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ABSTRACT 13 

 14 

The World Food Programme, in collaboration with the Mozambique National Meteorology Institute, is 15 

partnering with several governmental and non-governmental organizations to establish an advanced early 16 

warning system for droughts in pilot districts across Mozambique. This warning system, namedThe 17 

"Ready, Set & Go!" system is operational in Mozambique for activating anticipatory action (AA) against , 18 

aims to proactively address impending droughts by settingbased on predefined thresholds, triggers, and 19 

funding mechanismspre-allocated financing. for anticipatory actions. The system uses bias corrected and 20 

downscaled seasonal forecasts from the European Center for Medium-Range Weather Forecast (ECMWF) 21 

as core information to anticipate severe reductions in rainfall during the rainy season. This information 22 

guides the implementation of actions to reduce the impacts of rainfall deficits in the critical window 23 

between a forecast and the onset of the drought event. Within this window of opportunity, the system 24 

releases an alert for readiness (Ready) and activation (Set) preceding the mobilization of anticipatory 25 

action on the ground (Go).  With the recent adoption of the Southern African Development Community 26 

Maputo Declaration on Bridging the Gap between Early Warning and Early Action, member states have 27 

committed to enhancing the reach of early warning system by leaving no one behind. Therefore, there is 28 

a need to assess the opportunities and limitations of the Ready, Set & Go! system to scale up drought AA 29 

information to all districts in Mozambique. This study describes the Ready, Set & Go! system which uses 30 

ensemble forecasts of the Standardized Precipitation Index to trigger anticipatory action against droughts 31 

on a seasonal timescale. The Ready, Set & Go! optimizes the use of seasonal forecast information by 32 

choosing triggers for anticipatory action based on verification statistics and on a double confirmatory 33 

process, which combines longer lead times with shorter lead time forecasts for issuing drought alerts. In 34 

this study, we show the strengths of the system by benchmarking it against three simpler triggering 35 

approaches. Our findings indicate that the Ready, Set & Go! system has significant potential to scale up 36 

AA activities against severe droughts throughout the entire rainy season, covering on average 76% of the 37 

Mozambican districts. This approach outperforms the three benchmarked methods, demonstrating 38 

higher hit rates, extended lead times, and a lower false alarm. If efforts are concentrated on the first part 39 

of the rainy season, national coverage against severe droughts could be expanded to 87% of all districts. 40 

We found that the Ready, Set & Go! system has the potential for scaling up AA activities against severe 41 

droughts to 76% of the Mozambican districts with increased hit rate and lead time, and decreased false 42 

alarm ratio compared to the other three benchmarked approaches. National coverage against severe 43 
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droughts could be reached to 87% of all districts if targeting only the first part of the rainy season. By 44 

aligning with the objectives outlined in the Maputo Declaration and the Early Warning for All initiative, 45 

this research contributes to safeguarding communities against the adverse impacts of climate-related 46 

events, aligning with the ambitious goal of universal protection by 2027. 47 

 48 

  49 
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1. INTRODUCTION 50 

Mozambique experienced in 2015/16 one of its worst drought events in decades, which affected the food 51 

security of approximately 2.3 million people leading to its government to declare a state of national 52 

emergency (OCHA, 2017). This El Niño induced drought caused an exceptional lack of precipitation in two 53 

consecutive rainy seasons, which resulted in significant losses in rain-fed yields, below-average irrigated 54 

crops, poor pasture conditions and high cattle mortalities (WFP, 2016). The dryness propagated into water 55 

reservoirs in southern Mozambique, where the impact on water levels remained for five years (ECHO, 56 

2021). 57 

 58 

Mozambique is a country exposed and vulnerable to multiple hazards due to its geographical location and 59 

long latitudinal extent.  Its climate is affected by several modes of climate variability such as the El Niño-60 

Southern Oscillation (ENSO; Rapolaki et al., 2019; Blamey et al., 2018), Indian Ocean Dipole (IOD; Ashok 61 

et al., 2001; Manatsa et al., 2011; Saji et al., 1999) and the Subtropical Indian Ocean Dipole (SIOD; (Behera 62 

& Yamagata, 2001). These climate modes of variability modulate the frequency and intensity of the 63 

various weather systems that are directly associated to multiple natural hazards happening as a single or 64 

consecutive risk (e.g., Hart et al., 2010; A. J. Manhique et al., 2015; Atanásio João Manhique et al., 2021; 65 

Mawren et al., 2020; Rapolaki et al., 2019; Reason & Keibel, 2004). Impacts of multi single and consecutive 66 

hazards including flooding, cyclones and droughts are exacerbated by poverty and weak institutional 67 

development, where climate related disasters  are one of the main driving forces of inequalities and food 68 

insecurity in the country (Baez et al., 2019). In Mozambique, nearly 25% of its population live in areas with 69 

a high probability of experiencing a climate shock (World Bank, 2018). Therefore, the adoption of 70 

protective mechanisms and systems to anticipate and prepare the government and communities to 71 

climate shocks is crucial for building resilience and sustainable development. Recently, the national 72 

government has made climate risk management a priority strategy following the adoption of the Maputo 73 

Declaration on Bridging the Gap between Early Warning and Early Action, in which member states of the 74 

Southern African Development Community (SADC) have committed to take an active people-centered 75 

role to ensure all citizens access to effective Early Warning and Early Action systems (SADC, 2022). 76 

 77 

Since 2019, a multi-sector government-led anticipatory action (AA) trigger system against drought (WFP, 78 

2023) has been under development in Mozambique coordinated by the Mozambique National Institute 79 

of Disaster Management (INGD) with the technical support of relevant actors, including the National 80 

Meteorological Institute (INAM) and the World Food Programme (WFP). Droughts are a slow, recurrent, 81 

and predictable phenomena (Guimarães Nobre et al., 2023) and yet, they cause an estimated yearly loss 82 

of US$20 million (Baez et al., 2019) to Mozambique. Drought early warning system (EWS) have a great 83 

potential to reduce some of these losses when anticipatory action (AA) is implemented ahead of a shock 84 

based on forecast information. Previous studies have assessed the skill of seasonal forecasts to predict 85 

the onset of droughts (Gebrechorkos et al., 2022; Guimarães Nobre et al., 2023; Trambauer et al., 2015; 86 

Winsemius et al., 2014) whereas only few have focused on an in depth interpretability of the forecast 87 

quality through the lenses of decision-making and practical implications. For instance, a reflection on the 88 

adequateness of lead time of information for action, and/or definition of probabilistic trigger values for 89 

releasing drought alerts and advisories for AA are aspects largely missing in the scientific literature. 90 
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 91 

AA approaches are gaining more traction with an increased number of institutions dedicating funding and 92 

pilot studies in Mozambique. However, the evidence on the benefits of acting earlier is still fairly new and 93 

limited. Overall, existing evidence based on pilot experiences in other parts of the world have mainly 94 

suggested a positive impact of AA at household level, with beneficiaries reporting higher crop productivity 95 

and less food insecurity during prolonged periods of drought (Weingärtner et al., 2020). In Mozambique, 96 

AA drought pilots are limited - to date - to eleven districts and further scale up of activities to the national 97 

level is desired. However, an assessment of the opportunities and limitations of the current drought AA 98 

trigger system is currently missing, especially given the 2023 El Ninõ scenario, which is expected to 99 

negatively affect the 2023-24 rainy season. In response to the need of assessing the potential to bring AA 100 

to scale, this study describes the operational triggering system for drought AA being piloted in 101 

Mozambique during the southern Africa rainy season 2023-24. This article presents the analytical routines 102 

involved in the definition and monitoring of triggers for AA as describes the technical methodologies of 103 

the system by outlining data processes, forecast application, decision-making and operational activities 104 

linked to the release of AA advisories to pilot areas. 105 

 106 

  107 
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2. CASE STUDY & METHODS  108 

2.1 Case Study  109 

We developed a methodology that is being piloted and scalable for triggering AA against droughts for all 110 

districts in Zimbabwe and Mozambique, although this study has a special focus on the latter. Currently in 111 

Mozambique, a government-led AA plan is in place for 11 pilot districts (see Figure 1). However, an 112 

operational triggering system anticipatory action system is desired for the whole country requiring the 113 

upscaling of the current set up. Concerning climatology, the rainy season in Mozambique lasts from 114 

October to May, although the largest amounts are experienced between November and April. The wettest 115 

months are December and January, however January alone is the wettest month across the country (WFP, 116 

2018). Rainfall amounts increase from south to north. For instance, areas of low annual rainfall (less than 117 

500 mm) include the southern provinces of Maputo, Gaza, Inhambane and the southern half of Tete, 118 

whereas areas of high total rainfall (over 2000 mm) include the provinces of Cabo Delgado, Niassa, 119 

Nampula and Zambezia. Rainfall interannual variability is stronger in areas of lower rainfall totals and is a 120 

major limiting factor to livelihoods and small-scale rain-fed agriculture (Guimarães Nobre et al., 2023). In 121 

addition, the province of Gaza has a remarkably variable and short growing season length (mostly below 122 

3 months). Interannual climate variability in the southern Africa region is particularly linked to the El Niño-123 

Southern Oscillation (ENSO) (Richard et al., 2001). During the months of October to December, the El Niño 124 

phase often drives rainfall increases (decreases) in Cabo Delgado and Niassa in northern Mozambique 125 

(southern provinces of Maputo, Gaza and Inhambane). During these months, when a La Niña state is 126 

observed, rainfall increases are observed in parts of the central provinces of Manica, Sofala and northern 127 

Inhambane. In addition, during the months of January to March, El Niño leads to drier conditions across 128 

most of the country, whereas in the south and centre of the country a moderate increase in rainfall is 129 

observed during La Niña phases (WFP, 2018). Mozambique is highly climate vulnerable country where 130 

livelihoods rely on local natural resources (e.g., agriculture and fisheries) as their primary economic 131 

activity. Drought events affect the ability of farmers and fishermen to sustain crops and fish, often 132 

cascading into situations of food insecurity, malnutrition, and unsustainable incomes. 133 

 134 



6 
 

 135 
Figure 1: Districts in Mozambique with government-approved anticipatory action plans. 136 

2.2 Methodological Framework  137 

The operational triggering system for drought AA is developed and tested in three stages (Figure 2): (1) 138 

data pre-processing, (2) forecast application and decision-making, and (3) sensitivity analysis. A detailed 139 

explanation of each stage is provided in sections 2.2.1 to 2.2.3. 140 

 141 

 142 

 143 
Figure 2: Flowchart of the methodological framework applied in this study, handled in three stages: (1) data pre-processing; (2) forecast 144 
application and decision-making; and (3) sensitivity analysis. 145 

https://www.sciencedirect.com/science/article/pii/S0048969718343067#f0005
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2.2.1  Part 1: Data pre-processing 146 

Collection of datasets and rescalingrainfall observation (from 1981) 147 

As source of rainfall observationsestimates, we use daily blended precipitation records from the Climate 148 

Hazards group Infrared Precipitation with Stations version 2 (CHIRPS) for the period of January 1981 to 149 

near presentdate. CHIRPS is a high resolution (0.05°) precipitation dataset, which is used for drought early 150 

warning purposes by the Famine Early Warning Systems Network (Funk et al., 2015).This dataset 151 

integrates data from real-time meteorological stations with infrared satellite data (therefore called 152 

blended precipitation product), covering from 50°N to 50°S via a blending procedure further described in 153 

Funk et al. (2015). 154 

 155 

Collect seasonal forecast data (ECMWF from 1993) 156 

As source of forecast data, we use seasonal precipitation forecasts from the ECMWF's seasonal forecasting 157 

system (SEAS5) for the period 1993–2022. In its native resolution, the forecast is available at 1 arc-degree 158 

and new forecasts are released monthly on the fifth day covering the coming 7 months. SEAS5 is 159 

composed of a set of 25 ensemble members until 2016 (hindcast period), and 51 ensemble members from 160 

2017 onwards as part of the operational system (Ratri et al., 2019). It is important to highlight that ECMWF 161 

SEAS5 has a new version (SEAS5.1) since November 2022 with extended hindcast until 1981 which full 162 

time series of hindcast and operation forecast can be freely downloaded from the Copernicus Climate 163 

Data Store. 164 

Remapping CHIRPS and seasonal forecast data 165 

Since the datasets of rainfall estimates and forecasts are available in different spatial resolutions, we 166 

remapped them into an intermediate resolution of 0.25°. This moderate resolution was chosen taking into 167 

consideration the size of pilot districts in which the system will be implemented, computational capacity 168 

as well as to reduce the impact of rainfall small-scale variability. For this process, we used bilinear 169 

interpolation one of the most commonly used methods of climate grid interpolation (National Center for 170 

Atmospheric Research Staff, 2014). Bilinear interpolation resizes the data by estimating values at a point 171 

by averaging the values of the surrounding points. 172 

 173 

We downscale the forecasting data to a 0.25° regular mesh by applying bilinear interpolation using the 174 

above mentioned upscaled CHIRPS gridded data. 175 

Extract time series of observed SPI 2 and SPI 3 within rainy season 176 

From the daily CHIRPS rainfall estimates, we extract the Standard Precipitation Index (SPI), a widely used 177 

indicator for measuring rainfall variability over a long-term climatological period (Svoboda et al., 2012). 178 

The SPI is centered around the mean rainfall for a given time and location, with values ranging from -4 to 179 

+4. Negative SPI values indicate various levels of rainfall deficits, which are particularly relevant to the 180 

designed trigger system. The SPI can also highlight drought situations when a “danger threshold” is 181 
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identified signaling rainfall deficits severe enough to prompt anticipatory to mitigate the impacts on 182 

livelihoods.  183 

 184 

In this study, SPI values are calculated using two- and three-month accumulation periods (SPI 2 and SPI 3, 185 

respectively). These accumulation windows are particularly suitable for detecting risks to agricultural 186 

systems during the crop development cycle. It is crucial to note that the AA framework aims to protect 187 

food security by reducing the risk of crop failures in rain-fed systems. Therefore, only SPI values extracted 188 

during the rainy season are relevant to the trigger system (see the section below for a detailed explanation 189 

of windows of opportunity for anticipatory action). 190 

 191 

To derive the SPI estimates, the CHIRPS rainfall dataset, accumulated over two and three months, is fitted 192 

to a gamma distribution and subsequently transformed to a normal distribution with z-values (Lloyd-193 

