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Abstract. Sea ice surface patterns encode more information than can be represented solely by the ice fraction. The aim of

this paper is thus to establish the importance of using a broader set of surface characterization metrics, and to identify a

minimal set of such metrics that may be useful for representing sea-ice in Earth System Models. Large-eddy simulations of the

atmospheric boundary layer over various idealized sea ice surface patterns, with equivalent ice fraction and average floe area,

demonstrate that the spatial organization of ice and water can play a crucial role in determining boundary-layer structure. Thus,5

different methods to quantify heterogeneity in categorical lattice spatial data, such as those done
:::
used

:
in landscape ecology and

Geographic Information System (GIS) studies, are used here on a set of high-resolution, recently-declassified sea ice surface

images. It is found that, in conjunction with ice fraction, the patch density (representing the fragmentation of the surface),

the splitting index (representing the variability in patch size), and perimeter-area fractal dimension (representing the tortuosity

of the interface) are all required to describe the two-dimensional pattern exhibited by a sea ice surface. Furthermore, for
:::
For10

surfaces with anisotropic patterns, the orientation of the surface relative to the mean wind is needed. Furthermore
:::
also

:::::::
needed.

::::::
Finally, scaling laws are derived for these relevant landscape metrics to estimate them from aggregated spatial sea ice surface

data at any resolution. The methods used and
::
the

:
results gained from this study are a first step towards further development of

methods to quantify the variability of non-binary
:::::
polar

:::
sea surfaces, and for parameterizing mixed ice-water surfaces in coarse

geophysical models.15

1 Introduction

The polar sea ice surface, a sensitive indicator of global climate change, shows persistent biases in
::
sea

:::
ice

:::::::
fraction

:::
and

::::::
extent

::
in coarse-resolution Earth System Model (ESMs) (Liu et al., 2022; Casagrande et al., 2023; Myksvoll et al., 2023). Among

other causes, these biases result from the inability of ESMs to resolve the fine-scale spatial variability of sea ice, and the result-

ing exchanges with the ocean below (Ramudu et al., 2018) and atmosphere aloft (Bates et al., 2006; Esau, 2007). The effect20

of this subgrid scale sea ice variability is typically parameterized in climate models using the ice fraction, fi, to determine

surface-atmosphere fluxes for an equivalent surface that would produce the same grid-cell averaged exchanges as the ice-

water mixture. Usually, either an equivalent homogeneous surface or mosaic flux aggregation are used (Bou-Zeid et al., 2020)

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Elvidge et al., 2016; Bou-Zeid et al., 2020; Elvidge et al., 2021), but both yield an average flux weighted by the ice and water
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fractions that is inaccurate as it does not account for the impact of surface heterogeneity on the dynamics of the lower atmo-25

sphere and the nonlinear interactions with the air flow above the ice and water (de Vrese et al., 2016)
::::::::::::::::::::::::::::::::::
(de Vrese et al., 2016; Lüpkes et al., 2012)

. This incomplete representation of sea ice surface and boundary-layer structure then results in errors in the turbulent ex-

changes of heat, moisture, and momentum across polar sea ice surface (Nilsson et al., 2001; Bourassa et al., 2013; Taylor et al.,

2018). The dynamics and secondary circulations below the first vertical grid cell level in climate models are particularly under-

resolved, and they have a direct impact on air-surfaces exchanges; it thus are
:
is

::::
thus imperative to understand how these features30

influence fluxes (Mahrt, 2000; Essery et al., 2003; de Vrese et al., 2016). These gaps in representing fine scale dynamics and

fluxes propagate to the projection of future changes in the Arctic climate system and resulting surface energy budget (Persson

et al., 2002; Miller et al., 2017). ,
:
which may be one reason why climate model ensembles consistently underpredict Arctic sea

ice sensitivity to surface temperature warming. This underprediction has persisted throughout the last three Intergovernmental

Panel on Climate Change (IPCC) model development cycles (Stroeve et al., 2007; Rosenblum and Eisenman, 2016, 2017;35

Notz and Community, 2020). The resulting uncertainty in climate models’ ability to predict sea ice future evolution hinders

effective action and decision-making; therefore, improving these models is more imperative now than ever
:::::::::
imperative (Notz

and Stroeve, 2018; Docquier and Koenigk, 2021).

