinces of Cabo Delgado, Niassa, Nampula and Zambezia. Rainfall 118 

interannual variability is stronger in areas of lower rainfall totals and is a major limiting factor to 119 

livelihoods and small-scale rain-fed agriculture (Guimarães Nobre et al., 2023). In addition, the province 120 

of Gaza has a remarkably variable and short growing season length (mostly below 3 months). Interannual 121 

climate variability in the southern Africa region is particularly linked to the El Niño-Southern Oscillation 122 

(ENSO) (Richard et al., 2001). During the months of October to December, the El Niño phase often drives 123 

rainfall increases (decreases) in Cabo Delgado and Niassa in northern Mozambique (southern provinces 124 

of Maputo, Gaza and Inhambane). During these months, when a La Niña state is observed, rainfall 125 

increases are observed in parts of the central provinces of Manica, Sofala and northern Inhambane. In 126 

addition, during the months of January to March, El Niño leads to drier conditions across most of the 127 

country, whereas in the south and centre of the country a moderate increase in rainfall is observed during 128 

La Niña phases (WFP, 2018). Mozambique is highly climate vulnerable country where livelihoods rely on 129 

local natural resources (e.g., agriculture and fisheries) as their primary economic activity. Drought events 130 

affect the ability of farmers and fishermen to sustain crops and fish, often cascading into situations of 131 

food insecurity, malnutrition, and unsustainable incomes. 132 

 133 
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 134 
Figure 1: Districts in Mozambique with government-approved anticipatory action plans. 135 

2.2 Methodological Framework  136 

The operational triggering system for drought AA is developed and tested in three stages (Figure 2): (1) 137 

data pre-processing, (2) forecast application and decision-making, and (3) sensitivity analysis. A detailed 138 

explanation of each stage is provided in sections 2.2.1 to 2.2.3. 139 

 140 

 141 

 142 
Figure 2: Flowchart of the methodological framework applied in this study, handled in three stages: (1) data pre-processing; (2) forecast 143 
application and decision-making; and (3) sensitivity analysis. 144 

https://www.sciencedirect.com/science/article/pii/S0048969718343067#f0005
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2.2.1  Part 1: Data pre-processing 145 

Collect rainfall observation (from 1981) 146 

As source of rainfall estimates, we use daily blended precipitation records from the Climate Hazards group 147 

Infrared Precipitation with Stations version 2 (CHIRPS) for the period of January 1981 to near present. 148 

CHIRPS is a high resolution (0.05°) precipitation dataset, which is used for drought early warning purposes 149 

by the Famine Early Warning Systems Network This dataset integrates data from real-time meteorological 150 

stations with infrared satellite data (therefore called blended precipitation product), covering from 50°N 151 

to 50°S via a blending procedure further described in Funk et al. (2015). 152 

 153 

Collect seasonal forecast data (ECMWF from 1993) 154 

As source of forecast data, we use seasonal precipitation forecasts from the ECMWF's seasonal forecasting 155 

system (SEAS5) for the period 1993–2022. In its native resolution, the forecast is available at 1 arc-degree 156 

and new forecasts are released monthly on the fifth day covering the coming 7 months. SEAS5 is 157 

composed of a set of 25 ensemble members until 2016 (hindcast period), and 51 ensemble members from 158 

2017 onwards as part of the operational system (Ratri et al., 2019). It is important to highlight that ECMWF 159 

SEAS5 has a new version (SEAS5.1) since November 2022 with extended hindcast until 1981 which full 160 

time series of hindcast and operation forecast can be freely downloaded from the Copernicus Climate 161 

Data Store. 162 

Remapping CHIRPS and seasonal forecast data 163 

Since the datasets of rainfall estimates and forecasts are available in different spatial resolutions, we 164 

remapped them into an intermediate resolution of 0.25°. This moderate resolution was chosen taking into 165 

consideration the size of pilot districts in which the system will be implemented, computational capacity 166 

as well as to reduce the impact of rainfall small-scale variability. For this process, we used bilinear 167 

interpolation one of the most commonly used methods of climate grid interpolation (National Center for 168 

Atmospheric Research Staff, 2014). Bilinear interpolation resizes the data by estimating values at a point 169 

by averaging the values of the surrounding points. 170 

 171 

Extract time series of observed SPI 2 and SPI 3 within rainy season 172 

From the daily CHIRPS rainfall estimates, we extract the Standard Precipitation Index (SPI), a widely used 173 

indicator for measuring rainfall variability over a long-term climatological period (Svoboda et al., 2012). 174 

The SPI is centered around the mean rainfall for a given time and location, with values ranging from -4 to 175 

+4. Negative SPI values indicate various levels of rainfall deficits, which are particularly relevant to the 176 

designed trigger system. The SPI can also highlight drought situations when a “danger threshold” is 177 

identified signaling rainfall deficits severe enough to prompt anticipatory to mitigate the impacts on 178 

livelihoods.  179 

 180 
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In this study, SPI values are calculated using two- and three-month accumulation periods (SPI 2 and SPI 3, 181 

respectively). These accumulation windows are particularly suitable for detecting risks to agricultural 182 

systems during the crop development cycle. It is crucial to note that the AA framework aims to protect 183 

food security by reducing the risk of crop failures in rain-fed systems. Therefore, only SPI values extracted 184 

during the rainy season are relevant to the trigger system (see the section below for a detailed explanation 185 

of windows of opportunity for anticipatory action). 186 

 187 

To derive the SPI estimates, the CHIRPS rainfall dataset, accumulated over two and three months, is fitted 188 

to a gamma distribution and subsequently transformed to a normal distribution with z-values (Lloyd-189 

Hughes & Saunders, 2002). The period from 1981 to 2018 serves as the reference climatology for 190 

calculating the gamma distribution parameters. This period was selected due to the availability of a 191 

complete series of rainfall observations at the start of the project in 2019. Periods with zero precipitation 192 

are handled by assigning SPI values based on the historical occurrence of such periods from 1981 to 2018. 193 

However, since we use precipitation data accumulated over two and three months, zero values are rare, 194 

especially as SPI is only extracted during the rainy season. For extracting SPI during the dry season or in 195 

arid regions, more sophisticated techniques, such as those described by Stagge et al., (2015) are available 196 

and should be preferred. 197 

Extract time series of ensemble SPI 2 and SPI 3 within rainy season for multiple lead times 198 

For the forecasting series, the parameters of the gamma distribution are determined using data from all 199 

ensemble members for the years 1993 to 2018, as data prior to 1993 is not available in the Copernicus 200 

Climate Data Store (SEAS5). The routine adopted for handling zero values is similar to the one described 201 

for deriving SPI estimates (see above). In Figure 3, we illustrate the extraction of SPIs for various lead times 202 

of the forecast system with a seven-month lead time. For example, the seasonal forecast released at the 203 

beginning of May covers the subsequent months (May to November). Therefore, the only indicator  204 

extracted from this forecast is SPI 2 ON, as October marks the first month of the rainy season in the 205 

country. 206 
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 207 

 208 
Figure 3: Illustration of the SPIs representing rainfall anomalies during Mozambique's rainy season, along with the corresponding 209 
forecast months used for their extraction. 210 

 211 

Define danger threshold for identifying past drought events 212 

Given that the Standardized Precipitation Index (SPI) is linked to the probability of certain rainfall amounts, 213 

we convert a specific z-value into an expected frequency by calculating the area under the normal 214 

distribution curve up to that z-value. This proportion, or probability (p), is then converted into a return 215 

period (T) by taking the inverse of the probability (p = 1/T). In the operational AA trigger system, three z-216 

value thresholds are used, as highlighted by Guimarães Nobre et al (2023), corresponding to different 217 

severity levels. This article focuses on the most severe category in the AA trigger system, which is SPI ≤ -1 218 

as this negative anomaly is expected to cause the most significant damage among those adopted by the 219 

system. 220 

 221 

However, it is important to highlight that the impact of a drought threshold should ideally be estimated 222 

using historical observations combined with information on who and what is exposed to a hazard 223 