Hughes & Saunders, 2002). The period from 1981 to 2018 serves as the reference climatology for 194 

calculating the gamma distribution parameters. This period was selected due to the availability of a 195 

complete series of rainfall observations at the start of the project in 2019. Periods with zero precipitation 196 

are handled by assigning SPI values based on the historical occurrence of such periods from 1981 to 2018. 197 

However, since we use precipitation data accumulated over two and three months, zero values are rare, 198 

especially as SPI is only extracted during the rainy season. For extracting SPI during the dry season or in 199 

arid regions, more sophisticated techniques, such as those described by  Stagge et al., (2015), are available 200 

and should be preferred. 201 

Extract time series of ensemble SPI 2 and SPI 3 within rainy season for multiple lead times 202 

For the forecasting series, the parameters of the gamma distribution are determined using data from all 203 

ensemble members for the years 1993 to 2018, as data prior to 1993 is not available in the Copernicus 204 

Climate Data Store (SEAS5). The routine adopted for handling zero values is similar to the one described 205 

for deriving SPI estimates (see above). In Figure 3, we illustrate the extraction of SPIs for various lead times 206 

of the forecast system with a seven-month lead time. For example, the seasonal forecast released at the 207 

beginning of May covers the subsequent months (May to November). Therefore, the only indicator  208 
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extracted from this forecast is SPI 2 ON, as October marks the first month of the rainy season in the 209 

country. 210 

 211 

 212 
Figure 3 Illustration of the SPIs representing rainfall anomalies during Mozambique's rainy season, along with the corresponding 213 
forecast months used for their extraction. 214 

 215 

Define danger threshold for identifying past drought events 216 

 217 

Given that the Standardized Precipitation Index (SPI) is linked to the probability of certain rainfall amounts, 218 

we convert a specific z-value into an expected frequency by calculating the area under the normal 219 

distribution curve up to that z-value. This proportion, or probability (p), is then converted into a return 220 

period (T) by taking the inverse of the probability (p = 1/T). In the operational AA trigger system, three z-221 

value thresholds are used, as highlighted by Guimarães Nobre et al (2023), corresponding to different 222 

severity levels. This article focuses on the most severe category in the AA trigger system, which is SPI ≤ -1 223 

as this negative anomaly is expected to cause the most significant damage among those adopted by the 224 

system. 225 

 226 

However, it is important to highlight that the impact of a drought threshold should ideally be estimated 227 

using historical observations combined with information on who and what is exposed to a hazard 228 

(exposure and vulnerability). Due to the lack of extensive drought impact data at the district level, the 229 

choice of a threshold level is based on frequencies suitable for AA operations in the region. Typically, AA 230 

programs target hazards that occur at least once every three years on average. Implementing AA pilots 231 

periodically is crucial for enhancing program activities. Consequently, thresholds for AA operations should 232 

not be set too low, given that the occurrence of drought events of such intense magnitude is rare. A SPI ≤ 233 
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-1 (named severe category in the AA trigger system) corresponds to an event occurring approximately 234 

once every 6 to 7 years (or p = 15.87%). By applying the SPI ≤ -1 threshold to the SPI2 and SPI3 estimated 235 

series, we obtain a time series since 1981 of past drought events for the respective two- and three-month 236 

periods in the pilot districts. 237 

 238 

Bias correction of ensemble forecasted SPI 2 and SPI 3 239 

 240 

We employ a quantile-quantile mapping technique, conditioned on the state of ENSO, to adjust SPI 241 

forecast values. This is achieved by aligning the cumulative density function of SPI forecasts at each grid 242 

cell with the reference SPI data extracted from CHIRPS at the corresponding grid cell and its k nearest 243 

neighbors. The SPI forecast and reference distributions are matched by establishing an ENSO-informed, 244 

quantile-dependent correction function. This function adjusts the forecast quantiles based on their 245 

observed SPI counterparts, translating the SPI forecast time series into bias-adjusted values that 246 

accurately represent the observed SPI data distribution. 247 

 248 

The transfer functions for bias correction are developed based on the SPI reference and SPI forecast time 249 

series, specifically targeting the AA drought indicator rather than daily or monthly rainfall. By 250 

incorporating ENSO information, we aim to ensure that rainfall variability is more accurately represented 251 

in the corrected forecast data, especially in regions and timescales where ENSO has a significant impact 252 

(Manzanas & Gutiérrez, 2019). This approach combines statistical quantile mapping bias correction with 253 

ENSO state knowledge during rainy seasons. Furthermore, information from the nearest neighbors from 254 

the reference pixel is used to account for the spatial dependence inherent in climate data (k=9) (Cannon, 255 

2018) and to extend the SPI time series used to create the transfer function. By targeting the SPI indicator 256 

directly with the transfer function, we aim at  increasing the accuracy of drought detection by bringing SPI 257 

forecasts closer to the observed SPI climatology, ensuring that the SPI derived from forecasts are more 258 

consistent with historical patterns and trends. This is critical for the Ready, Set and Go! System that 259 

releases alerts based on negative anomalies through the SPI indicator rather than on rainfall amounts. 260 

 261 

In practical terms, incorporating ENSO information into quantile mapping involves: (i) categorizing data 262 

by ENSO phases; (ii) generate empirical cumulative distribution functions for each ENSO phase separately 263 

for both SPI observed and SPI forecast; (iii) perform quantile mapping by applying the transfer function to 264 

the test year (year left out during cross validation) of the analysis according to the ENSO phase of the year 265 

being bias corrected; iv) combine corrected forecast outputs if bias correction is found to improve skill in 266 

detecting droughts. 267 

 268 

In summary, the quantile mapping transfer function corrects the SPI forecast based on the SPI reference 269 

value of the pixel under investigation and its nine neighboring pixels conditioned on the state of ENSO. To 270 

prevent inflating the skill of the bias correction, a leave-one-year-out cross-validation (LOCV) scheme is 271 

used. The bias correction transfer function is constructed by pooling all ensemble members of the forecast 272 

and then applied to all members of the left-out test year. 273 

 274 
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An overview of this scheme is available in Figure 3. For a list of ENSO years, see Supplementary Material 275 

S1. 276 

 277 

 278 

Define danger threshold for extracting the probability of drought events from bias corrected and raw 279 

forecasts 280 

 281 

From both raw and bias-corrected forecasts, we apply the danger threshold (SPI ≤ -1, classified as severe 282 

in the AA trigger system) to determine the probability of a severe drought. This is done by calculating the 283 

proportion of ensemble members that meet or fall below the threshold. We repeat this process for each 284 

forecast issue month from 1993 to 2022, creating a time series of drought probabilities at different lead 285 

times for both the raw and bias-corrected forecasts. 286 

 287 

In practice, the bias-corrected drought probabilities replace those from the raw forecast only when there 288 

is a demonstrable gain in skill for forecasting severe drought. This gain in skill is evaluated by comparing 289 

the area under the Receiver Operating Characteristic (AUROC) curve scores of the raw and bias-corrected 290 

forecasts (further detailed in the section below). Consequently, the bias-corrected drought probability 291 

information is used only if it shows an improved ability to predict severe droughts in the pilot districts, 292 

considering specific cases (such as a particular forecast lead time and SPI 2 and SPI 3 aggregation). 293 

 294 

It is important to highlight two features of the bias correction methodology: (i) the bias correction targets 295 

the SPI indators directly instead of the daily or (multi-)monthly rainfall totals and (ii) in practice, the bias 296 

corrected forecast only replaces the raw SPIs forecast when actual skill is gained when forecasting severe 297 

drought. The gain in skill is assessed by calculating and comparing the area under the Receiver operating 298 

characteristic curve (AUROC) score (further explained in section 2.2.2) of the raw and bias corrected 299 

forecasts. Therefore, the SPI bias corrected series is only used if demonstrated gain in skill for predicting 300 

severe droughts at the pilot districts and per specific cases (for a particular forecast lead time and SPI 2 301 

and SPI 3 aggregation).   302 

 303 

 304 

As source of rainfall observations, we use daily blended precipitation records from the Climate Hazards 305 

group Infrared Precipitation with Stations version 2 (CHIRPS) for the period of January 1981 to date. 306 

CHIRPS is a high resolution (0.05°) precipitation dataset, which is used for drought early warning purposes 307 

by the Famine Early Warning Systems Network (Funk et al., 2015). For the trigger system, we upscale the 308 

CHIRPS dataset to a 0.25° grid using a bilinear remapping. This moderate resolution was chosen based on 309 

the size of pilot districts and to reduce the impact of rainfall small-scale variability. Furthermore, it allows 310 

for the downscaling (see section below) of the forecasting data and its computational handling. As source 311 

of forecast data, we use seasonal precipitation forecasts from the ECMWF's seasonal forecasting system 312 

(SEAS5) for the period 1993–2022. In its native resolution, the forecast is available at 1 arc-degree and 313 

new forecasts are released monthly on the fifth day covering the coming 7 months. SEAS5 is composed of 314 

a set of 25 ensemble members until 2016 (hindcast period), and 51 ensemble members from 2017 315 

onwards as part of the operational system (Ratri et al., 2019). We downscale the forecasting data to a 316 
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0.25° regular mesh by applying bilinear interpolation using the above mentioned upscaled CHIRPS gridded 317 

data. 318 

Extracting the Standard Precipitation Index from datasets 319 

From both sources of rainfall data (observation and forecast), we extract the Standard Precipitation Index 320 

(SPI). The SPI is a widely used indicator to measure rainfall variability from the long-term climatological 321 

period (Svoboda et al., 2012). In this study, the SPI indicator is centered around the mean of the rainfall, 322 

for a given time and location, and values can range from -4 to +4. Negative SPI values represent different 323 

levels of rainfall deficits, which is of special relevance to the designed trigger system. In addition, the SPI 324 

can be used to monitor droughts when a “danger threshold” is identified. This threshold aims at depicting 325 

rainfall deficits of alarming levels, in which anticipatory actions would be triggered by the seasonal 326 

forecast to reduce the impacts of an upcoming shock to livelihoods. Furthermore, the SPI values are 327 

calculated with reference to a time window of accumulation, which in this study, two- and three-month 328 

aggregations are adopted (SPI 2 and SPI 3, respectively). SPI indicators at these accumulation windows 329 

are more suitable for detecting risks to agricultural systems within the crop development cycle. It is 330 

important to highlight that the AA seeks to create windows of opportunity to protect people’s food 331 

security by reducing the risk of crop failures of rain fed systems, and therefore, only SPI within the rainy 332 

season is of relevance to the trigger system (see explanation for windows of opportunity for anticipatory 333 

action in section below). To derive the SPI observation and forecast series, the dataset is fitted to a gamma 334 

distribution and subsequently transformed to a normal distribution with z values  (Lloyd-Hughes & 335 

Saunders, 2002). The period of 1981 to 2018 is used for the observation series as a reference climatology 336 

to calculate the parameters of the gamma distribution. This period is chosen given the availability of 337 

complete series of rainfall observation at the start year of the project (in  2019). For the forecasting series, 338 

the parameters of the gamma distribution are obtained by pulling values all ensemble members during 339 

the years 1993 to 2018 (given the lack of data previous to 1993 in the climate data store).  340 

Defining and applying a “danger threshold” for identifying drought events  341 

Given that SPI is a standardized index linked to the probability of occurrence of rainfall amounts, we 342 

convert a certain z into an expected frequency by calculating the area below the normal distribution curve 343 

using some z threshold as reference. Subsequently, the proportion (or probability p) is converted into a 344 

return period (T) by inverting the obtained probability value (p = 1/T). In the operational AA trigger system, 345 

three thresholds are adopted (as highlighted in Guimarães Nobre et al., 2023) corresponding to different 346 

severity levels. For simplicity, this article focuses on the most severe one (SPI ≤ -1) as such a negative 347 

anomaly is expected to cause increased damage among the ones adopted by the system. However, it is 348 

important to highlight that the impact of a specific threshold should ideally be estimated using historical 349 

observations, in combination with information of who and what is exposed to a hazard (exposure and 350 

vulnerability). However, due to lack of extensive drought impact data at the district level, the adopted 351 

threshold levels are primarily based on frequencies that are suitable for AA operations in the region. A 352 

severe category corresponds to an event happening approximately 1 in 6/7 years (or p = 15.87%). 353 

Following the identification of a threshold of interest, we applied this value to the observation series to 354 

obtain a time series of past drought events. However, prior to applying this threshold in the forecasted 355 
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SPIs to obtain drought probabilities (from the ensemble model), we attempt at adjusting the SPI 2 and SPI 356 

3 series forecasts by carrying out a bias correction methodology, which is described below.  357 

Bias correction of the SPI 2 and SPI 3 ensemble series  358 

We use Quantile Mapping to adjust the forecast values to the reference data (CHIRPS) by matching the 359 

cumulative density function of the SPI simulations at each grid cell. SPI forecast and observation 360 

distributions are matched by establishing a multivariate and ENSO process-informed quantile-dependent 361 

correction function, which adjusts the quantiles of the forecast values based on the ones from their 362 

observed counterparts. This function is then used to translate the SPI forecast time series into bias-363 

adjusted values with a distribution representative of the observed data, which is the SPI derived from 364 

CHIRPS. In more detail, the transfer functions for bias correction are built based on the SPI 2 and SPI 3 365 

time series, and therefore directly towards the target variable. In order to overcome an arbitrary temporal 366 

change which can deteriorate the inter-annual variability of the raw predictions, we use a process-367 

informed bias correction method (Manzanas & Gutiérrez, 2019). This is done by combining the statistical 368 

bias correction with the knowledge about the ENSO states within the rainy seasons of previous years and 369 

latest ENSO forecast. Furthermore, to take into consideration the spatial dependence inherent to climate 370 

data, we build transfer functions based on the reference value of the pixel under investigation and its ten 371 

neighbors (k=10)(Cannon, 2018). Lastly, we adopt a scheme of leave-one-year-out cross-validation in 372 

order to avoid inflating the skill of bias correction. The bias correction transfer function is built by pulling 373 

all ensemble members of the forecast and applied to all members left out. An overview of the scheme is 374 

available in Figure 3. For a list of ENSO years, see Supplementary Material S1. 375 