The fringe zone that separates densely consolidated sea ice from the open ocean is known as the marginal ice zone (MIZ)

(Dumont, 2022)
:::
(see

::::::::::::::
Dumont (2022)

::
for

:
a
::::::
review

:::
on

:::
the

::::::
current

::::
state

::
of

::::
MIZ

::::::::
research). In the MIZ, the sizes and organization40

of sea ice floes and water are influenced by winds, sea currents, waves, and material ice properties (Wang et al., 2016; Ren et al.,

2021; Herman et al., 2021; Hwang and Wang, 2022). What makes this region unique is that the near-surface air temperatures

may fall in between the surface temperatures of the sea ice and water, resulting in abrupt spatial transitions between stabilizing

and destabilizing surface buoyancy fluxes
::::::::::::::::
(Lüpkes et al., 2012). Such transitions produce drastically different turbulence-mean

non-equilibrium dynamics and time scales (as show
:::::
shown

:
for comparable land-water transitions by Allouche et al. (2021)45

::::::::::::::::::::::::
Allouche et al. (2021, 2023b)), all affecting the surface-atmosphere exchanges between the air, water, and sea ice. The ice

fraction fi in the MIZ is between 15% and 80% (Strong et al., 2017); however, any region of fractured sea ice gives rise to

these abrupt transitions. It is precisely in these regions where the linear weighted averaged approaches described above will

be most inadequate, and where the surface transitions will play a key role in the dynamics. Thus, it is important to devise

better methods to quantify the heterogeneity of a surface, characterize its patterns, and represent
::::::
encode

:
this information in50

coarse-resolution ESMs to better represent the polar environment.

To that end, the complex geometric patterns formed by sea ice floes need to be analyzed. Larger floes will have proportionally

more of an effect on the surface-atmosphere fluxes, but smaller floes, with more frequent transitions, will exacerbate the non-

linearity of the exchange processes. These surface-atmosphere fluxes impart a large effect on the atmospheric boundary layer

(ABL) overlaying the marginal ice zone (MIZ-ABL). As a thought experiment, consider an ice-water surface with a very fine55

checkerboard pattern, and a sea ice fraction of fi = 0.5; this configuration will lead to statistically-homogeneous ice floes that

are locally variable at the surface, but are effectively homogeneous in regards to the MIZ-ABL where turbulence will rapidly

mix their small-scale signatures (Brutsaert, 2005; Mahrt, 2000; Bou-Zeid et al., 2004). However, two large patches of sea ice

and water (meso-α heterogeneity, see Bou-Zeid et al. (2020)), also with a sea ice fraction of fi = 0.5, will develop a large
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circulation closer to that of a sea breeze due to the abrupt transition between two large homogeneous surfaces (Porson et al.,60

2007; Crosman and Horel, 2010; Allouche et al., 2023a). The dynamics and thermodynamics in this MIZ-ABL system, and

the surface exchange therein, will thus be quite different over these two patterns even if the some key surface properties, e.g.

temperature and roughness, are identical (Bou-Zeid et al., 2007).