(exposure and vulnerability). Due to the lack of extensive drought impact data at the district level, the 224 

choice of a threshold level is based on frequencies suitable for AA operations in the region. Typically, AA 225 

programs target hazards that occur at least once every three to six years on average. Implementing AA 226 

pilots periodically is crucial for enhancing program activities. Consequently, thresholds for AA operations 227 

should not be set too low, given that the occurrence of drought events of such intense magnitude is rare. 228 

A SPI ≤ -1 (named severe category in the AA trigger system) corresponds to an event occurring 229 

approximately once every 6 to 7 years (or p = 15.87%). By applying the SPI ≤ -1 threshold to the SPI2 and 230 
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SPI3 estimated series, we obtain a time series since 1981 of past drought events for the respective two- 231 

and three-month periods in the pilot districts. 232 

 233 

Bias correction of ensemble forecasted SPI 2 and SPI 3  234 

We employ a quantile-quantile mapping technique, conditioned on the state of ENSO, to adjust SPI 235 

forecast values. This is achieved by aligning the cumulative density function of SPI forecasts at each grid 236 

cell with the reference SPI data extracted from CHIRPS at the corresponding grid cell and its k nearest 237 

neighbors. The SPI forecast and reference distributions are matched by establishing an ENSO-informed, 238 

quantile-dependent correction function. This function adjusts the forecast quantiles based on their 239 

observed SPI counterparts, translating the SPI forecast time series into bias-adjusted values that 240 

accurately represent the observed SPI data distribution. 241 

 242 

The transfer functions for bias correction are developed based on the SPI reference and SPI forecast time 243 

series, specifically targeting the AA drought indicator rather than daily or monthly rainfall. By 244 

incorporating ENSO information, we aim to ensure that rainfall variability is more accurately represented 245 

in the corrected forecast data, especially in regions and timescales where ENSO has a significant impact 246 

(Manzanas & Gutiérrez, 2019). This approach combines statistical quantile mapping bias correction with 247 

ENSO state knowledge during rainy seasons. Furthermore, information from the nearest neighbors from 248 

the reference pixel is used to account for the spatial dependence inherent in climate data (k=9) (Cannon, 249 

2018) and to extend the SPI time series used to create the transfer function. By targeting the SPI indicator 250 

directly with the transfer function, we aim at  increasing the accuracy of drought detection by bringing SPI 251 

forecasts closer to the observed SPI climatology, ensuring that the SPI derived from forecasts are more 252 

consistent with historical patterns and trends. This is critical for the Ready, Set and Go! System that 253 

releases alerts based on negative anomalies through the SPI indicator rather than on rainfall amounts. 254 

 255 

In practical terms, incorporating ENSO information into quantile mapping involves: (i) categorizing data 256 

by ENSO phases; (ii) generate empirical cumulative distribution functions for each ENSO phase separately 257 

for both SPI observed and SPI forecast; (iii) perform quantile mapping by applying the transfer function to 258 

the test year (year left out during cross validation) of the analysis according to the ENSO phase of the year 259 

being bias corrected; iv) combine corrected forecast outputs if bias correction is found to improve skill in 260 

detecting droughts. 261 

 262 

In summary, the quantile mapping transfer function corrects the SPI forecast based on the SPI reference 263 

value of the pixel under investigation and its nine neighboring pixels conditioned on the state of ENSO. To 264 

prevent inflating the skill of the bias correction, a leave-one-year-out cross-validation (LOCV) scheme is 265 

used. The bias correction transfer function is constructed by pooling all ensemble members of the forecast 266 

and then applied to all members of the left-out test year. 267 

 268 

An overview of this scheme is available in Figure 4. For a list of ENSO years, see Supplementary Material 269 

S1. 270 

 271 
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 272 

 273 
Figure 4: Bias correction methodology in seven steps next to an illustrative example. 274 

 275 

Define danger threshold for extracting the probability of drought events from bias corrected and raw 276 

forecasts 277 

From both raw and bias-corrected forecasts, we apply the danger threshold (SPI ≤ -1, classified as severe 278 

in the AA trigger system) to determine the probability of a severe drought. This is done by calculating the 279 

proportion of ensemble members that meet or fall below the threshold. We repeat this process for each 280 

forecast issue month from 1993 to 2022, creating a time series of drought probabilities at different lead 281 

times for both the raw and bias-corrected forecasts. 282 

 283 

In practice, the bias-corrected drought probabilities replace those from the raw forecast only when there 284 

is a demonstrable gain in skill for forecasting severe drought. This gain in skill is evaluated by comparing 285 

the area under the Receiver Operating Characteristic (AUROC) curve scores of the raw and bias-corrected 286 

forecasts (further detailed in the section below). Consequently, the bias-corrected drought probability 287 

information is used only if it shows an improved ability to predict severe droughts in the pilot districts, 288 

considering specific cases (such as a particular forecast lead time and SPI 2 and SPI 3 aggregation). 289 
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2.2.2  Part 2.1: Forecast application and decision-making 290 

Skill verification and assessment of raw and bias corrected data 291 

As described in the previous section, we obtain drought probabilities from both the raw and bias-292 

corrected forecasts. For each specific district, lead time, and SPI indicator, we use the forecast with the 293 

higher skill in predicting severe drought to develop triggers for the AA. The forecast with lower skill is 294 

discarded from the AA system. Skill is assessed by extracting and comparing the AUROC scores of the 295 

forecasts. 296 

 297 

The AUROC score (e.g., Fawcett, 2006) is a widely applied indicator that measures the ability of a 298 

probabilistic forecast to discriminate between a binary outcome (e.g., severe drought or no drought). The 299 

AUROC score calculation requires setting a range of trigger values to convert a probability forecast into 300 

categorical, and therefore is related to decision-making in response to whether the forecast should 301 

release an alert. For the releasing of a “drought alert”, several triggers are tested, and a graph (known as 302 

a ROC curve) is produced to summarize the hit rate and false alarm rate that can be expected from 303 

different probability trigger values. The area under the ROC provides a summary statistic for the 304 

performance of probability forecasts, ranging from 0 to 1 (worst to best). Forecasts with little or no skill 305 

have a ROC score of approximately 0.5. Forecast is perfectly incorrect when the ROC is zero. In summary, 306 

for a specific district, lead time and SPI indicator, we choose which source of forecast to use for the Ready, 307 

Set & Go! triggers (raw or bias corrected) based on the forecast skill assessment informed by the AUROC 308 

score at the district level.  309 

 310 

Testing several triggers for the for the Ready, Set & Go! system 311 

Triggers for anticipatory action indicate the forecasted severity of drought that would prompt a response. 312 

If the forecast exceeds the trigger, funds are automatically allocated, and anticipatory actions are 313 

initiated. A trigger is essentially a value that converts a probability forecast into a decision on whether to 314 

take action, effectively determining whether a drought alert should be issued. Defining a trigger involves 315 

understanding when forecasting information can be trusted to successfully mobilize anticipatory actions, 316 

despite inherent uncertainties. Therefore, triggers are based on the skill levels of the forecasts, requiring 317 

an investigation of past forecast accuracy and an acknowledgment of forecast uncertainty. 318 