 376 
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 377 

 378 
Figure 43: Bias correction methodology in seven steps next to  andan illustrative example. 379 

 380 



15 
 

It is important to highlight two features of the bias correction methodology: (i) the bias correction targets 381 

the SPI indators directly instead of the daily or (multi-)monthly rainfall totals and (ii) in practice, the bias 382 

corrected forecast only replaces the raw SPIs forecast when actual skill is gained when forecasting severe 383 

drought. The gain in skill is assessed by calculating and comparing the area under the Receiver operating 384 

characteristic curve (AUROC) score (further explained in section 2.2.2) of the raw and bias corrected 385 

forecasts. Therefore, the SPI bias corrected series is only used if demonstrated gain in skill for predicting 386 

severe droughts at the pilot districts and per specific cases (for a particular forecast lead time and SPI 2 387 

and SPI 3 aggregation).   388 

2.2.2  Part 2.1: Forecast application and decision-making 389 

Skill verification and assessment of raw and bias corrected data 390 

As described in the previous section, we obtain drought probabilities from both the raw and bias-391 

corrected forecasts. For each specific district, lead time, and SPI indicator, we use the forecast with the 392 

higher skill in predicting severe drought to develop triggers for the AA. The forecast with lower skill is 393 

discarded from the AA system. Skill is assessed by extracting and comparing the AUROC scores of the 394 

forecasts. 395 

 396 

The AUROC score (e.g., Fawcett, 2006) is a widely applied indicator that measures the ability of a 397 

probabilistic forecast to discriminate between a binary outcome (e.g., severe drought or no drought). The 398 

AUROC score calculation requires setting a range of trigger values to convert a probability forecast into 399 

categorical, and therefore is related to decision-making in response to whether the forecast should 400 

release an alert. For the releasing of a “drought alert”, several triggers are tested, and a graph (known as 401 

a ROC curve) is produced to summarize the hit rate and false alarm rate that can be expected from 402 

different probability trigger values. The area under the ROC provides a summary statistic for the 403 

performance of probability forecasts, ranging from 0 to 1 (worst to best). Forecasts with little or no skill 404 

have a ROC score of approximately 0.5. Forecast is perfectly incorrect when the ROC is zero. In summary, 405 

for a specific district, lead time and SPI indicator, we choose which source of forecast to use for the Ready, 406 

Set & Go! triggers (raw or bias corrected) based on the forecast skill assessment informed by the AUROC 407 

score at the district level.  408 

 409 

Forecast skill verification and assessment 410 

Subsequent to the bias correction of the several SPI 2 and SPI 3 ensemble forecast series, we apply the 411 

severe drought threshold to extract drought probabilities. We do this by counting the number of ensemble 412 

members with a forecast of SPI value ≤ -1  and divide it by the total number of ensembles. We perform 413 

this step from both sources of SPIs ensemble forecasts (bias corrected and raw forecasts). We use these 414 

two different outcomes of drought probability to inform the AA system depending on which approach 415 

leads to the higher skill at the district level, as measured by the AUROC score.  416 

 417 
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The AUROC score (e.g., Fawcett, 2006) is a widely applied indicator that measures the ability of a 418 

probabilistic forecast to discriminate between a binary outcome (e.g., severe drought or no drought). The 419 

AUROC score calculation requires setting a range of trigger values to convert a probability forecast into 420 

categorical, and therefore is related to decision-making in response to whether the forecast should 421 

release an alert. For the releasing of a “drought alert”, several triggers are tested, and a graph (known as 422 

a ROC curve) is produced to summarize the hit rate and false alarm rate that can be expected from 423 

different probability trigger values. The area under the ROC provides a summary statistic for the 424 

performance of probability forecasts, ranging from 0 to 1 (worst to best). Forecasts with little or no skill 425 

have a ROC score of approximately 0.5. For a specific district, lead time and SPI indicator, we choose which 426 

source of forecast to use for the Ready, Set & Go! triggers (raw or bias corrected) based on the forecast 427 

skill assessment informed by the AUROC score at the district level.  428 

 429 

Testing several triggers for the for the Ready, Set & Go! system 430 

Testing triggers for the Ready, Set & Go! drought alertTriggers for anticipatory action indicate the 431 

forecasted severity of drought that would prompt a response. If the forecast exceeds the trigger, funds 432 

are automatically allocated, and anticipatory actions are initiated. A trigger is essentially a value that 433 

converts a probability forecast into a decision on whether to take action, effectively determining whether 434 

a drought alert should be issued. Defining a trigger involves understanding when forecasting information 435 

can be trusted to successfully mobilize anticipatory actions, despite inherent uncertainties. Therefore, 436 

triggers are based on the skill levels of the forecasts, requiring an investigation of past forecast accuracy 437 

and an acknowledgment of forecast uncertainty. 438 

 439 

Forecasts at any lead time can be tested to derive triggers for anticipatory action. It is common practice 440 

for organizations to define two types of triggers for anticipatory action: (i) a preparedness trigger with a 441 

longer lead time and (ii) a confirmatory trigger for the activation of activities with a shorter lead time 442 

before the drought onset. These triggers are defined based on the skill levels of the forecasts for each lead 443 

time. However, testing lead times independently may result in an unrealistic performance of the 444 

anticipatory action program, as the system relies on both triggers being exceeded, even though they are 445 

set based on their individual performance. Additionally, organizations may assign preparedness and 446 

activation activities based on a single trigger from a specific lead time. This approach can vary depending 447 

on the organization's specific capacity to respond to the forecasted information. 448 

 449 

The Ready, Set, & Go! system employs a double confirmatory approach for drought alerts. This means 450 

that the trigger value, tailored for each forecast month, district, and SPI indicator, must be exceeded for 451 

two consecutive months to prompt action. The performance of these triggers for anticipatory action is 452 

evaluated in combination rather than individually. For example, if the trigger based on the August forecast 453 

for Chibuto district, which predicts potential severe droughts in October-November, is exceeded, the 454 

"ready" phase is activated. If the trigger based on the September forecast for the same district is also 455 

exceeded, the "set" phase is activated, and activities are immediately mobilized on the ground, initiating 456 

the "Go!" phase. Testing triggers in combination with a double confirmation process aims to create a more 457 
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accurate trigger system and provide a longer window for readiness and preparedness activities before AA 458 

implementation. This approach is validated using a sensitivity analysis explained in section 2.2.4. 459 

 460 

For instance, readiness activities might involve preparing internal documents, which can then lead to 461 

initiating a procurement process if an AA advisory is issued. Practically, for each forecast month that can 462 

produce a "ready" and "set" trigger, we jointly test several candidate pairs of triggers. This testing is 463 

conducted in steps of 1% ranging from 0% to 100%, resulting in 10,201 combinations of candidate triggers. 464 

This is done for each district, pair of forecast months, and SPI 2/SPI 3 indicator. For a complete overview 465 

of the triggers for SPI ON for a given district, we test all candidate pairs of triggers for the following forecast 466 

month combinations: May (ready) and June (set), June (ready) and July (set), July (ready) and August (set), 467 

August (ready) and September (set), and September (ready) and October (set). For each pair of triggers, 468 

we calculate key performance metrics (e.g., hit rate and false alarm ratio) to evaluate how the drought 469 

alerts would have performed in the past. The relevance of these metrics was identified during a workshop 470 

held in 2022 with governmental partners. 471 

 472 

In a nutshell, the Ready, Set & Go! system uses a double confirmatory approach for the drought alert. In 473 

other words, the trigger value (tailored for each month of the forecast, district, and SPI indicator) should 474 

be exceeded for two consecutive months prior to issuing an advisory for Aa. For instance, if the trigger 475 

based in the forecast of August is exceeded for the district of Chibuto, which alerts for potential severe 476 

droughts in October-November, the “ready” phase is activated. Under the circumstances that the trigger 477 

established (for Chibuto district for potential droughts in October-November) based on forecast issued in 478 

September is exceeded (the consecutive month), the “set” phase is activated, and an advisory for AA is 479 

issued. If AA is mobilized on the ground, the Go! phase starts. It is important to highlight that the Go! 480 

phase relies on programmatic decisions to be initialized, such as funding request, timely beneficiaries  481 

identification among others rather than on additional forecasts. This double confirmation seeks to create 482 

a more robust trigger system and a longer window of opportunity for readiness and preparedness 483 

activities that proceeds the implementation of AA on the ground. This assumption is tested using 484 

sensitivity analysis explained in section 2.2.4.  Example of readiness activity may involve the preparation 485 

of internal documents which can be followed by the signing off of a procurement process if an advisory 486 

for AA is released.   487 

In practical terms, for each forecast month that can produce a “ready” trigger and “set” trigger we jointly 488 

test several candidates’ pairs of triggers. This testing is done in steps of 1% ranging from 0% to 100%, 489 

which results on 10201 combinations of candidates’ triggers. This testing is done for each district, pair of 490 

forecast months and SPI 2/SPI 3 indicator. For instance, for a complete overview of the triggers for the SPI 491 

ON for a given district, we test all candidate’ pairs of triggers for the forecast of May (ready trigger) and 492 

June (set trigger), June (ready trigger) and July (set trigger), July (ready trigger) and August (set trigger), 493 

August (ready trigger) and September (set trigger), and September (ready trigger) and October (set 494 

trigger). For each pair of triggers, we calculate key performance metrics (e.g., hit rate and false alarm 495 

ratio) of how the drought alerts would have performed on the past. The relevance of the extracted metrics 496 

has been identified during workshop carried out in 2022 with governmental partners.  497 

 498 

Apply pre-mapped quality criteria for the triggers’ choice 499 
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Pre-mapped quality criteria for the choice of triggers 500 

The definition of a trigger value for drought AA is intrinsically linked to the skill of the forecast and the 501 

identification of a certain degree of risk tolerance levels by users of the forecast (Lopez et al., 2018). In 502 

practice, when a low probability trigger value is chosen, one can expect to forecast droughts frequently, 503 

whereas if a very high value is chosen, the opposite is expected to happen. The optimum trigger value 504 

should reflect appropriateness through the lenses of the decision-maker and the relative importance 505 

given to drought false alarms versus missed drought events. 506 

 507 

Users who are averse to missing a drought, will choose a lower trigger value and deal with an increase in 508 

false alarms. For instance, a low trigger value can be a suitable option for actors that seek to assist very 509 

fragile populations and/or when the portfolio of AA is considered “non-regret” (Chaves-Gonzalez et al., 510 

2022). Anticipatory actions are classified as “non-regret” when they are worth investing in even if a crisis 511 

does not materialize and would not be regretted with hindsight. Following this approach, we have created 512 

a menu of “emergency triggers”, to be used when pilot districts are experiencing high levels of 513 

vulnerability. On the other hand, users who are averse to false alarms will choose a higher trigger and 514 

manage occasional missed events. For instance, a high trigger value can be a suitable option for actors 515 

that have limited funds and/or when the portfolio of AA contains actions that affect livelihoods, such as 516 

evacuations, which are considered highly regrettable if a false alarm occurs. This approach can be of high 517 

relevance for scaling up AA to all districts in Mozambique as the largest geographical coverage is desired 518 

and funding distribution/sharing across a wide area is expected. Following this approach, we have created 519 

a menu of "general triggers”, to be used when pilot areas are experiencing normal to low levels of 520 

vulnerability. As displayed in Table 1, the expected performance of both menus is different, especially 521 

concerning the tolerance to false alarms and the probability of drought detection. Operationally, the 522 

assessment of vulnerability information is done prior to the start of AA season in Mozambique (more 523 

explanation in section 2.2.3). 524 

 525 
Table 1: List of quality criteria for assigning forecast-based triggers for severe drought events. It is important to highlight that criterion 526 
5 plays a role in the calculation of criteria 2, 3 and 4. 527 

Number Criteria for determining triggers General menu Emergency Menu 

1 
The selected trigger must have predicted at least (x%) 

of the past droughts 
55 70 

2 
The chance of successfully implementing AA following 

a ready & set alert must be greater than (x%) 
65 55 

3 
The chance of unsuccessfully implementing AA 

following a ready & set alert must be less than (x%) 
35 45 

4 
Return period (years) for the implementation of AA 

against droughts 
7 6 

5 
Actions will only be counted as “in vain” if the ready & 

set alert for severe drought is followed by an SPI of: 
SPI > -0.68 

6 
Minimum number of full months for the Go! Phase 

(implementation) 
1  

 528 
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Defining Define triggers for anticipatory action 529 

 530 

After testing all combinations of trigger pairs for the "ready" and "set" phases and recording the statistics 531 

listed in Table 1, we began a selection process based on the quality criteria outlined in the same table. 532 

The suitable pairs were ranked according to their hit rate and false alarm ratio, considering both district-533 

specific performance and the stage of the rainy season: (i) start to mid-season (referred to as Window 1) 534 

and (ii) mid- to end of season (referred to as Window 2). Only the best-performing trigger pairs were 535 

selected for further analysis, which is presented in the results section 3.4. 536 

 537 

It is important to clarify that anticipatory action (AA) targets these two windows of the rainy season 538 

because the activities implemented before the onset of drought within these periods serve different 539 

purposes. The forecast of drought risks within these windows informs the refinement of the AA portfolio, 540 

as rainfall deficits during the start to mid-season and mid- to end-season are expected to impact crops 541 

differently. For example, AA implemented before potential droughts in Window 1 aims to support planting 542 

and sowing activities, such as distributing drought-tolerant seeds, while AA implemented in Window 2 543 

focuses on supporting livelihoods, such as providing cash transfers. 544 

 545 

Furthermore, due to the variation in climatology across the country, the periods covered by Windows 1 546 

and 2 differ by zone, shifting by approximately one month from south to north. Table 2 provides an 547 

overview of the timing of these windows, the indicators used to assess drought risks within them, and the 548 

provinces associated with each zone. The division of the rainy season into these windows was defined by 549 

the Technical Working Group (TWG) for drought early warning systems (EWS) and AA, which includes 550 

several governmental and non-governmental institutions (WFP, 2023). Further details can be found in the 551 

discussion section. 552 

 553 

After testing all combinations of triggers’ pair for the ready and set phases and recording for each of them 554 

the statistics listed in Table 1, we start a selection process by applying the quality criteria mentioned in 555 