Given its importance and the challenges outlined above, previous work has attempted to quantify the heterogeneity of sea

ice surfaces (Wenta and Herman, 2018, 2019; Michaelis et al., 2020; Horvat, 2021; Dumont, 2022) utilizing surface and65

meteorological properties such as sea ice fraction, geostrophic velocity, lead width, or floe size distribution.
:::::::::::
Furthermore,

::::::::::::::
parameterizations

:::
for

::::
flow

::::
over

::::
leads

::
in

:::
sea

:::
ice

::::
have

::::
been

:::::::::
developed

::::
based

:::
on

::::::::
non-eddy

::::::::
resolving

::::::
models

:::::::::::::::::::::::::::::::::::
(Lüpkes et al., 2008; Michaelis et al., 2021)

:
.
::::::::::::::::::::::::
Michaelis and Lüpkes (2022)

::::
have

::::
also

:::::::::
conducted

:::::::::
turbulence

:::::::::::::::
parameterizations

::::::
(based

:::
on

:::::::::
large-eddy

:::::::::
simulation

::::::::
models)

:::
over

:::::::::
ensembles

:::
of

:::::
leads,

:::
but

::::
with

:
a
::::::::::::::
two-dimensional

:::
ice

:::::::
fraction

::::::::
geometry

:::
and

:
a
::::::
higher

:::
ice

:::::::
fraction.

:
However, the small-scale

patterns in the MIZ, especially as the resolution is increased, require broader and more versatile methods of heterogeneity70

characterization (e.g., Mandelbrot (1967)). In addition, the computational grid of even the highest-resolution numerical models

::::::
weather

:::
or

::::::
climate

:::::::
models

:::::::
models cannot resolve all the spatial features in the MIZ. One thus needs to consider how to

representsurface characteristics in model grids
:
,
::
in

::::
such

:::::::
models,

:::::::::
unresolved

:::::::
surface

::::::::::::
characteristics that can be thought of as

lattice-type spatial structures, defined by Cressie (1993). Observational data of MIZ ice patterns also have a finite resolution

and are thus comparable to lattice data, which then allows one to utilize different metrics specifically defined for lattice surfaces75

that offer ways to characterize the heterogeneity patterns of these
:::::
Polar surfaces. In this paper, we examine approaches for this

quantification commonly used in landscape ecology, a field that has generated a multitude of ways to study lattice spatial data

(Li and Reynolds, 1994, 1995; Pickett and Cadenasso, 1995).

Studies in landscape ecology have previously searched for an optimal independent group of metrics to be used in under-

standing the heterogeneity of lattice surfaces. Riitters et al. (1995) used a multivariate factor analysis to suggest six groups of80

metrics, including image texture, average pact
:::::
patch compaction, and average patch shape. Cushman et al. (2008) used princi-

pal component analysis to suggest seven broad metrics at the landscape level, including contagion, large patch dominance, and

proximity (see Table 9 in that study). For the two-dimensional binary sea ice-water surfaces considered in this study, we chose

the variance inflation factor (VIF) technique to reduce these metrics to a compact set that are weakly dependent on one another

to minimize information redundancy (?)
:::::::::::
(Miles, 2014).85

The questions that will be answered in this study are:

1. Is the sea ice fraction of a MIZ surface, combined with some measure of average floe area, sufficient to predict the

behavior of the overlying MIZ-ABL?

2. If not, what other surface information in a two-dimensional lattice spatial pattern is needed to describe air-sea interaction?

3. How can this surface information be applied to sea ice surfaces in weather models and ESMs, considering factors such90

as availability of information, resolution-resampling invariance, and ease of understanding?

Section 2 will detail the methods on the idealized and real-world maps used in this study; this includes the steps taken

to reduce multicolinearity and determine which landscape metrics, alongside sea ice fraction, give additional information on
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the pattern of the sea-ice surface. The large-eddy simulations that will be used are also presented in this section, but a more

complete description is found in Appendices A and B. Section 3 will report the results of the idealized sea ice surfaces in the95

large-eddy simulation, thus answering Question 1.
:
1,
::::
and

:::::::::
motivating

:::
the

::::::::
remaining

:::::::::
questions.

:
Section 4 will report the results

from the 2D surface analysis, with additional discussion in Section 5 on principal directions and climate model implications,

thus answering Questions 2 and 3. Section 6 will synthesize the findings and outline open questions that can guide future

investigations of sea ice heterogeneity.