 319 

Forecasts at any lead time can be tested to derive triggers for anticipatory action. It is common practice 320 

for organizations to define two types of triggers for anticipatory action: (i) a preparedness trigger with a 321 

longer lead time and (ii) a confirmatory trigger for the activation of activities with a shorter lead time 322 

before the drought onset. These triggers are defined based on the skill levels of the forecasts for each lead 323 

time. However, testing lead times independently may result in an unrealistic performance of the 324 

anticipatory action program, as the system relies on both triggers being exceeded, even though they are 325 

set based on their individual performance. Additionally, organizations may assign preparedness and 326 

activation activities based on a single trigger from a specific lead time. This approach can vary depending 327 

on the organization's specific capacity to respond to the forecasted information. 328 

 329 
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The Ready, Set, & Go! system employs a double confirmatory approach for drought alerts. This means 330 

that the trigger value, tailored for each forecast month, district, and SPI indicator, must be exceeded for 331 

two consecutive months to prompt action. The performance of these triggers for anticipatory action is 332 

evaluated in combination rather than individually. For example, if the trigger based on the August forecast 333 

for Chibuto district, which predicts potential severe droughts in October-November, is exceeded, the 334 

"ready" phase is activated. If the trigger based on the September forecast for the same district is also 335 

exceeded, the "set" phase is activated, and activities are immediately mobilized on the ground, initiating 336 

the "Go!" phase. Testing triggers in combination with a double confirmation process aims to create a more 337 

accurate trigger system and provide a longer window for readiness and preparedness activities before AA 338 

implementation. This approach is validated using a sensitivity analysis explained in section 2.2.4. 339 

 340 

For instance, readiness activities might involve preparing internal documents, which can then lead to 341 

initiating a procurement process if an AA advisory is issued. Practically, for each forecast month that can 342 

produce a "ready" and "set" trigger, we jointly test several candidate pairs of triggers. This testing is 343 

conducted in steps of 1% ranging from 0% to 100%, resulting in 10,201 combinations of candidate triggers. 344 

This is done for each district, pair of forecast months, and SPI 2/SPI 3 indicator. For a complete overview 345 

of the triggers for SPI ON for a given district, we test all candidate pairs of triggers for the following forecast 346 

month combinations: May (ready) and June (set), June (ready) and July (set), July (ready) and August (set), 347 

August (ready) and September (set), and September (ready) and October (set). For each pair of triggers, 348 

we calculate key performance metrics (e.g., hit rate and false alarm ratio) to evaluate how the drought 349 

alerts would have performed in the past. The relevance of these metrics was identified during a workshop 350 

held in 2022 with governmental partners. 351 

 352 

Apply pre-mapped quality criteria for the triggers’ choice 353 

The definition of a trigger value for drought AA is intrinsically linked to the skill of the forecast and the 354 

identification of a certain degree of risk tolerance levels by users of the forecast (Lopez et al., 2018). In 355 

practice, when a low probability trigger value is chosen, one can expect to forecast droughts frequently, 356 

whereas if a very high value is chosen, the opposite is expected to happen. The optimum trigger value 357 

should reflect appropriateness through the lenses of the decision-maker and the relative importance 358 

given to drought false alarms versus missed drought events. 359 

 360 

Users who are averse to missing a drought, will choose a lower trigger value and deal with an increase in 361 

false alarms. For instance, a low trigger value can be a suitable option for actors that seek to assist very 362 

fragile populations and/or when the portfolio of AA is considered “non-regret” (Chaves-Gonzalez et al., 363 

2022). Anticipatory actions are classified as “non-regret” when they are worth investing in even if a crisis 364 

does not materialize and would not be regretted with hindsight. Following this approach, we have created 365 

a menu of “emergency triggers”, to be used when pilot districts are experiencing high levels of 366 

vulnerability. On the other hand, users who are averse to false alarms will choose a higher trigger and 367 

manage occasional missed events. For instance, a high trigger value can be a suitable option for actors 368 

that have limited funds and/or when the portfolio of AA contains actions that affect livelihoods, such as 369 

evacuations, which are considered highly regrettable if a false alarm occurs. This approach can be of high 370 

relevance for scaling up AA to all districts in Mozambique as the largest geographical coverage is desired 371 
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and funding distribution/sharing across a wide area is expected. Following this approach, we have created 372 

a menu of "general triggers”, to be used when pilot areas are experiencing normal to low levels of 373 

vulnerability. As displayed in Table 1, the expected performance of both menus is different, especially 374 

concerning the tolerance to false alarms and the probability of drought detection. Operationally, the 375 

assessment of vulnerability information is done prior to the start of AA season in Mozambique (more 376 

explanation in section 2.2.3). 377 

 378 
Table 1: List of quality criteria for assigning forecast-based triggers for severe drought events. It is important to highlight that criterion 379 
5 plays a role in the calculation of criteria 2, 3 and 4. 380 

Number Criteria for determining triggers General menu Emergency Menu 

1 
The selected trigger must have predicted at least 

(x%) of the past droughts 
55 70 

2 
The chance of successfully implementing AA 
following a ready & set alert must be greater 

than (x%) 
65 55 

3 
The chance of unsuccessfully implementing AA 
following a ready & set alert must be less than 

(x%) 
35 45 

4 
Return period (years) for the implementation of 

AA against droughts 
7 6 

5 
Actions will only be counted as “in vain” if the 

ready & set alert for severe drought is followed 
by an SPI of: 

SPI > -0.68 

6 
Minimum number of full months for the Go! 

Phase (implementation) 
1  

 381 

Define triggers for anticipatory action 382 

After testing all combinations of trigger pairs for the "ready" and "set" phases and recording the statistics 383 

listed in Table 1, we began a selection process based on the quality criteria outlined in the same table. 384 

The suitable pairs were ranked according to their hit rate and false alarm ratio, considering both district-385 

specific performance and the stage of the rainy season: (i) start to mid-season (referred to as Window 1) 386 

and (ii) mid- to end of season (referred to as Window 2). Only the best-performing trigger pairs were 387 

selected for further analysis, which is presented in the results section 3.4. 388 

 389 

It is important to clarify that AA targets these two windows of the rainy season because the activities 390 

implemented before the onset of drought within these periods serve different purposes. The forecast of 391 

drought risks within these windows informs the refinement of the AA portfolio, as rainfall deficits during 392 

the start to mid-season and mid- to end-season are expected to impact crops differently. For example, AA 393 

implemented before potential droughts in Window 1 aims to support planting and sowing activities, such 394 

as distributing drought-tolerant seeds, while AA implemented in Window 2 focuses on supporting 395 

livelihoods, such as providing cash transfers. 396 

 397 

Furthermore, due to the variation in climatology across the country, the periods covered by Windows 1 398 

and 2 differ by zone, shifting by approximately one month from south to north. Table 2 provides an 399 
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overview of the timing of these windows, the indicators used to assess drought risks within them, and the 400 

provinces associated with each zone. The division of the rainy season into these windows was defined by 401 

the Technical Working Group (TWG) for drought early warning systems (EWS) and AA, which includes 402 

several governmental and non-governmental institutions (WFP, 2023). Further details can be found in the 403 

discussion section. 404 

 405 
Table 2: Description of anticipatory action windows per zone and province with an illustration of SPI indicators informing drought 406 
events. 407 