Table 1. Then, the suitable pairs are ranked according to the hit rate and false alarm ratio per district and 556 

window of AA implementation. Only the best performing pair of triggers are selected for further analysis 557 

displayed in the results section below. It is important to clarify that there are two windows of AA 558 

implementation in Mozambique: (1) Window 1 covers the period from start to mid of the rainy season, 559 

and (2) Window 2 covers the period of mid to end of the rainy season.The forecast of drought risks within 560 

the above-mentioned windows supports the further refinement of the portfolio of anticipatory action as 561 

rainfall deficits at the start to mid and mid to end of the season are expected to impact crops in different 562 

ways. As climatology varies within the country, windows 1 and 2 differ per zone. The forecast of drought 563 

risks within the above-mentioned windows supports the further refinement of the portfolio of 564 

anticipatory action as rainfall deficits at the start to mid and mid to end of the season are expected to 565 

impact crops in different ways. Table 2 provides an overview of the timing of the windows, the indicators 566 

used to inform drought risks within them and the provinces belonging to each zone. The division of the 567 

rainy season within windows have been defined by the Technical Working Group (TWG, read discussion 568 
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section for more details) for drought EWS and AA, which is composed of several governmental and non- 569 

governmental institutions (WFP, 2023). 570 

 571 
Table 2: Description of anticipatory action windows per zone and province and with an illustration of SPI indicators informing drought 572 
events 573 

Zone Provinces 
Months within 

window 1 

SPI 2 and SPI 3 
informing window 

1 

Months within 
window 2 

SPI 2 and SPI 3 
informing window 2 

North 
Nampula, 

Cabo Delgado 
and Niassa  

December to 
March 

SPI DJ, SPI DJF, SPI 
JF, SPI JFM, SPI FM  

March to June 
SPI FMA, SPI MA, SPI 

MAM, SPI AM, SPI 
AMJ, SPI MJ 

Central 
Manica, 

Sofala, Tete 
and Zambezia 

November to 
February 

SPI ND, SPI NDJ, SPI 
DJ, SPI DJF, SPI JF 

February to May 
SPI JFM, SPI FM, SPI 

FMA, SPI MA, SPI 
MAM, SPI AM 

South 

Gaza, 
Inhambane, 
Maputo City  
and Maputo 

October to 
January 

SPI ON, SPI OND, 
SPI ND, SPI NDJ, SPI 

DJ 
January to April 

SPI DJF, SPI JF, SPI 
JFM, SPI FM, SPI 

FMA, SPI MA 

 574 

2.2.3  Operational 575 

 576 

Once the repository of triggers for AA has been finalized, several operational activities follow. Although 577 

these activities do not impact the overall system performance (as presented in the results section), they 578 

provide valuable insight into the operationalization of the methodology showcased in this study. The first 579 

key activity following the initiation of forecast and trigger monitoring for AA is a vulnerability analysis. This 580 

analysis is conducted annually, typically around April and May as the rainy season concludes. Its purpose 581 

is to assess the levels of vulnerability in the AA pilot districts by examining recent climate shocks and 582 

projected food security outcomes. The results of this analysis inform decisions about which set of 583 

triggers—general or emergency—each pilot district should employ for the upcoming AA season. For 584 

example, if a district experienced drought during the most recent rainy season, with anticipated negative 585 

impacts on food security, the emergency triggers are selected for the next AA season due to the 586 

heightened vulnerability in that area. Once this decision is made, forecasts from May to February of the 587 

following year are processed, and the AA triggers are monitored on a monthly basis. The monitoring of 588 

the Ready, Set, & Go! system triggers is conducted by INAM and WFP, with updates communicated to the 589 

Technical Working Group (TWG) for drought early warning systems (EWS) and AA through a dashboard 590 

and regular bulletins. 591 

 592 

Once the repository of triggers for AA has been finalized, there are a number of operational activities that 593 

follow. Even though these operational angles will not affect the overall performance of the system (which 594 

we present in the results section), it may provide a view to the reader of the operationalization of the 595 

methodology showcased in this study. The first key activity that proceeds the starting of the monitoring 596 

of forecasts and triggers for AA is a vulnerability analysis, which is performed yearly around the months 597 

of April and May as the rainy season is coming to an end. Such vulnerability analysis seeks to understand 598 
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the levels of vulnerability in the AA pilot districts by looking at recent climate shocks and projected food 599 

security outcomes. This analysis informs the decision of which menu of trigger (general or emergency) 600 

each pilot district should use for the coming AA season. For instance, if a district has experienced a drought 601 

in the most recent rainy season, with projected negative consequences to food security, the menu of 602 

emergency triggers is used in the upcoming AA season given the increased level of vulnerability being 603 

experienced in that location. Once this decision is made, the forecasts of May to February (next year) are 604 

processed and triggers for AA are monitored. The monitoring of triggers of the Ready, Set & Go! System 605 

is done by INAM and WFP and communicated through a dashboard and bulletins to the TWG for drought 606 

EWS and AA. 607 

2.2.4  Sensitivity analysis including four scenarios 608 

We test the strengthevaluate the robustness of our methods through a by performing a sensitivity 609 

analysis, considering four distinct scenarios. For each scenario, we extract four key metrics are extracted:  610 

 611 

1. Hit Rate: percentage of past severe droughts accurately captured by the AA trigger(s). 612 

2. Tolerant False Alarm Ratio: This metric accounts for false alarms when the AA trigger is exceeded, 613 

but the drought threshold is narrowly missed.false alarms can occur when the trigger for AA is 614 

exceeded but the exact threshold of the drought is not met. For instanceexample, a false alarm 615 

occurs if a severe drought trigger (SPI ≤ -1) is followed by an SPI value just below the threshold 616 

(e.g., -0.99). when a trigger for a severe drought is exceeded (SPI <= -1), a false alarm would have 617 

occurred if a drought alert is followed by an SPI equal to e.g. -0.99, which is very close to the 618 

established threshold. For aTo better contextualizeation of false alarms, we calculate "tolerant" 619 

false alarm ratio , which considers the number of severe drought alarms followed by an SPI greater 620 

than -0.68 (see Table 1). a metric of false alarm with tolerance, which informs the amount of 621 

severe drought alarm that were followed by a SPI > -0.68 (see Table 1). introduces extra tolerance 622 

when analyzing forecasting errors, as severe drought alerts followed by SPI values between -0.68 623 

and -0.99 are not counted as non-drought situations. This approach is based on the practical 624 

assumption that AA interventions will still benefit the population, even if implemented during a 625 

slightly less severe dryness.This metric provides extra tolerance when analyzing forecasting error 626 

in comparison to a classical false alarm ratio as severe droughts alerts followed by SPIs ranging 627 

from -0.68 to -0.99 are not counted as a non-drought situation. This follows a practical assumption 628 

that drought AA will be beneficial to the population even if implemented at a milder level of 629 

dryness. 630 

3. Lead time of implementation: the time difference between the starting month of the SPI indicator 631 

and the month in which the forecast was issued. For instance, the a forecast issued in May is 632 

considered to have a lead time of 4 months when providing outlooks of SPI ON. 633 

4. AA percentage coverage: percentage of Mozambican districts with where ana found AA trigger 634 

was identified, meeting the criteria outlined in Table 1., which satisfies criteria highlighted in Table 635 

1. 636 

It is important to clarify that these metrics were derived from the skill assessment of the forecasts from 637 

1993 to 2021. Specifically, the number of hits and false alarms during this period is used to calculate a key 638 
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metric from the quality criteria list: the “Return Period (Years) for the Implementation of AA Against 639 

Droughts.” This metric helps determine whether the empirical frequency of AA interventions aligns with 640 

the frequency of the threshold for severe droughts. Furthermore, the scenarios for the sensitivity analysis 641 

are defined as follows: 642 

 643 

1. Scenario 1: An AA advisory based solely on a single alert, using only one lead time from the raw 644 

SPI forecasts. 645 

2. Scenario 2: An AA advisory based solely on a single alert, using either raw or bias-corrected SPI 646 

forecasts, depending on which has the highest skill. 647 

3. Scenario 3: An AA advisory requiring double confirmation but using only raw SPI forecasts. 648 

4. Scenario 4: An AA advisory based on the Ready, Set, & Go! system, requiring double confirmation 649 

and using a combination of bias-corrected and raw SPI forecasts. 650 

1.  651 

The scenarios for the sensitivity analysis are defined as following: (1) an advisory for AA solely based in a 652 

single alert and therefore using only one of the lead times of the raw forecasts of the SPIs, (2) an advisory 653 

for AA solely based in a single alert and therefore using only one of the lead times of the raw or bias 654 

corrected forecasts of the SPIs (depending which one has highest skill), (3) an advisory for AA based on 655 

Ready, Set & Go! double confirmation only using the raw SPIs forecasts, and (4) an advisory for AA based 656 

on Ready, Set & Go! double confirmation using a mix of bias corrected and raw SPIs forecasts. 657 

3.  RESULTS 658 

3.1 Zonal based overview of the years with Ssevere drought years according to adopted 659 

thresholdconditions within the rainy season 660 

In Figure 4, we illustrate the frequency of severe drought occurrences during the rainy season from 1981 661 

to the present. We began by extracting SPI 2 and SPI 3 indicators for each district, focusing on the rainy 662 

windows relevant to each district (see Table 2 for SPI indicators and their associated windows). We then 663 

counted how often the severe drought threshold was met or exceeded. The top 5 years with the highest 664 

number of 2- and 3-month periods experiencing severe drought conditions are highlighted. Bars in the 665 

figure are colored to indicate the ENSO phase during the respective rainy seasons in Mozambique (see 666 

Supplementary Material S1 for classification). To simplify the data presentation, districts are grouped by 667 

zones (refer to Table 2 for zone-to-province list). A similar overview of severe drought years at the 668 

province and district levels is provided in Supplementary Material S2. 669 

 670 

Overall, severe drought conditions can occur during any of the three ENSO phases across all zones. This 671 

underscores the need for an AA system that is effective regardless of the ENSO phase. However, we found 672 

that severe droughts are significantly more frequent during El Niño phases (mean frequency = 66) 673 

compared to Neutral (mean frequency = 41) and La Niña phases (mean frequency = 31), as confirmed by 674 

a t-test (p < .01). Previous studies also support this finding (Araneda-Cabrera et al., 2021; Lyon & Mason, 675 

2007). Additionally, the top 5 drought years for different windows vary considerably. In the North zone, 676 

only the rainy season of 2004-05 appears in the top 5 for both windows. In the Central zone, only the 677 
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1991-92 rainy season ranks in the top 5 for both windows. In the South zone, the rainy seasons of 1991-678 

92 and 2015-16 are among the top 5 for both windows. This variation highlights the importance of 679 

developing an early warning system that accounts for different intra-seasonal rainfall patterns and adjusts 680 

operations according to the stages of the rainy cycle. 681 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 

 694 

 695 

 696 

 697 

 698 
 699 
Figure 54: The frequency with which the SPI 2 and SPI 3 indicators exceeded or equaled the severe drought threshold since 1981 is 700 
shown for each zone and window. The counts are first calculated at the district level and then aggregated by zone for window 1 (left) 701 
and window 2 (right). For details on which SPI 2 and SPI 3 indicators correspond to each window, refer to Table 2. The zones are 702 
defined as follows: i) Central zone includes districts from the provinces of Manica, Sofala, Tete, and Zambezia, ii) North zone includes 703 
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districts from Nampula, Cabo Delgado, and Niassa, and iii) South zone includes districts from Gaza, Inhambane, Maputo City, and 704 
Maputo Province. Bars are color-coded according to the dominant ENSO phase during the rainy season in Mozambique (red = El 705 
Niño, blue = La Niña, and grey = Neutral). The top 5 years for each window and zone are highlighted.Frequency in which the extracted 706 
SPI 2 and SPI 3 indicators were per zone and window exceeded or equaled the severe threshold since 1981. First, the counting is 707 
done per district and subsequently aggregated at the zonal level within window 1 (left) and window 2 (right). For an overview of the 708 
SPI 2 and SPI 3 belonging to windows 1 or 2, see Table 2. Zones are compiled as follow: i) Central districts by the provinces of 709 
Manica, Sofala, Tete and Zambezia, ii) North districts by the provinces of Nampula, Cabo Delgado and  Niassa, and iii) South districts 710 
by the provinces of Gaza, Inhambane, Maputo City and Maputo. Bars are colored according to the ENSO dominant phase during the 711 
rainy cycle in Mozambique (red = El Niño, blue = La Niña and grey=Neutral). Top 5 years are highlighted per window and zone. 712 

 713 

 714 

  715 
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3.2 Zonal based overview of bias correction 716 

 717 

Figure 6 presents the percentage of areas per zone, SPI indicator, and forecast month that showed an 718 

improved AUROC score after applying bias correction. The primary focus of our evaluation is the AUROC 719 

score, as it offers a practical measure of whether bias correction enhances the accuracy of severe drought 720 

forecasts, which is crucial for users. The goal of this approach is to identify opportunities for improving 721 

forecast accuracy, thereby reducing the risk of misallocated anticipatory action resources due to 722 

inaccurate predictions. For a spatial representation, similar results are displayed in a series of maps in 723 

Supplementary Material S3. 724 

 725 

Overall, the North zone showed the highest mean percentage of improved forecast areas (38%), followed 726 

by the Central and South zones (both at 19%). In the North zone, the forecast month with the highest 727 

mean improvement was July (56%), while February had the lowest (20%). For the Central zone, January 728 

showed the greatest improvement (26%), while August showed the least (10%). In the South zone, July 729 

and August had the highest mean improvement (26%), whereas December and January had the lowest 730 