2 Methods and Data100

2.1 Large-Eddy Simulations

Large-eddy simulations (LES)
::
of

:::
the

:::::::::
MIZ-ABL

::::
over

::::::::
different

::::::::
idealized

::::::::::::
configurations

::
of

:::
sea

:::
ice

:::::
were

:::::::::
conducted.

:::::
LES are

widely used to model heterogeneous high Reynolds number flows (Baidya Roy, 2002; Bou-Zeid et al., 2004) in convective

boundary layers (Courault et al., 2007; Maronga and Raasch, 2013), stable boundary layers (Huang et al., 2011), and coastlines

(Allouche et al., 2023a) to name a few; see Section 3.6 of Stoll et al. (2020). This heterogeneous high-Reynolds number105

description aptly applies to the MIZ-ABL. Unlike a direct numerical simulation (DNS), an LES is able to attain Reynolds

numbers representative of the MIZ-ABL (Re ∼ 107), because the smaller turbulent eddies (smaller than the grid or filter size,

which is comparable to the numerical grid spacing in our simulations) are not explicitly resolved. However, unlike Reynolds

averaged Navier-Stokes (RANS) approaches, which encompass all weather and climate models, LES directly resolves and

captures the large turbulent eddies, the heterogeneity of the surface, advective fluxes, and the large-scale sea ice patterns,110

making it a computationally and physically appealing approach for the problem at hand. By retaining these larger structures,

most of the turbulent energy and fluxes are explicitly resolved, allowing for investigation of three-dimensional flow structures

that may arise over these heterogeneous surfaces.

LES is thus used to model MIZ-ABL flow over 10 km × 10 km
::::::::::::
10km× 10km

:
patterns of idealized ice/water surfaces,

modulated by a Coriolis force at the latitude of Φ= 90° N .
::::::::
(therefore

::
a

::::::
Rossby

:::::::
number

:::
of

:::::::::
Ro = 13.7)

:::
in

:
a
:::::::::::

horizontally115

:::::::
periodic

::::::
domain

::::
(see

:::::::
figure1)

:
.
::::
We

::::
note

:::
that

::::::::::
simulations

::
at
::::

the
::::
same

::::
Ro,

::::
even

::
if
::
at
::::::

lower
:::::::
latitudes

::::
and

:::::
mean

::::
wind

:::::::
speeds,

:::::
would

::::
give

::::::
similar

::::::
results

::::
(see

:::::::::::
dimensional

:::::::
analysis

::
of
:::::

flow
::::
over

::::::::::::
heterogeneous

::::::::
surfaces

::
in

:::::::::::::::::::::::::
Fogarty and Bou-Zeid (2023)

:::
and

:::::::::::::::::::
Allouche et al. (2023a)

:
).
:
This full domain is smaller than a single grid cell in state-of-the-art ESMs, underlining why the

simulated properties of the MIZ-ABL in ESMs require sub-grid scale (SGS) parameterization. More details
:::
For

::::
leads

::
of

:::::::
∼ 1km

:::::
width,

::
a

:::
grid

:::::::
spacing

::
of

:::::::::
10− 20m

::
is

::::::
usually

::::::
chosen

:::::
after

:::
grid

:::::::::::
convergence

::::
tests

:::::::::::::::::::::::::::::::::::
(Lüpkes et al., 2008; Gryschka et al., 2023)

:
.120

:::
Our

::::::
choice

::
of

:
a
:::::::
coarser

::::::::
horizontal

:::::::::
resolution

::
of

:::::
100m

::::::
reflects

:::
our

::::
aim

::
to

::::::
“zoom

::::
out”

::::
from

:
a
::::::
typical

::::
lead

:::
and

::::::::
examine

:::
the

::::
MIZ

::
as

:
a
::::::
whole

::::::
(which

::
is

::::
also

:::::::
reflected

::
in
::::

the
::::::::::
horizontally

:::::::
periodic

::::::
nature

::
of

:::
the

::::::::
domain).