Zone Provinces 
Months within 

window 1 
SPI 2 and SPI 3 

informing window 1 
Months within 

window 2 
SPI 2 and SPI 3 

informing window 2 

North 
Nampula, 

Cabo Delgado 
and Niassa  

December to 
March 

SPI DJ, SPI DJF, SPI JF, 
SPI JFM, SPI FM  

March to June 
SPI FMA, SPI MA, SPI 

MAM, SPI AM, SPI 
AMJ, SPI MJ 

Central 
Manica, 

Sofala, Tete 
and Zambezia 

November to 
February 

SPI ND, SPI NDJ, SPI 
DJ, SPI DJF, SPI JF 

February to 
May 

SPI JFM, SPI FM, SPI 
FMA, SPI MA, SPI 

MAM, SPI AM 

South 

Gaza, 
Inhambane, 
Maputo City  
and Maputo 

October to 
January 

SPI ON, SPI OND, SPI 
ND, SPI NDJ, SPI DJ 

January to April 
SPI DJF, SPI JF, SPI 
JFM, SPI FM, SPI 

FMA, SPI MA 

 408 

2.2.3  Operational 409 

Once the repository of triggers for AA has been finalized, several operational activities follow. Although 410 

these activities do not impact the overall system performance (as presented in the results section), they 411 

provide valuable insight into the operationalization of the methodology showcased in this study. The first 412 

key activity following the initiation of forecast and trigger monitoring for AA is a vulnerability analysis. This 413 

analysis is conducted annually, typically around April and May as the rainy season concludes. Its purpose 414 

is to assess the levels of vulnerability in the AA pilot districts by examining recent climate shocks and 415 

projected food security outcomes. The results of this analysis inform decisions about which set of 416 

triggers—general or emergency—each pilot district should employ for the upcoming AA season. For 417 

example, if a district experienced drought during the most recent rainy season, with anticipated negative 418 

impacts on food security, the emergency triggers are selected for the next AA season due to the 419 

heightened vulnerability in that area. Once this decision is made, forecasts from May to February of the 420 

following year are processed, and the AA triggers are monitored on a monthly basis. The monitoring of 421 

the Ready, Set, & Go! system triggers is conducted by INAM and WFP, with updates communicated to the 422 

Technical Working Group (TWG) for drought early warning systems (EWS) and AA through a dashboard 423 

and regular bulletins. 424 

2.2.4  Sensitivity analysis including four scenarios 425 

We evaluate the robustness of our methods through a  sensitivity analysis, considering four distinct 426 

scenarios. For each scenario, we extract four key metrics:  427 

1. Hit Rate: percentage of past severe droughts accurately captured by the AA trigger(s). 428 
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2. Tolerant False Alarm Ratio: This metric accounts for false alarms when the AA trigger is exceeded, 429 

but the drought threshold is narrowly missed. For example, a false alarm occurs if a severe 430 

drought trigger (SPI ≤ -1) is followed by an SPI value just below the threshold (e.g., -0.99). To better 431 

contextualize  false alarms, we calculate "tolerant" false alarm ratio , which considers the number 432 

of severe drought alarms followed by an SPI greater than -0.68 (see Table 1) introduces extra 433 

tolerance when analyzing forecasting errors, as severe drought alerts followed by SPI values 434 

between -0.68 and -0.99 are not counted as non-drought situations. This approach is based on 435 

the practical assumption that AA interventions will still benefit the population, even if 436 

implemented during a slightly less severe dryness. 437 

3. Lead time of implementation: the time difference between the starting month of the SPI indicator 438 

and the month in which the forecast was issued. For instance, a forecast issued in May is 439 

considered to have a lead time of 4 months when providing outlooks of SPI ON. 440 

4. AA percentage coverage: percentage of Mozambican districts where an AA trigger was identified, 441 

meeting the criteria outlined in Table 1. 442 

 443 

It is important to clarify that these metrics were derived from the skill assessment of the forecasts from 444 

1993 to 2021. Specifically, the number of hits and false alarms during this period is used to calculate a key 445 

metric from the quality criteria list: the “Return Period (Years) for the Implementation of AA Against 446 

Droughts.” This metric helps determine whether the empirical frequency of AA interventions aligns with 447 

the frequency of the threshold for severe droughts. Furthermore, the scenarios for the sensitivity analysis 448 

are defined as follows: 449 

 450 

1. Scenario 1: An AA advisory based solely on a single alert, using only one lead time from the raw 451 

SPI forecasts. 452 

2. Scenario 2: An AA advisory based solely on a single alert, using either raw or bias-corrected SPI 453 

forecasts, depending on which has the highest skill. 454 

3. Scenario 3: An AA advisory requiring double confirmation but using only raw SPI forecasts. 455 

4. Scenario 4: An AA advisory based on the Ready, Set, & Go! system, requiring double confirmation 456 

and using a combination of bias-corrected and raw SPI forecasts. 457 

3. RESULTS 458 

3.1 Zonal based overview of the years with severe drought conditions within the rainy season 459 

In Figure 5, we illustrate the frequency of severe drought occurrences during the rainy season from 1981 460 

to the present. We began by extracting the mean SPI 2 and SPI 3 indicators for each district, focusing on 461 

the rainy windows relevant to each district/province (see Table 2 for SPI indicators and their associated 462 

windows). We then counted how often the severe drought threshold was met or exceeded. The top 5 463 

years with the highest number of 2- and 3-month periods experiencing severe drought conditions are 464 

highlighted. Bars in the figure are colored to indicate the ENSO phase during the respective rainy seasons 465 

in Mozambique (see Supplementary Material S1 for classification). To simplify the data presentation, 466 
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districts are grouped by zones (refer to Table 2 for zone-to-province list). A similar overview of severe 467 

drought years at the province and district levels is provided in Supplementary Material S2. 468 

 469 

Overall, severe drought conditions can occur during any of the three ENSO phases across all zones. This 470 

underscores the need for an AA system that is effective regardless of the ENSO phase. However, we found 471 

that severe droughts are significantly more frequent during El Niño phases (mean frequency = 66) 472 

compared to Neutral (mean frequency = 41) and La Niña phases (mean frequency = 31), as confirmed by 473 

a t-test (p < .01). Previous studies also support this finding (Araneda-Cabrera et al., 2021; Lyon & Mason, 474 

2007). Additionally, the top 5 drought years for different windows vary considerably. In the North zone, 475 

only the rainy season of 2004-05 appears in the top 5 for both windows. In the Central zone, only the 476 

1991-92 rainy season ranks in the top 5 for both windows. In the South zone, the rainy seasons of 1991-477 

92 and 2015-16 are among the top 5 for both windows. This variation highlights the importance of 478 

developing an early warning system that accounts for different intra-seasonal rainfall patterns and adjusts 479 

operations according to the stages of the rainy cycle. 480 

 481 

 482 
 483 
Figure 5: The frequency with which the SPI 2 and SPI 3 indicators exceeded or equaled the severe drought threshold since 1981 is 484 
shown for each zone and window. The counts are first calculated at the district level and then aggregated by zone for window 1 (left) 485 
and window 2 (right). For details on which SPI 2 and SPI 3 indicators correspond to each window, refer to Table 2. The zones are 486 
defined as follows: i) Central zone includes districts from the provinces of Manica, Sofala, Tete, and Zambezia, ii) North zone includes 487 
districts from Nampula, Cabo Delgado, and Niassa, and iii) South zone includes districts from Gaza, Inhambane, Maputo City, and 488 
Maputo Province. Bars are color-coded according to the dominant ENSO phase during the rainy season in Mozambique (red = El 489 
Niño, blue = La Niña, and grey = Neutral). The top 5 years for each window and zone are highlighted. 490 

 491 

 492 
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3.2 Zonal based overview of bias correction 494 

Figure 6 presents the percentage of areas per zone, SPI indicator, and forecast month that showed an 495 

improved AUROC score after applying bias correction. The primary focus of our evaluation is the AUROC 496 

score, as it offers a practical measure of whether bias correction enhances the accuracy of severe drought 497 

forecasts, which is crucial for users. The goal of this approach is to identify opportunities for improving 498 

forecast accuracy, thereby reducing the risk of misallocated anticipatory action resources due to 499 

inaccurate predictions. For a spatial representation, similar results are displayed in a series of maps in 500 