(14%). Across all forecast months, the SPI indicators that demonstrated the greatest skill improvement 731 

were SPI ON, SPI DJ, and SPI NDJ for the North zone, SPI JFM for the Central zone, and SPI ON for the South 732 

zone. Most of these indicators pertain to the first window of the rainy season in the country. 733 

 734 

Additionally, for all districts and all SPI 2 and SPI 3 indicators across all lead times, 24% demonstrated 735 

improved skill (measured by AUROC score) after bias correction compared to the raw forecast. A more 736 

detailed overview of the AUROC scores can be found in section 3.3. 737 

 738 

 739 
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 741 
Figure 65: Percentage of zonal areas in which skill has gained using bias correction for different lead times of the forecast used to 742 
extract the SPI 2 and SPI 3 indicators. 743 

 744 

3.3 Overview of the maximum AUROC score  745 

Figure 7 shows the mean AUROC index per district for predicting severe droughts, combining outcomes 746 

from both raw and bias-corrected forecasts across all extracted SPI 2 and SPI 3 periods and lead times. On 747 

average, the SPI DJ indicator had the highest AUROC score (0.79), while SPI AM had the lowest (0.63). 748 

Severe drought events are generally more predictable during the early to mid-rainy season (average 749 

AUROC score of 0.76 for window 1; see Table 2 for indicator details) compared to the mid to late rainy 750 

season (average AUROC score of 0.69 for window 2). In particular, the predictability of severe droughts in 751 

districts located in the South zone is notably high during window 1 (average AUROC = 0.77), primarily 752 

driven by high forecast accuracy in December and January (SPI 2 DJ). In the Central and North zones, 753 

severe droughts are most predictable during December to February (average AUROC of 0.78) and 754 

November to January (average AUROC of 0.80), respectively. 755 

 756 

In Supplementary Material S4, we highlight the lead times that yield the highest forecast skill for severe 757 

drought prediction. In the South zone, about 44% of districts achieve the highest AUROC score using the 758 

December forecast for SPI DJ. In the Central zone, 55% of districts achieve their best performance using 759 

the August forecast for SPI DJF. In the North zone, around 66% of districts see their highest AUROC scores 760 

based on the November forecast for SPI NDJ.  761 
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 762 

However, it is crucial to note that the implementation of AA requires at least one full month for the "Go!" 763 

phase (see Table 1 for criteria). As a result, forecasts released in November, which predict severe droughts 764 

between November and January, are not used in operational mode. This means that the "Ready, Set, Go!" 765 

trigger system often cannot rely on the most accurate lead times, as they do not allow enough time for 766 

action mobilization. 767 

 768 

In Figure 6, we display the mean AUROC index per district for predicting severe droughts across all 769 

extracted SPI 2 and SPI 3 periods and lead times combining outcomes of both raw and bias corrected 770 

forecasts. On average, the single SPI indicator with highest and lowest AUROC score is SPI DJ (0.79) and 771 

SPI AM (0.63). Across all zones, severe drought events are more predictable at the start to mid-period of 772 

the rainy season (average AUROC score 0.76 for window 1, see Table 2 for indicators) than in comparison 773 

to mid to end-season (average AUROC score 0.69 for window 2). The predictability of severe droughts 774 

within window 1 for districts located in the South zone is remarkably good (average AUROC = 0.77). This 775 

is mostly driven by the high predictability of severe droughts in December and January (SPI 2 DJ). For the 776 

Central and North zones, severe droughts are most predictable within December and February (average 777 

AUROC of 0.78)  and November to January (average AUROC of 0.80, respectively).  778 

In Supplementary Material S4, we display the lead time of the forecast that produces the highest skill to 779 

predict severe droughts. For the south zone and SPI DJ, about 44% of the districts show the highest AUROC 780 

score based on the forecast of December. For the central zone and SPI DJF, 55% of the districts show the 781 

highest AUROC score based on the forecast of August.  For the north zone and SPI NDJ, about 66% of the 782 

districts show the highest AUROC score based on the forecast of November. It is important to highlight 783 

that, the implementation of AA requires at least 1 full month for the Go! Phase (see criteria Table 1). 784 

Therefore, the forecast released in November for predicting severe droughts within the months of 785 

November and January is not used in operational mode. Thus, the  Ready, Set & Go! trigger system is often 786 

not informed by the most skillful lead times of the forecast since these do not enable timeliness for the 787 

mobilization of actions. 788 

 789 
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 790 
Figure 76: Overview of the maximum AUROC score across lead times combining outcomes of both raw and bias corrected forecast. 791 

 792 

After determining whether to use the raw or bias-corrected forecast for a specific lead time, SPI indicator, 793 

and district, we move to the most computationally intensive phase of the "Ready, Set, Go!" trigger system. 794 

This phase involves testing pairs of triggers for anticipatory action (AA), as described in the section 795 

"Testing Several Triggers for the Ready, Set, Go! System." The testing is conducted in 1% increments, 796 

ranging from 0% to 100%, resulting in 10,201 combinations of candidate triggers per district, forecast 797 

month pair, and SPI 2/SPI 3 indicator. After testing all combinations and recording their statistical 798 

performance, only the best-performing trigger pair for each window is selected for presentation in the 799 

next section. The statistical performance of triggers, for the different scenarios, is based on the overall 800 

performance using hindcasts from 1993 and 2021 against observed SPI 2 and SPI 3 values within this 801 

period. 802 

 803 

All selected trigger pairs must meet the quality criteria outlined in Table 1. To evaluate the value of using 804 

mixed forecast information (raw and bias-corrected) with a double-confirmation approach, we expanded 805 

the analysis to include additional testing. This extended analysis examines the performance of single 806 

versus double triggers and the impact of including or excluding bias correction in the methodology. 807 

 808 

3.4 3.4 Sensitivity Analysis 809 

 810 

Table 3 presents the average performance of the best triggers for AA  during both window 1 and window 811 

2, comparing different activation mechanisms. To recap: 812 
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• Scenario 1: Issues an AA advisory based on a single alert using only the raw SPI forecasts from a 813 

specific lead time. If the forecast for a specific month, district, and indicator exceeds the assigned 814 

probabilistic trigger, an AA advisory is issued and implemented. 815 

• Scenario 2: Issues an AA advisory based on a single alert, using either raw or bias corrected SPI 816 

forecasts, depending on which has higher predictive skill. 817 

• Scenario 3: Requires double confirmation of drought conditions but uses only raw SPI forecasts. 818 

• Scenario 4: Represents the operational Ready, Set, & Go! system, which issues an AA advisory 819 

based on double confirmation, using a combination of both bias corrected and raw SPI forecasts. 820 

 821 

Overall, scenarios using a double-confirmation approach perform better than those relying on a single 822 

drought alert for AA activation. 823 

 824 

Specifically, in the simplest scenario (Scenario 1), 59% of districts in Mozambique would be covered by a 825 

General AA trigger, while 42% would be covered by an Emergency trigger (see the section “Apply pre-826 

mapped quality criteria for the triggers’ choice” for definitions of these trigger types). This indicates that 827 

raw forecasts alone provide reasonably accurate severe drought predictions for many districts. 828 

Incorporating bias correction (Scenario 2) only marginally increases coverage to 61% (General trigger) and 829 

43% (Emergency trigger). 830 

 831 

However, applying a double-confirmation approach significantly increases the proportion of districts 832 

covered by an AA trigger. In Scenario 3, coverage increases to 73% (General trigger) and 59% (Emergency 833 

trigger). Scenario 4, which is the operational system in Mozambique, achieves the highest national AA 834 

coverage across all approaches. Additionally, the Ready, Set, & Go! system improves both the hit rate and 835 

reduces the false alarm ratio compared to single-alert systems (Scenarios 1 & 2). 836 

 837 

Furthermore, the Ready, Set, & Go! approach extends the lead time for preparedness activities. While 838 

single-alert scenarios provide, on average, 2 months of lead time for AA implementation once the trigger 839 

is exceeded, the Ready, Set, & Go! system increases this lead time to nearly 3 months. 840 

 841 

In Table 3, we display the average performance of the best-found trigger(s) for AA within window 1 and 842 

window 2 using different approaches as mechanism of activation. Overall, the scenarios adopting a Ready, 843 

Set & Go! approach (scenarios 3 & 4) achieve better performance than the ones using one single drought 844 

alert for AA.In scenario 1, AA is triggered based solely on the raw forecasts and in one alert. In other 845 

words, if the raw forecast released on a specific month exceeds the assigned probabilistic trigger (for a 846 

specific month, district, and indicator), an AA advisory would be issued, and AA theoretically 847 

implemented. In scenario 2, AA is triggered based on the raw and bias corrected forecast (depending on 848 

which output produces the highest skill) and using one alert only. In scenario 3, AA is triggered based on 849 

the raw forecast and using a double confirmatory approach for the drought alert (see methods section 850 

explaining the Ready, Set & Go! system). Finally, in scenario 4, AA is triggered based on the raw and bias 851 

corrected forecast (depending on which output produces the highest skill) and using a double 852 

confirmatory approach for the drought alert. The statistical performance of triggers, for the different 853 
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scenarios, is based on the overall performance using hindcasts from 1993 and 2021 against observed SPI 854 

2 and SPI 3 values within this period. It is important to highlight that as variety of SPI 2 and SPI 3 indicator 855 

is extracted per window, often more than one indicator and trigger for AA can be found for each district. 856 

For displaying Table 3, we rank all candidate triggers according to the Hit rate, false alarm ratio and lead 857 

time and display the average performance of the top one indicator across all districts (those with a found 858 

trigger only). Overall, the scenarios adopting a Ready, Set & Go! approach (scenarios 3 & 4) achieve better 859 

performance than the ones using one single drought alert for AA. 860 

In detail, using the simplest triggering approach (scenario 1), 59% and 42% of the districts in Mozambique 861 

would be covered by an AA General and Emergency trigger against severe droughts, respectively (see 862 

definition of these two types of triggers in section 2.2.3). This means that the raw forecast produces 863 

sufficiently good outlooks of severe drought, as per criteria defined in Table 1, for a large proportion of 864 

districts. The proportion of districts covered by an AA trigger shows only a marginal increase when 865 

incorporating the bias correction methodology (scenario 2). Bias correction increases AA coverage from 866 

59% to 61% (General trigger) and 42% to 43% (Emergency trigger). However, we observe that when the 867 

Ready, Set & Go! approach is applied, the proportion of districts covered by an AA trigger increases 868 

considerably. This means that the approach of a double confirmatory drought alert creates prior to 869 

implementing AA leads to sufficiently good performance for more than 60% of the districts in 870 

Mozambique. Scenario 4, which is currently in operational use in Mozambique results in the highest 871 

national AA coverage across all tested approaches. Furthermore, the Ready, Set & Go! approach 872 

(scenarios 3 & 4) increases the hit rate and decreases the false alarm ratio of AA triggers in comparison to 873 

a single drought alert (scenarios 1 & 2). Finally, the lead time for preparedness AA activities is also longer 874 

when using the Ready, Set & Go! approach. While the scenarios with a single drought alert allows for, on 875 

average, 2 months for AA implementation once the trigger is exceeded, the Ready, Set & Go! system 876 

increases the AA lead time to nearly 3 months. 877 

 878 
Table 3: Sensitivity analysis of different approaches for establishing an AA drought trigger system for the two menu of triggers. 879 
Statistics of the different scenarios are based on the average of the best performing SPI 2 or SPI 3  indicator for AA within windows 1 880 
and 2. 881 

  

Scenario 1: single 
drought alert and 
no bias correction 
applied to forecast 
dataraw forecast 

only 

Scenario 2: single 
drought alert and 

bias correction 
applied to forecast 
dataincluding bias 
corrected forecast 

Scenario 3: Ready, 
Set & Go!double 
confirmation and 
no bias correction 

applied to 
forecast dataraw 

forecast only 

Scenario 4: Ready, 
Set & Go! and bias 
correction applied 

to forecast 
dataincluding bias 
corrected forecast 

General 
triggers 

Hit Rate 62% 62% 64% 64% 

False Alarm 
Ratio 

21% 21% 17% 16% 

Lead Time 
for 

preparedness 
2,10 2,00 2,90 2,90 

AA coverage 59% 61% 73% 76% 

Emergency 
triggers 

Hit Rate 72% 72% 73% 73% 

False Alarm 
Ratio 

29% 30% 26% 26% 
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Lead Time 
for 

preparedness 
2,10 2,10 3 2,90 

AA coverage 42% 43% 59% 63% 

 882 

 883 

3.5 Spatial Overview of Ready, Set & Go! System 884 

 885 

Figure 8 provides a detailed spatial statistical overview of the performance of the Ready, Set, & Go! 886 

triggers, complementing the results for Scenario 4 presented in section 3.4. As noted earlier, severe 887 

droughts are predicted with greater skill in window 1 compared to window 2, allowing for AA triggers to 888 

be assigned to more districts in window 1. The percentage of districts with a valid AA trigger is as follows:  889 

i) 66% for the emergency trigger menu in window 1 and 59% in window 2, and ii) 87% for the general 890 

trigger menu in window 1 and 64% in window 2. Notably, every district with an emergency AA trigger also 891 

has a general AA trigger, indicating that for most districts, AA triggers can be adjusted annually based on 892 

current vulnerability levels. However, in some cases, the general trigger is the only applicable option. 893 

 894 

In terms of trigger performance across windows, the Central zone showed the highest and lowest mean 895 

hit rates, with window 1 achieving 74% and window 2 achieving 61%. Across all menus and windows, the 896 

emergency menu in window 1 had the highest mean hit rate (77%), while the general menu in window 2 897 

had the lowest (61%). This result is expected, as the emergency menu is designed for higher hit rates, 898 

particularly given the greater predictability of severe droughts in window 1. 899 