::
A

::::
finer

:::::::::
resolution

::
in

:::
our

:::::::::::
simulations,

::::
while

::::::::
possibly

:::::::::
improving

:::
the

::::::::::::
representation

::
of

:::::::::
turbulence

::::
and

:::::
plume

:::::::::
dynamics,

::::
may

::::::::
sacrifice

:::::
some

::
of

:::
the

:::::
large

:::::
scales

::::
and

::::::::
secondary

::::::::::
circulations

::::
that

::::
arise

:::::
from

::::
these

:::::::::::::
heterogeneous

:::::::
surfaces

:::
that

:::
we

::::
aim

::
to

:::::::
capture

::::
with

:
a
:::::

large
:::::::
domain.

::::
The

::::::
coarse

::::::::
resolution

::::
also

::::
will

:::
not

::::::::::
compromise

::::
our

:::::
ability

::
to
:::::::

answer
:::
the

::::
first

:::::::
question

:::::::
because,

:::
as

:::
we

::::
show

:::::
later,

:::
the

:::::::::
differences

:::
in

:::
the125

::::::::
dynamics

:::::::
between

::::::::::
simulations

::::
with

::::::::
identical

:::
ice

::::::::
fractions

:::
but

::::::::
different

::::::
surface

:::::::
patterns

:::
are

:::::::::
significant

::::
and

:::
far

::::::
exceed

::::
any
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Table 1. Large-eddy simulation numerical details. Time is represented in terms of inertial periods, 2π/fc, which is the time scale associated

with the response of the mean flow since it represents the Coriolis redistribution of energy between u and v (Momen and Bou-Zeid, 2016)

Domain height, zi 1km

Horizontal domain size, Lx ×Ly 10km× 10km

Number of grid points (Nx,Ny,Nz) (100,100,50)≈ 5× 105 points

Vertical mesh spacing, dz 20m

Horizontal mesh spacing, dx, dy 100m

Initial air
:::::::
potential temperature θa,0 See Appendix B, constant profile

Warm up
::::::
Coriolis

::::::::
parameter

::
fc ::::::::::::

1.46× 10−4 s−1
:

:::::::
Warm-up period 5 inertial periods (10π/fc)

Simulation time step 0.05s Averaging period 1 inertial period (2π/fc)

::::::::
Simulation

::::
time

:::
step

: ::::
0.05s

:

Frequency of statistical sampling 100 timesteps = 5 s

:::::::
plausible

::::::
impact

:::
of

::::
grid

:::::::::
resolution.

::::
The

:::::::::
simulations

:::
in

:::
this

:::::::
section

:::
are

:::::
meant

:::
to

::::::::::
demonstrate

:::
the

:::::
need

:::
for

::::::
surface

::::::::
analysis,

::::
given

::
a
:::::::
constant

:::
ice

::::::
fraction

::::
and

::::::
average

:::
ice

::::
floe

::::
area,

:::
and

:::
we

::::
thus

::
do

:::
not

:::::
focus

:::
on

::
the

::::::::::
quantitative

::::::
aspect

::
of

:::
the

::::::
output.

:::
See

:::
all

:::::
details

:::
for

:::
the

::::::::::
simulations

::
in

:::
this

:::::
study

::
in

:::::
Table

::
1;

::::
more

::::::
details on the numerical aspects of our LES are described in Appendix

A. For the130

:::
The bottom boundary condition , one surface node represents either water or sea ice, as done in Fogarty and Bou-Zeid (2023).

This bottom boundary for each simulation can be thought of as categorical lattice spatial data, where each node represents either

::
the

:
“ice” or “water.”

:
”
:::::
class. An “ice” node is prescribed a surface temperature of 255K

:::::::::
θi = 255K, typical of autumn and spring

temperatures in the Central Arctic, and a momentum roughness length of 1mm, while a “water” node is prescribed a surface

temperature of 271K
::::::::::
θw = 271K, roughly the freezing point of seawater, and a roughness length of 1cm. The heat roughness135

length is
::
set

::
to

:
0.1mm for the entire surface,

:::
ice

:::
and

:::::
water.