Supplementary Material S3. 501 

 502 

Overall, the North zone showed the highest mean percentage of improved forecast areas (38%), followed 503 

by the Central and South zones (both at 19%). In the North zone, the forecast month with the highest 504 

mean improvement was July (56%), while February had the lowest (20%). For the Central zone, January 505 

showed the greatest improvement (26%), while August showed the least (10%). In the South zone, July 506 

and August had the highest mean improvement (26%), whereas December and January had the lowest 507 

(14%). Across all forecast months, the SPI indicators that demonstrated the greatest skill improvement 508 

were SPI ON, SPI DJ, and SPI NDJ for the North zone, SPI JFM for the Central zone, and SPI ON for the South 509 

zone. Most of these indicators pertain to the first window of the rainy season in the country. 510 

 511 

Additionally, for all districts and all SPI 2 and SPI 3 indicators across all lead times, 24% demonstrated 512 

improved skill (measured by AUROC score) after bias correction compared to the raw forecast. A more 513 

detailed overview of the AUROC scores can be found in section 3.3. 514 

 515 

 516 
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 517 
Figure 6: Percentage of zonal areas in which skill has gained using bias correction for different lead times of the forecast used to 518 
extract the SPI 2 and SPI 3 indicators. 519 

 520 

3.3 Overview of the maximum AUROC score  521 

Figure 7 shows the mean AUROC index per district for predicting severe droughts, combining outcomes 522 

from both raw and bias-corrected forecasts across all extracted SPI 2 and SPI 3 periods and lead times. On 523 

average, the SPI DJ indicator had the highest AUROC score (0.79), while SPI AM had the lowest (0.63). 524 

Severe drought events are generally more predictable during the early to mid-rainy season (average 525 

AUROC score of 0.76 for window 1; see Table 2 for indicator details) compared to the mid to late rainy 526 

season (average AUROC score of 0.69 for window 2). In particular, the predictability of severe droughts in 527 

districts located in the South zone is notably high during window 1 (average AUROC = 0.77), primarily 528 

driven by high forecast accuracy in December and January (SPI 2 DJ). In the Central and North zones, 529 

severe droughts are most predictable during December to February (average AUROC of 0.78) and 530 

November to January (average AUROC of 0.80), respectively. 531 

 532 

In Supplementary Material S4, we highlight the lead times that yield the highest forecast skill for severe 533 

drought prediction. In the South zone, about 44% of districts achieve the highest AUROC score using the 534 

December forecast for SPI DJ. In the Central zone, 55% of districts achieve their best performance using 535 
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the August forecast for SPI DJF. In the North zone, around 66% of districts see their highest AUROC scores 536 

based on the November forecast for SPI NDJ.  537 

 538 

However, it is crucial to note that the implementation of AA requires at least one full month for the "Go!" 539 

phase (see Table 1 for criteria). As a result, forecasts released in November, which predict severe droughts 540 

between November and January, are not used in operational mode. This means that the "Ready, Set, Go!" 541 

trigger system often cannot rely on the most accurate lead times, as they do not allow enough time for 542 

action mobilization. 543 

 544 

 545 

 546 
Figure 7: Overview of the maximum AUROC score across lead times combining outcomes of both raw and bias corrected forecast. 547 

 548 

After determining whether to use the raw or bias-corrected forecast for a specific lead time, SPI indicator, 549 

and district, we move to the most computationally intensive phase of the "Ready, Set, Go!" trigger system. 550 

This phase involves testing pairs of triggers for AA, as described in the section "Testing Several Triggers 551 

for the Ready, Set, Go! System." The testing is conducted in 1% increments, ranging from 0% to 100%, 552 

resulting in 10,201 combinations of candidate triggers per district, forecast month pair, and SPI 2/SPI 3 553 

indicator. After testing all combinations and recording their statistical performance, only the best-554 

performing trigger pair for each window is selected for presentation in the next section. The statistical 555 

performance of triggers, for the different scenarios, is based on the overall performance using hindcasts 556 

from 1993 and 2021 against observed SPI 2 and SPI 3 values within this period. 557 

 558 
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All selected trigger pairs must meet the quality criteria outlined in Table 1. To evaluate the value of using 559 

mixed forecast information (raw and bias-corrected) with a double-confirmation approach, we expanded 560 

the analysis to include additional testing. This extended analysis examines the performance of single 561 

versus double triggers and the impact of including or excluding bias correction in the methodology. 562 

3.4 Sensitivity Analysis 563 

Table 3 presents the average performance of the best triggers for AA  during both window 1 and window 564 

2, comparing different activation mechanisms. To recap: 565 

• Scenario 1: Issues an AA advisory based on a single alert using only the raw SPI forecasts from a 566 

specific lead time. If the forecast for a specific month, district, and indicator exceeds the assigned 567 

probabilistic trigger, an AA advisory is issued and implemented. 568 

• Scenario 2: Issues an AA advisory based on a single alert, using either raw or bias corrected SPI 569 

forecasts, depending on which has higher predictive skill. 570 

• Scenario 3: Requires double confirmation of drought conditions but uses only raw SPI forecasts. 571 

• Scenario 4: Represents the operational Ready, Set, & Go! system, which issues an AA advisory 572 

based on double confirmation, using a combination of both bias corrected and raw SPI forecasts. 573 

 574 

Overall, scenarios using a double-confirmation approach perform better than those relying on a single 575 

drought alert for AA activation. 576 

 577 

Specifically, in the simplest scenario (Scenario 1), 59% of districts in Mozambique would be covered by a 578 

General AA trigger, while 42% would be covered by an Emergency trigger (see the section “Apply pre-579 

mapped quality criteria for the triggers’ choice” for definitions of these trigger types). This indicates that 580 

raw forecasts alone provide reasonably accurate severe drought predictions for many districts. 581 

Incorporating bias correction (Scenario 2) only marginally increases coverage to 61% (General trigger) and 582 

43% (Emergency trigger). 583 

 584 

However, applying a double-confirmation approach significantly increases the proportion of districts 585 

covered by an AA trigger. In Scenario 3, coverage increases to 73% (General trigger) and 59% (Emergency 586 

trigger). Scenario 4, which is the operational system in Mozambique, achieves the highest national AA 587 

coverage across all approaches. Additionally, the Ready, Set, & Go! system improves both the hit rate and 588 

reduces the false alarm ratio compared to single-alert systems (Scenarios 1 & 2). Furthermore, the Ready, 589 

Set, & Go! approach extends the lead time for preparedness activities. While single-alert scenarios 590 

provide, on average, 2 months of lead time for AA implementation once the trigger is exceeded, the 591 

Ready, Set, & Go! system increases this lead time to nearly 3 months. 592 

 593 

 594 

 595 
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Table 3: Sensitivity analysis of different approaches for establishing an AA drought trigger system for the two menu of triggers. 596 
Statistics of the different scenarios are based on the average of the best performing SPI 2 or SPI 3  indicator for AA within windows 1 597 
and 2. 598 

  

Scenario 1: single 
drought alert and 
raw forecast only 

Scenario 2: single 
drought alert 
including bias 

corrected forecast 

Scenario 3: double 
confirmation and 
raw forecast only 

Scenario 4: Ready, 
Set & Go! and 
including bias 

corrected forecast 

General 
triggers 

Hit Rate 62% 62% 64% 64% 

False Alarm 
Ratio 

21% 21% 17% 16% 

Lead Time 
for 

preparedness 
2,10 2,00 2,90 2,90 

AA coverage 59% 61% 73% 76% 

Emergency 
triggers 

Hit Rate 72% 72% 73% 73% 

False Alarm 
Ratio 

29% 30% 26% 26% 

Lead Time 
for 

preparedness 
2,10 2,10 3 2,90 

AA coverage 42% 43% 59% 63% 

 599 

3.5 Spatial Overview of Ready, Set & Go! System 600 

Figure 8 provides a detailed spatial statistical overview of the performance of the Ready, Set, & Go! 601 

triggers, complementing the results for Scenario 4 presented in section 3.4. As noted earlier, severe 602 

droughts are predicted with greater skill in window 1 compared to window 2, allowing for AA triggers to 603 

be assigned to more districts in window 1. The percentage of districts with a valid AA trigger is as follows:  604 

i) 66% for the emergency trigger menu in window 1 and 59% in window 2, and ii) 87% for the general 605 

trigger menu in window 1 and 64% in window 2. Notably, every district with an emergency AA trigger also 606 

has a general AA trigger, indicating that for most districts, AA triggers can be adjusted annually based on 607 

current vulnerability levels. However, in some cases, the general trigger is the only applicable option. 608 