 900 

In addition to the highest drought predictability, the South zone of Mozambique also exhibited the highest 901 

total AA coverage, with an average of 86% of districts having an AA trigger. The highest single window and 902 

trigger menu coverage was in the South zone under the general menu, with 97% of districts having a 903 

trigger. Spatial differences in trigger performance were also observed between neighboring provinces, 904 

such as Manica and Tete in window 1 under the general menu. These differences could be driven by 905 

varying forecast skill levels. For instance, the AUROC scores for the general trigger in window 1 are 0.82 906 

for Manica and 0.68 for Tete. Factors contributing to these differences could include under- or over-907 

estimation of rainfall events used to verify forecasts in Mozambique (as noted in a previous study by Toté 908 

et al., 2015), numerical effects from data rescaling, and the resolution of district-level assessments using 909 

CHIRPS and ECMWF forecasts. 910 

 911 

In Figure 7, we provide the detailed spatial statistics overview of the performance of Ready, Set & Go! 912 

triggers in complement to results shown for scenario 4 in section 3.4. As previously mentioned, severe 913 

droughts are predicted with higher skill within window 1 than window 2. This enables triggers for AA to 914 

be assigned for a higher number of districts within window 1 (following minimum standards pre-defined 915 

in Table 1). As several SPI 2 and SPI 3 indicators are extracted per window, often more than one indicator 916 

and trigger for AA can be found for each district. For displaying Figure 7, we rank all candidate triggers 917 

according to their hit rate, false alarm ratio and lead time, and display the performance of the top one 918 

indicator for each district. The percentage of districts with a found AA trigger are: i) 66% and 59% for the 919 
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emergency trigger menu and window 1 and window 2, respectively ii) 87% and 64% for the general trigger 920 

menu and window 1 and window 2, respectively. Overall, all districts with a found AA trigger for the 921 

emergency menu has also an AA trigger for the general menu. Therefore, we show that for the majority 922 

of the Mozambican districts, AA triggers can be yearly modulated by an assessment of current 923 

vulnerability levels while in others, the general trigger is the only option applicable. 924 

 925 

Regarding the performance of the triggers across the different windows (Figure 7), triggers for AA reach, 926 

on average, the highest and lowest hit rates both for the Central Zone window 1 (74%) and window 2 927 

(61%), respectively. Across the different menus and windows, the highest and lowest hit rate are found 928 

for the emergency menu and window 1 (77%) and general menu for window 2 (61%), respectively. This is 929 

expected as triggers for AA under the emergency menu are chosen to have a higher hit rate than in 930 

comparison to the general ones, which is also leveraged by the higher predictability of severe droughts 931 

within window 1. Furthermore, on top of showing the mean highest drought predictability for severe 932 

droughts in window 1, the south zone of Mozambique also shows the highest total AA coverage (average 933 

of 86% of districts with a found AA trigger). The single window and trigger menu with highest AA coverage 934 

is found for the south zone and general menu (97%). Furthermore, when comparing the spatial differences 935 

in the performance of the triggers, we observe some dissimilarities between neighbor provinces (e.g., 936 

general trigger window 1: Manica and Tete). Whereas it is challenging to depict a single driver of such 937 

differences, a potential one may be emerging from the differences in skill of the forecast information used 938 

as trigger. For instance, the triggers used for informing AA in Manica and in Tete (window 1  and general 939 

menu), have a mean AUROC scores of 0.82 and 0.68, respectively. Furthermore, differences in skill may 940 

be due to a number of reasons including the under and/or over estimation of rainfall events used to verify 941 

the forecast in Mozambique (CHIRPS) as mentioned in previous study (Toté et al., 2015); a numerical effect 942 

due data rescaling and assessment at the district level (from both CHIRPS and ECMWF forecast) among 943 

others. 944 

  945 
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 946 
Figure 87: Hit rate of the Ready, Set & Go! Trigger system for severe droughts for two trigger menu (emergency and general) and two 947 
windows of intervention (window 1 and window 2). No trigger for the Ready, Set & Go! for severe droughts were found for the districts 948 
in grey. 949 

 950 

Regarding the average false alarm ratio of the triggers across different windows (Figure 9), the highest 951 

and lowest ratios are observed in the South zone for window 2 (20%) and the Central zone for window 1 952 

(10%), respectively. Across various menus and windows, the emergency menu and window 2 exhibit the 953 

highest false alarm ratio (16%), while the general menu and window 1 have the lowest (10%). This pattern 954 

is expected, as the emergency menu is designed to tolerate a higher false alarm ratio to ensure a higher 955 

hit rate, making it less prone to missing a drought forecast. 956 

 957 

Supplementary Material S5 details the specific SPI indicators used for AA triggers. For window 1, SPI DJ is 958 

the most commonly selected indicator across all zones. In window 2, different SPIs are chosen per zone: 959 

i) SPI FMA for the North zone, ii) SPI JFM for the Central zone, and iii) SPI DJF for the South zone. 960 

 961 

Regarding lead times, the earliest “ready” alert for preparedness in window 1 can be issued for a few 962 

districts in the South zone based on the May forecast. However, for most districts in the South zone, the 963 

July forecast is used for preparedness, whereas in the North and Central zones, the September forecast is 964 

most commonly used for the “ready” alert. In window 2, most districts in the South zone use the August 965 

forecast for preparedness, while the North and Central zones typically use the October forecast. 966 

 967 

It is important to note that regional rainfall climatology significantly influences the choice of intervention 968 

windows and indicators. As a result, districts in the South zone may receive readiness alerts earlier in the 969 

season compared to other areas. This factor is crucial for planning AA activities and allocating geographical 970 

funding. 971 

 972 
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Regarding the average false alarm ratio of the triggers across the different windows (Figure 7), triggers for 973 

AA reach the highest and lowest scores for the south zone window 2 (20%) and central zone window 1 974 

(10%), respectively. Across the different menus and windows, the highest and lowest false alarm ratio are 975 

found for the emergency menu and window 2 (16%) and general menu for window 1 (10%), respectively. 976 

This outcome is expected as triggers for AA under the emergency menu are accept a higher hit rate and 977 

false alarm ratio than in comparison to the general ones and therefore more averse to missing to forecast 978 

a drought. In the Supplementary Material S5, we display which specific SPI indicator informs the AA 979 

triggers. Across all zones, SPI DJ is the indicator most chosen to inform AA within window 1, whereas in 980 

window 2 different SPIs are chosen per zone as following: i) SPI FMA for the north zone, ii) SPI JFM for the 981 

central zone and iii) SPI DJF for the south zone. In regard to lead time, the earliest “ready” alert for 982 

preparedness within window 1 can be issued for few districts in the south zone based on the forecast of 983 

May. However, for window 1, most districts in the south zone uses the forecast of July for preparedness, 984 

whereas in the north and central zones, the forecast of September is the most used for the “ready” alert. 985 

Furthermore, for window 2, most districts in the south zone use the forecast of August for preparedness, 986 

whereas in the north and central zones, the forecast of October is the most used for the “ready” alert. It 987 

is important to highlight that the climatology of rainfall is decisive for defining windows of intervention 988 

and therefore some indicators are of relevance or not to the three zones. Therefore, it is expected that 989 

districts in the south zone may show readiness alert earlier in the season than the remaining areas. This 990 

is an important factor when planning for AA activities and geographical funding distribution. 991 

 992 
Figure 98: False Alarm ratio of the Ready, Set & Go! Trigger system for severe droughts for two trigger menu (emergency and general) 993 
and two windows of intervention (window 1 and window 2). No trigger for the Ready, Set & Go! for severe droughts were found for the 994 
districts in grey. 995 

 996 

4. DISCUSSION, LIMITATIONS AND NEXT STEPS 997 

 998 
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In this study, we present the technical approachmethodology adopted behind by the operational Ready, 999 

Set & Go! trigger system which is used by Mozambican governmental institutions and their implementing 1000 

partners for to supporting guide AA activities against droughts. We show that tThe Ready, Set & 1001 

Go!system optimizes the use of seasonal forecast information by finding identifying triggers for AA 1002 

through a based on a double confirmation process.,This which approach combines longer and shorter lead 1003 

time with shorter lead time forecasts information for issuingto issue more reliable drought alerts. We Our 1004 

findings indicate observe that by usingutilizing both ensemble bias corrected and raw ensemble rainfall 1005 

forecasts, AA activities efforts could potentially be scaled up to cover the entire rainy season in, against 1006 

droughts could be scaled up, on average, to 76% of Mozambican Mozambique’s district.s . If focused solely 1007 

on the first part of the rainy season, where  drought predictability is higher, AA activities National coverage 1008 

against severe droughts could expand to be reached to 87% of all districts.  if targeting only the first 1009 

window of the rainy season (general triggers). This means demonstrates that seasonal forecasts are can 1010 

able to reliably inform AA months before the onset of severe droughts, meeting the quality criteria 1011 

established by as per multi- multiple institutions. al criteria, several months ahead of the onset of severe 1012 

droughts. Such scalability This showsindicates  strong a potential for a expanding major national scale up 1013 

of current AA pilots nationwide, contributing supporting to the ambitious goals of the Maputo Declaration 1014 

in whichwhere Southern Africa governments committed to expand extending early warning systems 1015 

across the in Southern Africa region (SADC, 2022). At the global levelGlobally, our the Ready, Set & Go! 1016 

sSystem also partially contributesaligns with to the Early Warning for All initiative, which aims that seeks 1017 

to ensure that everyone every individual worldwide in the globe is protected from climate events through 1018 

life-saving early warning systems by the end of 2027 (WMO, 2022). This may imply aninitiative 1019 

underscores the need for expanding the increased climate information portfolio for of the Nnational 1020 

mMeteorological and hHydrological sServices with afor direct application downstreamin disaster risk 1021 

management. However, there are still limitations and opportunities for further improvements of the 1022 

system, which we discuss in the paragraphs belowfollowing sections. 1023 

 1024 

This study demonstrates that the Ready, Set & Go! Trigger system can effectively issue severe drought 1025 

alerts using SPI 2 and SPI 3 indicators, which the Technical Working Group in Mozambique has deemed 1026 

suitable for monitoring and anticipating drought risks in agricultural systems. However, these indicators 1027 

and thresholds are not flawless in detecting drought damage, as the relationship between drought risk 1028 

and impact is often location-specific, non-linear, and influenced by non-climatic factors such as 1029 

vulnerability (Brida et al., 2013; Silva & Matyas, 2014). The ideal method for establishing AA thresholds 1030 

that reliably detect drought-related losses would involve an historical analysis examining the connection 1031 

between drought events and socio-economic impacts, such as crop yields, income losses, health 1032 

outcomes, and food security. Past studies on index-based insurance for the agricultural sector have 1033 

extensively explored the gap between rainfall measurements and actual agricultural losses, highlighting 1034 

challenges in accurately capturing real world farmer impacts (Clarke & Dercon, 2009; Clement et al., 2018; 1035 

Greatrex et al., 2015). Unfortunately, comprehensive, downscaled impact data is largely unavailable, 1036 

particularly across African countries, limiting further refinement of thresholds and indicators within the 1037 

system and hindering the ability to solidify links between drought conditions and past impacts. Future 1038 

efforts should focus on refining these thresholds to strengthen the relationship between physical drought 1039 

hazards and expected impacts. This could be achieved by utilizing spatially explicit socio-economic 1040 
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datasets, such as the Integrated Food Security Phase Classification indicator from the Famine Early 1041 

Warning Systems Network, along with data recovery exercises. This would allow users to better 1042 

understand food security outcomes tied to drought events. 1043 

Additionally, the Ready, Set & Go! system issues drought alerts based on a multi-month SPI indicator, 1044 

which can overlook the effects of short but impactful dry spells, poorly distributed rainfall, intense rainfall 1045 

episodes, or delayed/early cessation of rains. Incorporating additional drought indicators could help 1046 

better capture these risks, ideally through an exploratory analysis that links specific drought indicators to 1047 

negative impacts and evaluates their predictability. 1048 

Two technical aspects related to the extraction of the SPI indicator also requires further improvement. 1049 

First, more sensitive statistical tests could be used to identify candidate probability distributions for 1050 

normalizing drought indices. Although this study applies the two-parameter gamma distribution, as 1051 

recommended by Stagge et al. (2015), a more rigorous assessment of the assumed SPI distributions could 1052 

be beneficial. Second, the handling of zero precipitation poses challenges, particularly in regions with very 1053 

low seasonal rainfall. In this system, zero precipitation events are accounted for by assigning SPI values 1054 

based on their historical occurrence. However, this approach can be problematic when many zero values 1055 

are present, as SPI requires a mean value of 0 to reflect typical conditions, where half of the years is 1056 

wetter, and half is drier. While the presence of zero precipitation was rare in this study, further refinement 1057 

is needed to handle these cases more effectively. Using a method such as the center of probability mass, 1058 

as suggested by Stagge et al. (2015), could offer a more robust approach to calculating SPI in extremely 1059 

dry regions. 1060 

 1061 

As it is shown in this study, the Ready, Set & Go! Trigger system can produce alerts of severe droughts 1062 

through the lenses of the SPI 2 and SPI 3 indicators. These indicators and thresholds are considered by the 1063 

TWG in Mozmabique as a suitable option for monitoring and anticipating severe risks to agricultural 1064 

systems. However, such indicators and thresholds are not perfect at detecting drought damages, 1065 

especially given that the relationship between drought risk and impact can often be location-specific, non-1066 

linear and modulated by non-climatic factors such as vulnerability (Brida et al., 2013; Silva & Matyas, 1067 

2014). Given that a historical and comprehensive drought losses or impact data is unavailable, especially 1068 

at district level, no further tuning of thresholds and indicators could be done to enrich the system. 1069 

Therefore, instead of using a single severity level, the operational Ready, Set & Go! system can release 1070 

alerts for two other addition thresholds: mild and moderate droughts (see explanation in Guimarães 1071 

Nobre et al., 2023). Future efforts could focus on refining such thresholds in order to build a stronger link 1072 

between the physical hazard and expected impacts through the support of spatial explicit socio-economic 1073 

datasets such as the Integrated Food Security Phase Classification indicator produced by the Famine Early 1074 