:::::
There

::
is

:
a
::::
very

:::::
large

::::::::
variability

::
in

:::::::::
roughness

::::::
lengths

::
in

:::::
Arctic

:::
sea

:::
ice

:::::::::
simulations

::::
(see

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Lüpkes et al. (2008); Andreas et al. (2010); Lüpkes et al. (2012); Elvidge et al. (2016); Gryschka et al. (2023)

:
)
:::
that

:::::::
reflects

:::
the

::::::::
physical

:::::::::
differences

::::::::
between

:
a
:::::

calm
::::
and

:
a
:::::::

stormy
:::
sea

::::
and

:::::::
between

::::
new

::::
flat

:::
ice

:::
and

::::
old

::::::::
deformed

::::
and

:::::::
refrozen

:::
ice.

::::::::
However,

::::
our

:::::
choice

:::
of

::::::::
roughness

:::::::
lengths

:::::::::
prioritized

:::::::
keeping

:::::::
constant

:::::
ratios

::::::
(which

:::
are

:::
the

::::
key

::::::::::::
dimensionless

:::::::::
parameters

:::
that

::::::::
influence

:::
the

::::::
results

:::::::::::::::::::::::::::::::::::::::::::
Fogarty and Bou-Zeid (2023); Allouche et al. (2023a)

:
)
::::::
among

:::::::::
simulations

:::
to

::::
focus

:::
on

:::
the140

:::::
effect

::
of

:::
sea

:::
ice

:::::::
patterns.

::::::
Results

::::
with

::::::::
different

:::::
values

:::
but

:::
the

:::::
same

:::::
ratios

:::
will

::::
lead

::
to

::::::
almost

:::::::
identical

::::::::::
conclusion.

::
In

::::::::
addition,

::::::::
sensitivity

:::::::
analyses

::::
not

:::::
shown

::::
here

::::::::
indicated

:::
that

:::
the

:::::::::
roughness

:::::::
lengths,

::::
even

:::::
when

::::
their

:::::
ratios

:::
are

::::::::
changed,

:::
had

:
a
::::
very

::::::
minor

:::::
impact

:::
on

:::
the

::::::::::
quantitative

::::::
results

:::::::::
compared

::
to

:::
the

::::::::::
temperature

::::::::
contrast,

:::
ice

:::::::
fraction,

::::
and

::::::::
ice-water

:::::::
patterns

:
.
::::
The

:::::
initial

:::
air

:::::::
potential

::::::::::
temperature

:::::
θa,0,

:
a
::::::::
constant

::::::
profile,

::
is

:::::::
defined

::::
such

::::
that

:::
the

::::::::::::
area-averaged

:::::::
sensible

::::
heat

::::
flux

::
as

:::::::::
computed

:::
by

:::
the

:::::::::::::
Monin-Obukhov

:::::::
surface

::::
flux

::::::::::::::
parametrizations

::
is

::::
zero,

::::
and

::::
thus

:::
lies

::::::::
between

:::
that

:::
of

:::
the

:::
ice

:::
and

:::::
water

:::::::
surface

:::::::::::
temperatures145

:::
(see

:::::::::
Appendix

::
B

:::
for

:::::::
details).

::::
The

:::::::::::
LES-modeled

::::
heat

::::
flux

::::
will,

::::::::
however,

:::
not

:::
be

::::
zero. The actual roughness lengths for heat

and momentum of sea ice vary considerably depending on the surface state and degree or deformation due to wind and ocean
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forces; similarly, for water, these lengths depend on the wave field. The values we use here are characteristic of rough sea ice

and wavy waters, but the conclusions and analyses on the effect of surface patterns willnot be altered by a change in these

surface properties.150

Figure 1. Schematic of the large-eddy simulation domain set-up. The ice (in grey) has a surface temperature of θ0,i = 255K and roughness

length z0,i = 1mm; the water surface (in blue) has θ0,w = 271K and z0,w = 1cm. The bottom boundary represents one of the many cases

(Pattern 1
::::::
Pattern1) illustrated in Figure 2.