 609 

In terms of trigger performance across windows, the Central zone showed the highest and lowest mean 610 

hit rates, with window 1 achieving 74% and window 2 achieving 61%. Across all menus and windows, the 611 

emergency menu in window 1 had the highest mean hit rate (77%), while the general menu in window 2 612 

had the lowest (61%). This result is expected, as the emergency menu is designed for higher hit rates, 613 

particularly given the greater predictability of severe droughts in window 1. 614 

 615 

In addition to the highest drought predictability, the South zone of Mozambique also exhibited the highest 616 

total AA coverage, with an average of 86% of districts having an AA trigger. The highest single window and 617 

trigger menu coverage was in the South zone under the general menu, with 97% of districts having a 618 

trigger. Spatial differences in trigger performance were also observed between neighboring provinces, 619 

such as Manica and Tete in window 1 under the general menu. These differences could be driven by 620 
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varying forecast skill levels. For instance, the AUROC scores for the general trigger in window 1 are 0.82 621 

for Manica and 0.68 for Tete. Factors contributing to these differences could include under- or over-622 

estimation of rainfall events used to verify forecasts in Mozambique (as noted in a previous study by Toté 623 

et al., 2015), numerical effects from data rescaling, and the resolution of district-level assessments using 624 

CHIRPS and ECMWF forecasts. 625 

  626 

 627 
Figure 8: Hit rate of the Ready, Set & Go! Trigger system for severe droughts for two trigger menu (emergency and general) and two 628 
windows of intervention (window 1 and window 2). No trigger for the Ready, Set & Go! for severe droughts were found for the districts 629 
in grey. 630 

 631 

Regarding the average false alarm ratio of the triggers across different windows (Figure 9), the highest 632 

and lowest ratios are observed in the South zone for window 2 (20%) and the Central zone for window 1 633 

(10%), respectively. Across various menus and windows, the emergency menu and window 2 exhibit the 634 

highest false alarm ratio (16%), while the general menu and window 1 have the lowest (10%). This pattern 635 

is expected, as the emergency menu is designed to tolerate a higher false alarm ratio to ensure a higher 636 

hit rate, making it less prone to missing a drought forecast. 637 

 638 

Supplementary Material S5 details the specific SPI indicators used for AA triggers. For window 1, SPI DJ is 639 

the most commonly selected indicator across all zones. In window 2, different SPIs are chosen per zone: 640 

i) SPI FMA for the North zone, ii) SPI JFM for the Central zone, and iii) SPI DJF for the South zone. 641 

 642 

Regarding lead times, the earliest “ready” alert for preparedness in window 1 can be issued for a few 643 

districts in the South zone based on the May forecast. However, for most districts in the South zone, the 644 

July forecast is used for preparedness, whereas in the North and Central zones, the September forecast is 645 

most commonly used for the “ready” alert. In window 2, most districts in the South zone use the August 646 

forecast for preparedness, while the North and Central zones typically use the October forecast. 647 

 648 
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It is important to note that regional rainfall climatology significantly influences the choice of intervention 649 

windows and indicators. As a result, districts in the South zone may receive readiness alerts earlier in the 650 

season compared to other areas. This factor is crucial for planning AA activities and allocating geographical 651 

funding. 652 

 653 

 654 
Figure 9: False Alarm ratio of the Ready, Set & Go! Trigger system for severe droughts for two trigger menu (emergency and general) 655 
and two windows of intervention (window 1 and window 2). No trigger for the Ready, Set & Go! for severe droughts were found for the 656 
districts in grey. 657 

 658 

4. DISCUSSION, LIMITATIONS AND NEXT STEPS 659 

In this study, we present the methodology behind  the operational Ready, Set & Go! trigger system used 660 

by Mozambican governmental institutions and their partners to guide AA activities against droughts. The 661 

system optimizes the use of seasonal forecast information by identifying triggers for AA through a  double 662 

confirmation process. This approach combines longer and shorter lead time forecasts to issue more 663 

reliable drought alerts. Our findings indicate  that by utilizing both  bias corrected and raw ensemble 664 

rainfall forecasts, AA efforts could potentially be scaled up to cover the entire rainy season in, 76% of 665 

Mozambique’s district.  If focused solely on the first part of the rainy season, where  drought predictability 666 

is higher, AA activities could expand to  87% of all districts. This demonstrates that seasonal forecasts can 667 

reliably inform AA months before the onset of severe droughts, meeting the quality criteria established 668 

by  multiple institutions. Such scalability indicates  strong  potential for  expanding  current AA pilots 669 

nationwide, supporting  the ambitious goals of the Maputo Declaration where Southern Africa 670 

governments committed to extending early warning systems across the  region (SADC, 2022). Globally, 671 

the Ready, Set & Go! system also aligns with  the Early Warning for All initiative, which aims  to ensure 672 

that every individual worldwide  is protected from climate events through early warning systems by 2027 673 

(WMO, 2022). This initiative underscores the need for expanding the climate information portfolio of  674 
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national meteorological and hydrological services for direct application in disaster risk management. 675 

However, there are still limitations and opportunities for improvements , which we discuss in the following 676 

sections. 677 

 678 

This study demonstrates that the Ready, Set & Go! Trigger system can effectively issue severe drought 679 

alerts using SPI 2 and SPI 3 indicators, which the Technical Working Group in Mozambique has deemed 680 

suitable for monitoring and anticipating drought risks in agricultural systems. However, these indicators 681 

and thresholds are not flawless in detecting drought damage, as the relationship between drought risk 682 

and impact is often location-specific, non-linear, and influenced by non-climatic factors such as 683 

vulnerability (Brida et al., 2013; Silva & Matyas, 2014). The ideal method for establishing AA thresholds 684 

that reliably detect drought-related losses would involve an historical analysis examining the connection 685 

between drought events and socio-economic impacts, such as crop yields, income losses, health 686 

outcomes, and food security. Past studies on index-based insurance for the agricultural sector have 687 

extensively explored the gap between rainfall measurements and actual agricultural losses, highlighting 688 

challenges in accurately capturing real world farmer impacts (Clarke & Dercon, 2009; Clement et al., 2018; 689 

Greatrex et al., 2015). Unfortunately, comprehensive, downscaled impact data is largely unavailable, 690 

particularly across African countries, limiting further refinement of thresholds and indicators within the 691 

system and hindering the ability to solidify links between drought conditions and past impacts. Future 692 

efforts should focus on refining these thresholds to strengthen the relationship between physical drought 693 

hazards and expected impacts. This could be achieved by utilizing spatially explicit socio-economic 694 

datasets, such as the Integrated Food Security Phase Classification indicator from the Famine Early 695 

Warning Systems Network, along with data recovery exercises. This would allow users to better 696 

understand food security outcomes tied to drought events. 697 

Additionally, the Ready, Set & Go! system issues drought alerts based on a multi-month SPI indicator, 698 

which can overlook the effects of short but impactful dry spells, poorly distributed rainfall, intense rainfall 699 

episodes, or delayed/early cessation of rains. Incorporating additional drought indicators could help 700 

better capture these risks, ideally through an exploratory analysis that links specific drought indicators to 701 

negative impacts and evaluates their predictability. 702 

Two technical aspects related to the extraction of the SPI indicator also requires further improvement. 703 