Warning Systems Network. This way, users can be aware of the food security outcomes linked to drought 1075 

events. Furthermore, the Ready, Set & Go! Could benefit from incorporating other drought indicators to 1076 

better capture drought risks within the two windows of intervention. In practice, the Ready, Set & Go! 1077 

System already releases alerts based on dry spells, but other metrics such as the onset of rains, rainfall 1078 

cessation and Standardized Precipitation Evapotranspiration Index could also be explored. 1079 

 1080 

 1081 
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TWith the Ready, Set & Go! Trigger system, we ultimately seek aims  to bring extend  AA and reliable early 1082 

warning information for to all districts in Mozambique. Although we ahavere not yet fully able to achieved 1083 

this goal with theusing our current techniques adopted, we believe that refining the bias correction 1084 

methodology may further leverage thewill enhance the system’s effectiveness. Bias correction is 1085 

considered a critical element a key component ofin precipitation forecasts, with and QM is being one of 1086 

the most commonly technique applied techniques. For setting up theIn developing AA trigger’ system, we 1087 

developed designed and assessed evaluated a bias correction methodology in order to identify improve 1088 

opportunities for increasing the accuracy of skill of the seasonal forecast in predicting severe droughts. 1089 

While our methodology has increased forecast Despite increasing skill for 24% of all the predicted 1090 

forecasted SPI (at the district level) and increasing expanded AA coverage by 4% (as shown in Table 3, 1091 

comparing scenario 3 to 4Table 3, scenario 3 compared to 4), there are is still potential currently 1092 

improvements that can be taken to advance theto further enhance the bias correction approach. Below, 1093 

we outline the improvements that can be made., which we describe below.  1094 

 1095 

 1096 

Firstly, our method uses an ENSO-informed quantile mapping transfer function to correct the SPI forecast 1097 

based on the SPI reference value of the pixel under investigation and its nine neighboring pixels 1098 

conditioned on the state of ENSO. process for selecting samples to build the bias correction transfer 1099 

function. This seeks process to ensures that the bias correction accounts adjusts for variations in the 1100 

SPIrainfall quantities according to the climatology of rains during different ENSO phases, effectively 1101 

capturing and therefore capturing relevant global processes (Manzanas & Gutiérrez, 2019; Maraun et al., 1102 

2017). In practice, this means involves splitting that theSPI time series of SPIs, extracted derived from both 1103 

CHIRPS and ECMWF ensemble forecasts, are split into Neutral, La Niña and El Niño years depending on 1104 

thethe actual and retrospective prevalent ENSO phase of ENSO (overview detailed in Supplementary 1105 

Material S1). However, for in some regions in of Mozambique, such as part of Tete, the ENSO-rainfall 1106 

signal is less presentweak, such as the rainfall fromparticularly during October to December in parts of 1107 

Tete (WFP, 2018). Therefore, using relying only solely on an ENSO-based approach informed process may 1108 

not be the ideal in these areasapproach given the weak ENSO-rainfall link. In addition, there are 1109 

otherOther modes of climate variability modes, such as the Indian Ocean Dipole,  which is wellare also 1110 

known to drive influence year to yearannual rainfall variability in the country Mozambique (B. A. et al., 1111 

2021; Ficchì et al., 2021; Harp et al., 2021). This creates suggests thea need to for further investigateing 1112 

the suitability of other incorporating additional modes of teleconnections modes to the Mozambicaninto 1113 

climate in the bias correction approachprocess. 1114 

 1115 

Second, since extreme droughts generally affect broad areas rather than single locations (Eskridge et al., 1116 

1997; Liu et al., 2021), our bias correction methodology accounts for the spatial dependence of SPI. To 1117 

bias correct a single grid point of the SPI ensemble forecast, we incorporate data from multiple grid points 1118 

(the target grid point and its nine neighbors) from the reference SPI dataset to build the transfer function. 1119 

Previous research has shown that addressing spatial dependence reduces bias in climate model outputs 1120 

(Cannon, 2018; Nahar et al., 2018). To avoid overfitting, we use a leave-one-year-out cross-validation 1121 

scheme, excluding the year being bias corrected from the transfer function. For the spatial dependence 1122 

setup, we tested two k values (4 and 9), ultimately selecting 9 based on improved spatial homogeneity of 1123 
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AUROC scores. However, this approach could benefit from further optimization by assessing the k value 1124 

that yields the highest AUROC scores for specific locations. 1125 

 1126 

Third, improvements in bias correction may be achieved by exploring emerging methodologies such as 1127 

Machine Learning (ML). Recent studies indicate that ML has the potential to outperform traditional 1128 

techniques like QM (e.g., Yoshikane & Yoshimura, 2023; Zarei et al., 2021). Lastly, our initial internal tests 1129 

showed significant improvements in drought predictability by creating a transfer function that directly 1130 

links SPI forecasts to SPI observations, rather than taking the traditional approach of bias correcting daily 1131 

or monthly raw rainfall forecasts before converting them into SPI values. This direct approach has led to 1132 

both statistical and practical gains, as it allows the system to focus directly on drought detection. If the 1133 

system evolves to include additional rainfall-based indicators, such as dry spells or the start/cessation of 1134 

rains, a method that directly bias corrects raw forecasts could offer operational advantages, as it can be 1135 

widely applied to generate additional indicators. 1136 

 1137 

 However, it is important to mention that, in an operational manner and in alignment with the 1138 

methodology, at least the dominant phase of the indicator of climate variability should be forecastable 1139 

with a long lead time, such as ENSO phases that are predicted months in advance (IRI, 2023). The long 1140 

lead time of such forecasts help us to determine which of the three phases of ENSO to select for building 1141 

the transfer function to be applied in the newly received forecast information (received each year from 1142 

May onwards). Secondly, since extreme droughts generally do not occur at a single location, but in a 1143 

broader spatial extent (Eskridge et al., 1997; Liu et al., 2021), our bias correction methodology takes a 1144 

multivariate approach. This means that for bias correcting a grid point of the ensemble forecast, multiple 1145 

grid points (specific grid point and its k neighbors) of the reference rainfall dataset are pulled together for 1146 

building the transfer function. As shown by previous research, correcting for the spatial dependence of 1147 

rainfall leads to reduced bias in climate model outputs (Cannon, 2018; Nahar et al., 2018). In addition, to 1148 

help avoid overfitting, the year being bias corrected is left out from the transfer function, applying a 1149 

scheme of leave-one-year-out cross-validation. For the setup of the spatial dependence, only two k values 1150 

were tested (5 and 10) and the latter one used as we found a more (eyeballed) spatial homogeneity of 1151 

AUROC scores. However, this multivariate approach could benefit from a process that optimizes the 1152 

number of k neighbors by assessing the value that results in the highest AUROC scores for a particular 1153 

location. Thirdly, bias reduction in the forecasting data may be achieved by exploring emerging 1154 

methodologies such as Machine Learning (ML) given that recent studies have shown that ML has the 1155 

potential to outperform traditional techniques such as QM (e.g., Yoshikane & Yoshimura, 2023; Zarei et 1156 

al., 2021).  1157 

 1158 

 1159 

Furthermore, Wwe also highlight show the potential for to scale upscaling up AA using by utilizing rainfall 1160 

seasonal forecasts from the ECWMF. In our setupapproach, the seasonal forecast is downscaled from 1 1161 

degree to 0.25 degrees via using bilinear interpolation, which enables allows us to assess forecasting skill 1162 

to be assessed at the district level. Being able to extractExtracting drought alerts at the district level is key 1163 

crucial in order to align match with the geographical targeting of AA interventions. However, further 1164 

investigation could into be done to evaluate other suitable downscaling techniques, such as ML, which 1165 
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could be beneficial, as ML has been shown was shown to increaseenhance theforecast skill of forecasts 1166 

(Jin et al., 2023). Furthermore, ECMWF was initially chosen selected as the our main primary source of 1167 

forecasting information mainly due to its motivated by the known superior higher skill in predicting 1168 

precipitation over the African continent in comparisoncompared to other centers (Gebrechorkos et al., 1169 

2022). HoweverNevertheless, future studies could may benefit from moving shifting from a single-model 1170 

approach center to a Multi-Model Ensemble (MME) approachstrategy. MME links integrates independent 1171 

models emerging from different various producing forecasting centers of forecasting information, and 1172 

itswhich key at reducing the effect ofhelps mitigate individual model errors which in turn can improveand 1173 

can enhance the reliability of seasonal outlooks (Doblas-Reyes et al., 2010; Gebrechorkos et al., 2022; 1174 

Rozante et al., 2014). 1175 

 1176 

As it is shown in this study, the Ready, Set & Go! Trigger system can produce alerts of severe droughts 1177 

through the lenses of the SPI 2 and SPI 3 indicators. These indicators and thresholds are considered by the 1178 

TWG in Mozmabique as a suitable option for monitoring and anticipating severe risks to agricultural 1179 

systems. However, such indicators and thresholds are not perfect at detecting drought damages, 1180 

especially given that the relationship between drought risk and impact can often be location-specific, non-1181 

linear and modulated by non-climatic factors such as vulnerability (Brida et al., 2013; Silva & Matyas, 1182 

2014). Given that a historical and comprehensive drought losses or impact data is unavailable, especially 1183 

at district level, no further tuning of thresholds and indicators could be done to enrich the system. 1184 

Therefore, instead of using a single severity level, the operational Ready, Set & Go! system can release 1185 

alerts for two other addition thresholds: mild and moderate droughts (see explanation in Guimarães 1186 

Nobre et al., 2023). Future efforts could focus on refining such thresholds in order to build a stronger link 1187 

between the physical hazard and expected impacts through the support of spatial explicit socio-economic 1188 

datasets such as the Integrated Food Security Phase Classification indicator produced by the Famine Early 1189 

Warning Systems Network. This way, users can be aware of the food security outcomes linked to drought 1190 

events. Furthermore, the Ready, Set & Go! Could benefit from incorporating other drought indicators to 1191 

better capture drought risks within the two windows of intervention. In practice, the Ready, Set & Go! 1192 

System already releases alerts based on dry spells, but other metrics such as the onset of rains, rainfall 1193 

cessation and Standardized Precipitation Evapotranspiration Index could also be explored. 1194 

 1195 

We show that the Ready, Set & Go! System leads to AA advisories with an increased hit rate and decreased 1196 

false alarm ratio in comparison with a system using only a single alert for AA advisories. Furthermore, we 1197 

observe that the Ready, Set & Go! System increases the timing for preparedness activities and would 1198 

enable the scale up of AA against severe droughts in the first window of the rainy season to 87% of the 1199 

districts in Mozambique. However, given that triggers for AA are identified and optimized at the district 1200 

scale, the system is prone to issuing AA advisories for individual districts whereas past severe droughts 1201 

are often observed at a broader scale, including large-scale socio-economic consequences (Baez et al., 1202 

2020). This may happen given that the system uses different lead times of the forecasting information for 1203 

districts within a given province and/or if the trigger for the different windows of implementation within 1204 

a province is informed by different SPI indicators. For instance, this situation can be observed in the 1205 

southern regions in Mozambique (shown in the Supplementary Material S5). Despite having statistical 1206 

gains, the decision of optimizing the triggers at the district scale needs to be further contextualized for 1207 
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practical decisions, which can include large-scale operations and funding distribution/management. Thus, 1208 

this optimization process may not be perceived as the most appropriated approach for AA planning, 1209 

especially given the plans to scale up AA to the country level. However, one way to avoid the asynchrony 1210 

of AA triggers may lie in refining the final triggers’ selection of indicators and lead times based on their 1211 

performance across the majority of the districts within a province.  1212 

 1213 

We demonstrate that the Ready, Set & Go! system improves the accuracy of AA advisories, resulting in a 1214 

higher hit rate and a lower false alarm ratio compared to a system that relies on a single alert for AA 1215 

advisories. Additionally, we observe that this system extends the lead time for preparedness activities, 1216 

allowing for the scaling up of AA efforts against severe droughts during the first window of the rainy 1217 

season, covering 87% of districts in Mozambique. However, since AA triggers are identified and optimized 1218 

at the district level, the system is prone to issuing advisories for individual districts, even though past 1219 

severe droughts have often had broader impacts, including widespread socio-economic consequences 1220 

(Baez et al., 2020). This discrepancy may occur because the system uses different lead times for 1221 

forecasting information across districts within the same province or because triggers for different 1222 

implementation windows within a province are based on varying SPI indicators. An example of this can be 1223 

seen in southern Mozambique (refer to Supplementary Material S5). Despite these statistical gains, 1224 

optimizing AA triggers at the district level needs to be contextualized for practical decision-making, 1225 

particularly for large-scale operations and the distribution and management of funding. Therefore, while 1226 

district-level optimization may be effective statistically, it may not always be the most appropriate 1227 

approach for AA planning, especially when scaling up AA across the entire country. One potential solution 1228 

to avoid asynchrony in AA triggers is to refine the selection of indicators and lead times by evaluating their 1229 

performance across the majority of districts within a province, ensuring more synchronized and 1230 

coordinated AA efforts. 1231 

 1232 

 We also demonstrate that the triggers for the Ready, Set & Go! system can be adjusted based on 1233 

vulnerability information, adding an important nuance to AA operations (Baez et al., 2020). However, 1234 

measuring vulnerability is a complex task that often requires frequent updates, location-specific data, and 1235 

further disaggregation by age and gender (Chaves-Gonzalez et al., 2022). In Mozambique, the Technical 1236 

Secretariat for Food Security and Nutrition (SETSAN) is responsible for providing such information. AA 1237 

operations would greatly benefit if this data were made available in a timely manner, ideally before the 1238 

start of the AA season. Unfortunately, this is not always the case. More research is needed to understand 1239 

vulnerability trends and their relationship to climate hazards (Baez et al., 2020; Hallegatte et al., 2016). As 1240 

the system expands, collecting timely vulnerability data may become increasingly challenging. Therefore, 1241 

a systematic, rapid, yet robust methodology for vulnerability analysis is essential. We have also observed 1242 

a lower percentage of districts covered by AA when emergency triggers—modulated by vulnerability—1243 

are used. These emergency triggers inherently allow for a higher rate of false alarms and focus on "no-1244 

regret" actions (Chaves-Gonzalez et al., 2022) while increasing the probability of detection. This approach 1245 

aims to maximize the number of extreme droughts anticipated by AA interventions and provide a safety 1246 

net for areas with high vulnerability. However, the current criteria for identifying emergency triggers are 1247 

not achieving higher coverage compared to general triggers. Revisiting these criteria (see Table 1) through 1248 

a statistical optimization process may help enhance the system's effectiveness. 1249 
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 1250 