This large-eddy simulation technique was used to simulate the MIZ-ABL over different idealized configurations of sea ice.

All five patterns, displayed in figure 2,
::::
were

:::::::::
simulated.

:::::
They

:
have a fixed sea ice fraction of fi = 0.46 and mean floe area

of 11.56× 106m2. The geostrophic wind also
:::::::::::::
(Mg = 2ms−1) flows left-to-right at an angle of 18° relative to the x-axis in

all simulations, expected to give a surface wind
:::
M0 that is roughly aligned with the x-axis for homogeneous neutral surfaces

(Ghannam and Bou-Zeid, 2021).
:::
due

::
to

::::::
Ekman

::::
veer

::::::::::::::::::::::::::
(Ghannam and Bou-Zeid, 2021)

:
.
:::::
These

::::::::::
simulations

:::
are

:::
dry

::::
runs

::::
with

:::
no155

:::::
clouds

:::::::
present.

:
The turbulence field is warmed up for

:::::
about 60 hours, and the statistics are then Reynolds-averaged over an

additional 12 hours. A variable with an overbar denotes averaging in time, used as a surrogate for ensemble Reynolds averaging,

and any spatial averaging over the heterogeneous domain in x and y will be denoted by angled brackets.

::
In

:::::::
addition

::
to

:::
the

::::::
Rossby

:::::::
number

:::
and

:::
the

:::::::::
roughness

::::
ratio

::::::::
discussed

::::::
earlier,

:::
an

::::::::
important

::::::::::::
dimensionless

::::
input

::::::::::
parameters

::
in

::::
these

::::::::::
simulations

::
is

:::
the

:::::::::::
heterogeneity

::::::::::
Richardson

::::::
number

:::::::
defined

::
as160

Rih =
g

θa,0

θw − θi
M2

g /zi
.

::::::::::::::::

(1)

::::
This

::
Ri

:::::::
encodes

:::
the

::::::::::
competition

::::::::
between

::::::::
buoyancy

:::::
driven

::::::::::
circulations

:::::::::
generated

::
by

:::
the

::::::
surface

::::::::::
temperature

:::::::
contrast

::::
and

:::
the

::::::
uniform

::::
flow

::::
that

:::::
would

:::::
result

:::::
from

:::
the

:::::::
synoptic

::::::
forcing

::::
Mg .

:::
All

::::::::::
simulations

::
in

::::
this

::::
study

:::::
have

::::::::
equivalent

::::::
inputs

::
of

::::
Rih,

::::
Ro,

:::
and

::::::::
z0,w/z0,i.:::::

Based
:::
on

:::::::
previous

::::::::::
dimensional

:::::::
analyses

::::
and

::::
LES

::
of

:::
flow

::::
over

::::::::::::
heterogeneous

:::::::
surfaces

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Omidvar et al., 2020; Allouche et al., 2023a; Fogarty and Bou-Zeid, 2023)

:
,
:::::::
matching

:::::
these

::::::::::::
dimensionless

:::::
inputs

::
is

:::::::
required

::
to

:::
be

::::
able

::
to

::::
focus

:::
on

:::
the

:::::
effect

::
of

::::::
surface

:::
sea

:::
ice

:::::::
fraction

:::
and

:::::::
patters.165
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Figure 2. Birds-eye view of the bottom
::
five

::::::::
idealized

::::::::::::
10km× 10km

:::
sea

:::
ice

:
surfaces used in

::::::
surfaces

::::::
created

:::
for

:
the large-eddy

simulations
::::::::
simulation. The geostrophic wind

::::
(Mg)

::::
flows

:
at

:
an

:::::
angle

::
of

::::
108°

::::
such

::::
that the surface

:::::::::
near-surface

:::::
winds

::::
(M0)

:
flows from

left-to-right in all patterns.
::

The
:::::
results

::::
from

:::
the

::::
LES

:::
over

::::
these

::::
five

::::::
patterns

::
are

::::::::
discussed

::
in

:::::
Section

::
3.