First, more sensitive statistical tests could be used to identify candidate probability distributions for 704 

normalizing drought indices. Although this study applies the two-parameter gamma distribution, as 705 

recommended by Stagge et al. (2015), a more rigorous assessment of the assumed SPI distributions could 706 

be beneficial. Second, the handling of zero precipitation poses challenges, particularly in regions with very 707 

low seasonal rainfall. In this system, zero precipitation events are accounted for by assigning SPI values 708 

based on their historical occurrence. However, this approach can be problematic when many zero values 709 

are present, as SPI requires a mean value of 0 to reflect typical conditions, where half of the years is 710 

wetter, and half is drier. While the presence of zero precipitation was rare in this study, further refinement 711 

is needed to handle these cases more effectively. Using a method such as the center of probability mass, 712 

as suggested by Stagge et al. (2015), could offer a more robust approach to calculating SPI in extremely 713 

dry regions. 714 
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 715 

The Ready, Set & Go! Trigger system aims  to extend  AA and reliable early warning information to all 716 

districts in Mozambique. Although we have not yet fully achieved this goal using our current technique , 717 

we believe that refining the bias correction methodology will enhance the system’s effectiveness. Bias 718 

correction is a critical element in precipitation forecasts, with  QM being one of the most commonly 719 

applied techniques. In developing AA trigger system, we designed and evaluated a bias correction 720 

methodology to improve the accuracy of  seasonal forecast in predicting severe droughts. While our 721 

methodology has increased forecast for 24% of the predicted SPI at the district level and expanded AA 722 

coverage by 4% (as shown in Table 3, comparing scenario 3 to 4), there is still potential to further enhance 723 

the bias correction approach. Below, we outline the improvements that can be made. 724 

 725 

Firstly, our method uses an ENSO-informed quantile mapping transfer function to correct the SPI forecast 726 

based on the SPI reference value of the pixel under investigation and its nine neighboring pixels 727 

conditioned on the state of ENSO. This process  ensures that the bias correction accounts for variations in 728 

the SPI quantities according to the climatology of different ENSO phases, effectively capturing relevant 729 

global processes (Manzanas & Gutiérrez, 2019; Maraun et al., 2017). In practice, this involves splitting SPI 730 

time series, derived from both CHIRPS and ECMWF ensemble forecasts, into Neutral, La Niña and El Niño 731 

years depending on the ENSO phase (detailed in Supplementary Material S1). However, in some regions 732 

of Mozambique, such as part of Tete, the ENSO-rainfall signal is weak, particularly during October to 733 

December (WFP, 2018). Therefore, relying solely on an ENSO-based approach may not be the ideal in 734 

these areas. Other  climate variability modes, such as the Indian Ocean Dipole,  are also known to influence 735 

annual rainfall variability in the Mozambique (Ficchì et al., 2021; Harp et al., 2021; Ogwang BA, Ongoma 736 

V, Shilenje ZW, Ramotubei TS, Letuma M, 2021). This suggests a need to investigate the suitability of 737 

incorporating additional teleconnections modes into the bias correction process. 738 

 739 

Second, since extreme droughts generally affect broad areas rather than single locations (Eskridge et al., 740 

1997; Liu et al., 2021), our bias correction methodology accounts for the spatial dependence of SPI. To 741 

bias correct a single grid point of the SPI ensemble forecast, we incorporate data from multiple grid points 742 

(the target grid point and its nine neighbors) from the reference SPI dataset to build the transfer function. 743 

Previous research has shown that addressing spatial dependence reduces bias in climate model outputs 744 

(Cannon, 2018; Nahar et al., 2018). To avoid overfitting, we use a leave-one-year-out cross-validation 745 

scheme, excluding the year being bias corrected from the transfer function. For the spatial dependence 746 

setup, we tested two k values (4 and 9), ultimately selecting 9 based on improved spatial homogeneity of 747 

AUROC scores. However, this approach could benefit from further optimization by assessing the k value 748 

that yields the highest AUROC scores for specific locations. 749 

 750 

Third, improvements in bias correction may be achieved by exploring emerging methodologies such as 751 

Machine Learning (ML). Recent studies indicate that ML has the potential to outperform traditional 752 

techniques like QM (e.g., Yoshikane & Yoshimura, 2023; Zarei et al., 2021). Lastly, our initial internal tests 753 

showed significant improvements in drought predictability by creating a transfer function that directly 754 

links SPI forecasts to SPI observations, rather than taking the traditional approach of bias correcting daily 755 

or monthly raw rainfall forecasts before converting them into SPI values. This direct approach has led to 756 
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both statistical and practical gains, as it allows the system to focus directly on drought detection. If the 757 

system evolves to include additional rainfall-based indicators, such as dry spells or the start/cessation of 758 

rains, a method that directly bias corrects raw forecasts could offer operational advantages, as it can be 759 

widely applied to generate additional indicators. 760 

 761 

We also highlight the potential to scale up AA by utilizing rainfall seasonal forecasts from the ECWMF. In 762 

our approach, the seasonal forecast is downscaled from 1 degree to 0.25 degrees using bilinear 763 

interpolation, which allows us to assess forecasting skill at the district level. Extracting drought alerts at 764 

the district level is crucial to align with the geographical targeting of AA interventions. However, further 765 

investigation into other downscaling techniques, such as ML, could be beneficial, as ML has been shown 766 

to enhance forecast skill  (Jin et al., 2023). ECMWF was initially selected as our primary source of 767 

forecasting information due to its superior skill in predicting precipitation over the African continent 768 

compared to other centers (Gebrechorkos et al., 2022). Nevertheless, future studies may benefit from 769 

shifting from a single-model approach to a Multi-Model Ensemble (MME) strategy. MME integrates 770 

independent models from various forecasting centers of information, which helps mitigate model errors 771 

and can enhance the reliability of seasonal outlooks (Doblas-Reyes et al., 2010; Gebrechorkos et al., 2022; 772 

Rozante et al., 2014) 773 

 774 

We demonstrate that the Ready, Set & Go! system improves the accuracy of AA advisories, resulting in a 775 

higher hit rate and a lower false alarm ratio compared to a system that relies on a single alert for AA 776 

advisories. Additionally, we observe that this system extends the lead time for preparedness activities, 777 

allowing for the scaling up of AA efforts against severe droughts during the first window of the rainy 778 

season, covering 87% of districts in Mozambique. However, since AA triggers are identified and optimized 779 

at the district level, the system is prone to issuing advisories for individual districts, even though past 780 

severe droughts have often had broader impacts, including widespread socio-economic consequences 781 

(Baez et al., 2020). This discrepancy may occur because the system uses different lead times for 782 

forecasting information across districts within the same province or because triggers for different 783 

implementation windows within a province are based on varying SPI indicators. An example of this can be 784 

seen in southern Mozambique (refer to Supplementary Material S5). Despite these statistical gains, 785 

optimizing AA triggers at the district level needs to be contextualized for practical decision-making, 786 

particularly for large-scale operations and the distribution and management of funding. Therefore, while 787 

district-level optimization may be effective statistically, it may not always be the most appropriate 788 

approach for AA planning, especially when scaling up AA across the entire country. One potential solution 789 

to avoid asynchrony in AA triggers is to refine the selection of indicators and lead times by evaluating their 790 

performance across the majority of districts within a province, ensuring more synchronized and 791 

coordinated AA efforts. 792 

 793 

We also demonstrate that the triggers for the Ready, Set & Go! system can be adjusted based on 794 

vulnerability information, adding an important nuance to AA operations (Baez et al., 2020). However, 795 

measuring vulnerability is a complex task that often requires frequent updates, location-specific data, and 796 

further disaggregation by age and gender (Chaves-Gonzalez et al., 2022). In Mozambique, the Technical 797 