Furthermore, we show that the triggers for the Ready, Set & Go! System can be modulated based on 1251 

vulnerability information, which is an important nuance to be added to AA operations (Baez et al., 2020). 1252 

However, it is key to highlight that measuring vulnerability can be a difficult task, often requiring regular 1253 

updates, location-specific information, which can also be further disaggregated by age and gender 1254 

(Chaves-Gonzalez et al., 2022). The Mozambique Technical Secretariat for Food Security and Nutrition 1255 

(SETSAN) has the mandate to provide such information. The AA operations will benefit if the information 1256 

is made available timely and prior to the start of the AA season, which is often not the case. More studies 1257 

are needed to understand trends in vulnerability and its relationship with climate hazards (Baez et al., 1258 

2020; Hallegatte et al., 2016). As the system scales up, collecting timely vulnerability information may 1259 

become a challenge. Therefore, a systematic, fast, and yet robust methodology for extracting such 1260 

vulnerability analysis is required. Furthermore, we have shown a lower percentage of districts with AA 1261 

coverage when adopting emergency triggers, which is modulated by vulnerability. Intuitively, this menu 1262 

accepts a higher degree of false alarms, and actions considered as “non-regret” (Chaves-Gonzalez et al., 1263 

2022), with an increased probability of detection. This menu of triggers is expected to maximize the 1264 

possible number of extreme droughts that are preceded by the AA, and in turn to offer a safety net to 1265 

areas facing high levels of vulnerability.  However, the currently adopted criteria for finding emergency 1266 

triggers are not enabling a higher coverage in comparison to the general triggers. Therefore, it may be 1267 

useful to revise the established criteria (Table 1) by applying a statistical optimization process.  1268 

 1269 

As previously mentioned, the Ready, Set & Go! system is currently being piloted in 11 districts across 1270 

Mozambique, with plans to scale up AA operations in 2024. Due the 2023-24 El Niño, several AA advisories 1271 

have already been issued to districts in the Gaza, Sofala, and Tete provinces, marking the system's first 1272 

operational deployment during the 2023-24 rainy season. While humanitarian and governmental 1273 

organizations have substantial experience in responding to hazards after they occur, most monitoring and 1274 

evaluation (M&E) efforts have focused on the effects of emergency responses post-crisis. There is limited 1275 

evidence on the benefits of AA, particularly regarding drought interventions partially given the small 1276 

number of pilot interventions to date as well as with challenges faced by studies on benefit 1277 

estimations/modelling. As the evidence base for value for money begins to form, WFP's AA programs are 1278 

showing potential as a sustainable way to support climate-vulnerable governments with limited resources 1279 

(WFP, 2023a). In Kenya, drought-related AA could save up to US$20 billion over 20 years, even with false 1280 

alarms costing significantly less than a late response. In Ethiopia, Kenya, and Somalia, AA could save 1281 

US$1.6 billion over 15 years by mitigating drought impacts before price spikes and negative coping 1282 

strategies. In Nepal, AA reduced damage to vulnerable populations by 75% and cuts asset losses by 50%, 1283 

saving US$34 for every dollar invested and reducing long-term recovery costs. In Zimbabwe, AA reached 1284 

32,500 people before drought impacts, with 97% of farmers benefiting from climate information and 80% 1285 

adapting their practices, leading to higher resilience compared to a control group. 1286 

 1287 

Given that AA represents an innovative approach and a relatively new concept in risk management, it is 1288 

crucial to establish a robust M&E system to evaluate the effectiveness of AA interventions. This system 1289 

will provide valuable insights into what has worked well in practice and highlight areas for improvement 1290 

in future operations. Ultimately, a well-designed M&E process will help determine whether AA 1291 
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interventions are effectively reducing or mitigating the impacts of droughts on affected populations (Gros 1292 

et al., 2021) 1293 

 1294 

As previously mentioned, the Ready, Set & Go! system is being piloted in Mozambique in 11 districts and 1295 

the scale-up of AA operations planned for 2024. Given the on-going El Niño, a number of AA advisories 1296 

have been already issued to districts located in the Gaza, Sofala and Tete provinces and therefore, for the 1297 

first time, the system is being operationalized in the rainy season 2023-24. As humanitarian and (non-) 1298 

governmental organizations have extensive experience responding to the impacts of hazards after a 1299 

shock, most of the body of monitoring and evaluation (M&E) findings focus on the effects of emergency 1300 

response on the lives and livelihoods post-crises. However, less evidence exists on the benefits of AA, 1301 

especially in relation to drought interventions. As AA is considered an innovative approach and a fairly 1302 

new concept within the scope of risk management, it is necessary to have in place a proper M&E system 1303 

to identify the effectiveness of AA interventions. This will create learning opportunities for a deeper 1304 

understanding of what has, in practical terms, worked well but also how to do better in future operations. 1305 

Ultimately, this process shall be able to identify whether AA interventions are making a difference in 1306 

reducing or mitigating the impacts of droughts on affected populations (Gros et al., 2021). 1307 

 1308 

5. CONCLUSIONS AND RECOMMENDATIONS 1309 

In this article, we introduced and benchmarked the “Ready, Set & Go!” system, which is being piloted in 1310 

Mozambique to trigger anticipatory action against severe droughts. This system is designed to implement 1311 

measures that mitigate the impacts of rainfall deficits during the critical period between forecasting and 1312 

the onset of drought. Following the recent adoption of the SADC Maputo Declaration by its member 1313 

states, there is a need to evaluate the system's opportunities and limitations for expanding drought AA 1314 

coverage to all districts in Mozambique. Our study findings include: 1315 

 1316 

• Potential for Expansion: The Ready, Set & Go! system could potentially scale AA activities to 76% 1317 

of Mozambican districts. Additionally, 63% of these districts could adopt an alternative trigger 1318 

system tailored to vulnerability levels. This feature allows the system to proactively address 1319 

potential vulnerabilities for the upcoming season. If only the first window of the rainy season is 1320 

targeted, coverage could increase to 87%. 1321 

• Impact of Bias Correction: The bias correction methodology used in the Ready, Set & Go! system 1322 

enhances forecasting skill for 24% of all forecasted SPI indicators at the district level. This 1323 

improvement raises AA coverage from 73% to 76% for the general menu, and from 59% to 63% 1324 

for the emergency menu. This means bias correction can extend operational AA coverage to about 1325 

six additional districts, representing a slight improvement but also enhancing the potential for 1326 

life-saving AA. 1327 

• Increased Hit Rate and Lead Time: The Ready, Set & Go! system improves both the hit rate and 1328 

lead time for AA compared to three alternative triggering approaches. The highest mean hit rate 1329 

across different windows was observed in the Central Zone within window 1 (74%). SPI DJ is the 1330 



44 
 

most commonly used indicator for AA in window 1. The earliest “ready” alert for preparedness 1331 

can be issued for a few districts in the South zone based on the May forecast. 1332 

• Reduced False Alarm Ratio: The Ready, Set & Go! system achieves a lower false alarm ratio 1333 

compared to the three alternative approaches. The mean lowest average false alarm ratio is found 1334 

in the Central Zone for window 1 (10%). Among different menus and windows, the mean highest 1335 

false alarm ratio is 21% for the emergency menu in window 2, while the mean lowest is 10% for 1336 

the general menu in window 1. 1337 

 1338 

In this article, we introduced and benchmarked the “Ready, Set & Go!” system, which is being piloted in 1339 

Mozambique for triggering AA against severe droughts. This system is used to implement actions to 1340 

reduce impacts of rainfall deficits in the critical window between a forecast and the onset of the drought 1341 

event. With the recent adoption of the SADC Maputo Declaration by its member states, there is currently 1342 

the need for assessing the opportunities and limitations of the system to scale up drought AA information 1343 

to all districts in Mozambique. Our study has shown that: 1344 

• The Ready, Set & Go! system has the potential for scaling up AA activities against severe droughts, 1345 

on average, to 76% of the Mozambican districts, and in 63% of them, an alternative trigger system 1346 

modulated by vulnerability levels can be adopted. This is an important feature of the system as it 1347 

can identify potential vulnerabilities for the upcoming season that can be addressed proactively 1348 

and protectively by the AA triggers. AA system’s coverage could be increased to 87%, if only the 1349 

first window of the rainy season is targeted. 1350 

• The used bias correction methodology in the Ready, Set & Go! system produces increased skill in 1351 

forecasting severe droughts for 24% of all forecasted SPI at the district level. This results on an AA 1352 

coverage increase from 73% to 76% (general menu), and from 59% to 63% (emergency menu). 1353 

This means that bias corrections enable AA to become operational to about six extra districts 1354 

(compared to a system without bias correction), which can be interpreted as a slight improvement 1355 

in the system coverage but also as an enabling mechanism for life-saving AA to thousands of 1356 

citizens. 1357 

•  The Ready, Set & Go! system increases the hit rate and lead time for AA in comparison to three 1358 

alternative triggering approaches benchmarked. We showed that across the different windows of 1359 

implementation, triggers for AA reached the highest hit rate for the Central Zone of Mozambique 1360 

within window 1 (74%). Across all zones, SPI DJ is the indicator most chosen to inform AA within 1361 

window 1. In regard to lead time, the earliest “ready” alert for preparedness can be issued for few 1362 

districts in the south zone based on the forecast of May. 1363 

• The Ready, Set & Go! system decreased the false alarm ratio for AA in comparison to three 1364 

alternative triggering approaches benchmarked. The average lowest false alarm ratio of AA 1365 

triggers is found for the Central zone window 1 (10%). Across the different menus of AA and 1366 

windows, the highest and lowest false alarm ratio are found for the emergency menu - modulated 1367 

by vulnerability - and window 2 (21%) and general menu for window 1 (10%), respectively. 1368 

 1369 

We observed that the piloted drought EWS has significant potential for scaling up AA across Mozambique, 1370 

aligning with the goals of the Maputo Declaration and the Early Warning for All initiative to provide climate 1371 
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event coverage and protection to all citizens by 2027. However, several next steps could further enhance 1372 

the effectiveness of the EWS: 1373 

 1374 

1. Enhance Bias Correction Methodology 1375 

• Explore Additional Climate Indices: Incorporate more indices related to climate variability to 1376 

refine the transfer function. 1377 

• Optimize Nearest Neighbors: Fine-tune the number of nearest neighbors used in bias correction. 1378 

• Investigate Emerging Techniques: Explore advanced methods such as Machine Learning to 1379 

improve accuracy. 1380 

 1381 

2. Improve Forecast Resolution 1382 

• Explore Downscaling Techniques: Investigate alternative downscaling methods to enhance the 1383 

resolution of seasonal forecasts. 1384 

• Consider Multi-Model Ensemble Approaches: Evaluate whether combining multiple models could 1385 

improve the reliability of seasonal outlooks. 1386 

 1387 

3. Strengthen Impact Links 1388 

• Connect Thresholds to Socio-Economic Impacts: Enhance understanding of the socio-economic 1389 

consequences of droughts to better plan and target AA activities. 1390 

• Incorporate Additional Indicators: Include other relevant drought indicators, such as the onset of 1391 

rains and rainfall cessation, to provide a more comprehensive assessment. 1392 

 1393 

4. Contextualize Trigger Optimization 1394 

• Refine Triggers for Practical Decision-Making: Consider the impact of optimizing triggers at the 1395 

district level, which may lead to asynchrony in AA activations among neighboring districts. Select 1396 

SPI 2 or SPI 3 indicators and lead times based on their performance across most districts within a 1397 

province. 1398 

5. Invest in Monitoring and Evaluation 1399 

• Support Ongoing Pilots: Invest in monitoring, evaluation, and learning to inform future expansion 1400 

of the anticipatory approach and maximize the impact of AA activities. 1401 

 1402 

These steps may help to maximize the effectiveness and coverage of the EWS, ensuring that AA efforts 1403 

are timely, more accurate and well-targeted. 1404 

 1405 

We observed that the piloted drought EWS can enable a major scale up of AA activities in the country, 1406 

which contributes to the ambitious goals of the Maputo Declaration and the Early Warning for All initiative 1407 

in ensuring coverage and protection from climate events by 2027 to all citizens. However, there are 1408 

number of next steps that can further leverage the potential of the presented EWS such as: 1409 

 1410 

• Improving the adopted bias correction methodology of the system by i) exploring additional 1411 

indices of the modes of climate variability that informs the transfer function, ii) optimizing the 1412 
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number of nearest neighbors, and iii) exploring emerging methodologies such as Machine 1413 

Learning. 1414 

• Investigating other suitable downscaling techniques to improve the resolution of the seasonal 1415 

forecast, as well as exploring whether a Multi-Model Ensemble approach could improve the 1416 

reliability of seasonal outlooks. 1417 

• Strengthening the links between threshold (the physical hazard) and impact to promote 1418 

awareness around socio-economic consequences of droughts as well as to improve the planning 1419 

and targeting of anticipatory action activities. Furthermore, the Ready, Set & Go! could benefit 1420 

from incorporating other drought indicators such as the onset of rains and rainfall cessation.  1421 

• Despite having statistical gains, the decision of optimizing the triggers at the district scale need to 1422 

be further contextualized for practical decision-making as it may cause asynchrony of AA 1423 

activations, even at neighbors’ districts. Thus, AA triggers’ choice can be refined by selecting a SPI 1424 

2 or 3 indicator and lead times of the forecast information based on their performance across the 1425 

majority of the districts within a province.  1426 

• Investing in monitoring, evaluation and learning of activities of on-going pilots in order to inform 1427 

future expansion of the anticipatory approach in the country and ensure maximum impact of 1428 

activities. 1429 

 1430 
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