Secretariat for Food Security and Nutrition (SETSAN) is responsible for providing such information. AA 798 
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operations would greatly benefit if this data were made available in a timely manner, ideally before the 799 

start of the AA season. Unfortunately, this is not always the case. More research is needed to understand 800 

vulnerability trends and their relationship to climate hazards (Baez et al., 2020; Hallegatte et al., 2016). As 801 

the system expands, collecting timely vulnerability data may become increasingly challenging. Therefore, 802 

a systematic, rapid, yet robust methodology for vulnerability analysis is essential. We have also observed 803 

a lower percentage of districts covered by AA when emergency triggers—modulated by vulnerability—804 

are used. These emergency triggers inherently allow for a higher rate of false alarms and focus on "no-805 

regret" actions (Chaves-Gonzalez et al., 2022) while increasing the probability of detection. This approach 806 

aims to maximize the number of extreme droughts anticipated by AA interventions and provide a safety 807 

net for areas with high vulnerability. However, the current criteria for identifying emergency triggers are 808 

not achieving higher coverage compared to general triggers. Revisiting these criteria (see Table 1) through 809 

a statistical optimization process may help enhance the system's effectiveness. 810 

 811 

As previously mentioned, the Ready, Set & Go! system is currently being piloted in 11 districts across 812 

Mozambique, with plans to scale up AA operations in 2024. Due the 2023-24 El Niño, several AA advisories 813 

have already been issued to districts in the Gaza, Sofala, and Tete provinces, marking the system's first 814 

operational deployment during the 2023-24 rainy season. While humanitarian and governmental 815 

organizations have substantial experience in responding to hazards after they occur, most monitoring and 816 

evaluation (M&E) efforts have focused on the effects of emergency responses post-crisis. There is limited 817 

evidence on the benefits of AA, particularly regarding drought interventions partially given the small 818 

number of pilot interventions to date as well as with challenges faced by studies on benefit 819 

estimations/modelling. As the evidence base for value for money begins to form, WFP's AA programs are 820 

showing potential as a sustainable way to support climate-vulnerable governments with limited resources 821 

(WFP, 2023a). In Kenya, drought-related AA could save up to US$20 billion over 20 years, even with false 822 

alarms costing significantly less than a late response. In Ethiopia, Kenya, and Somalia, AA could save 823 

US$1.6 billion over 15 years by mitigating drought impacts before price spikes and negative coping 824 

strategies. In Nepal, AA reduced damage to vulnerable populations by 75% and cuts asset losses by 50%, 825 

saving US$34 for every dollar invested and reducing long-term recovery costs. In Zimbabwe, AA reached 826 

32,500 people before drought impacts, with 97% of farmers benefiting from climate information and 80% 827 

adapting their practices, leading to higher resilience compared to a control group. 828 

 829 

Given that AA represents an innovative approach and a relatively new concept in risk management, it is 830 

crucial to establish a robust M&E system to evaluate the effectiveness of AA interventions. This system 831 

will provide valuable insights into what has worked well in practice and highlight areas for improvement 832 

in future operations. Ultimately, a well-designed M&E process will help determine whether AA 833 

interventions are effectively reducing or mitigating the impacts of droughts on affected populations (Gros 834 

et al., 2021) 835 

 836 
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5. CONCLUSIONS AND RECOMMENDATIONS 837 

In this article, we introduced and benchmarked the “Ready, Set & Go!” system, which is being piloted in 838 

Mozambique to trigger anticipatory action against severe droughts. This system is designed to implement 839 

measures that mitigate the impacts of rainfall deficits during the critical period between forecasting and 840 

the onset of drought. Following the recent adoption of the SADC Maputo Declaration by its member 841 

states, there is a need to evaluate the system's opportunities and limitations for expanding drought AA 842 

coverage to all districts in Mozambique. Our study findings include: 843 

 844 

• Potential for Expansion: The Ready, Set & Go! system could potentially scale AA activities to 76% 845 

of Mozambican districts. Additionally, 63% of these districts could adopt an alternative trigger 846 

system tailored to vulnerability levels. This feature allows the system to proactively address 847 

potential vulnerabilities for the upcoming season. If only the first window of the rainy season is 848 

targeted, coverage could increase to 87%. 849 

• Impact of Bias Correction: The bias correction methodology used in the Ready, Set & Go! system 850 

enhances forecasting skill for 24% of all forecasted SPI indicators at the district level. This 851 

improvement slightly raises AA coverage from 73% to 76% for the general menu, and from 59% 852 

to 63% for the emergency menu. This means bias correction can extend operational AA coverage 853 

to about six additional districts, representing a slight improvement but also enhancing the 854 

potential for life-saving AA. 855 

• Increased Hit Rate and Lead Time: The Ready, Set & Go! system improves both the hit rate and 856 

lead time for AA compared to three alternative triggering approaches. The highest mean hit rate 857 

across different windows was observed in the Central Zone within window 1 (74%). SPI DJ is the 858 

most commonly used indicator for AA in window 1. The earliest “ready” alert for preparedness 859 

can be issued for a few districts in the South zone based on the May forecast. 860 

• Reduced False Alarm Ratio: The Ready, Set & Go! system achieves a lower false alarm ratio 861 

compared to the three alternative approaches. The mean lowest average false alarm ratio is found 862 

in the Central Zone for window 1 (10%). Among different menus and windows, the mean highest 863 

false alarm ratio is 21% for the emergency menu in window 2, while the mean lowest is 10% for 864 

the general menu in window 1. 865 

 866 

We observed that the piloted drought EWS has significant potential for scaling up AA across Mozambique, 867 

aligning with the goals of the Maputo Declaration and the Early Warning for All initiative to provide climate 868 

event coverage and protection to all citizens by 2027. However, several next steps could further enhance 869 

the effectiveness of the EWS: 870 

 871 

Enhancing Bias Correction Methodology 872 

• Explore Additional Climate Indices: Incorporate more indices related to climate variability to 873 

refine the transfer function. 874 

• Optimize Nearest Neighbors: Fine-tune the number of nearest neighbors used in bias correction. 875 

• Investigate Emerging Techniques: Explore advanced methods such as Machine Learning to 876 

improve accuracy. 877 
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 878 

Improving Forecast Resolution 879 

• Explore Downscaling Techniques: Investigate alternative downscaling methods to enhance the 880 

resolution of seasonal forecasts. 881 

• Consider Multi-Model Ensemble Approaches: Evaluate whether combining multiple models could 882 

improve the reliability of seasonal outlooks. 883 

 884 

Strengthening Impact Links 885 

• Connect Thresholds to Socio-Economic Impacts: Enhance understanding of the socio-economic 886 

consequences of droughts to better plan and target AA activities. 887 

• Incorporate Additional Indicators: Include other relevant drought indicators, such as the onset of 888 

rains and rainfall cessation, to provide a more comprehensive assessment. 889 

 890 

Contextualizing Trigger Optimization 891 

• Refine Triggers for Practical Decision-Making: Consider the impact of optimizing triggers at the 892 

district level, which may lead to asynchrony in AA activations among neighboring districts. Select 893 

SPI 2 or SPI 3 indicators and lead times based on their performance across most districts within a 894 

province. 895 

 896 

Investing in Monitoring and Evaluation 897 

• Support Ongoing Pilots: Invest in monitoring, evaluation, and learning to inform future expansion 898 

of the anticipatory approach and maximize the impact of AA activities. 899 

 900 

These steps may help to maximize the effectiveness and coverage of the EWS, ensuring that AA efforts 901 

are timely, more accurate and well-targeted. 902 
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