2.2 Ice Map Data

While the LES utilizes idealized surfaces to examine the influence of patterns on the MIZ-ABL, examining what other land-

scape metrics might be important for surface characterization necessitates using real-world sea-ice maps. The lattice spatial

data that will be used in the statistical analysis (see Section 2.3) are derived from recently declassified high-resolution (1m)

national technical means (NTM) literal image derived products (LIDPs), detailed in Kwok (2014). These images we use here170

had already underwent a supervised maximum likelihood classification algorithm, which assigned either a water or ice surface

class (Fetterer and Untersteiner, 1998; Fetterer et al., 2008) for each pixel in the original LIDP. This process converted the

high-resolution LIDPs into categorical lattice spatial data (where each cell represents one of two possible surface types, ice or

water).

These maps, which have a horizontal extent of up to 10 km by 10 km, comprise the dataset used to calculate landscape175

metrics.
:::::
Some

::
of

:::
the

::::::
images

:::
did

::::
not

::::
fully

:::::
cover

::::
this

:::
full

::::::
extent,

::::
and

::::
thus

::
in

:::::
order

::
to

:::::
retain

:::
the

:::::::::
real-world

:::
sea

:::
ice

:::::::::
geometry,

::
we

:::::::::
"reflected"

::::
this

::::
onto

:::
the

:::::
areas

::
of

::
no

:::::
data.

:::
All

:::::
metric

:::::::::::
calculations

:::
and

:::::::
analyses

:::::
have

::::
been

::::
done

:::
on

::::
these

::::::::
modified

::::::::
surfaces.

The advantage of this high-resolution large-extent data set is that we can analyze how these metrics change with grain size.
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Figure 3. The distribution of fi values in the Fetterer et al. (2008) ice map dataset
:
.

These maps are thus aggregated from 1m resolution to 2m, 10m, 20m, 50m, 100m, 200m, 500m, 1 km, and 2 km resolu-

tions; resampling was done using the nearest-neighbor method in the Python Imaging Library (PIL). These resolutions cover180

common resolutions used from fine large-eddy simulations to numerical weather prediction (NWP) models. Due to excessive

computational processing time for the original 1m resolution data, the highest resolution at which landscape metrics were

calculated was 2m.

One important caveat of this dataset is that the histogram of sea ice fraction fi is heavily skewed towards higher sea ice

fractions
:::
(see

:::::
figure

::
3). We recognize that this may lead to bias in the results; however, the analysis methods developed here185

are insensitive to fi and can certainly be applied to other datasets with more uniform sea ice fraction distributions in the

future. The high resolution afforded by the present dataset remains a key appealing factor in adopting it for the present study

since it allows aggregating and tracking how landscape metrics change from actual surface states when resampled to a coarser

numerical grid.

2.3 Landscape Metric Space Reduction190

The FRAGSTATS spatial analysis program was used to calculate the landscape metrics (McGarigal and Marks, 1995) based off

of
::
on

:::
the

:
lattice spatial data. Given a GeoTIFF-format raster lattice data, FRAGSTATS will calculate the patch metrics, class

metrics, and landscape metrics of your choice. Patch metrics are computed
::::::::::
individually for every patch in the landscape, and

are thus not relevant for the current study of sea-ice surface patterns. Class metrics are computed for every patch type (class) in

8



the landscape. In this study, that would mean calculating metrics for sea ice only and water only, which may be useful in other195

applications of pattern analysis, but ;
::::::::
however,for this study, we want to look at the aggregate patterns of sea ice and water

combined. Thus, only landscape metrics were calculated. Sea ice fraction (calculated as the number of cells of ice type divided

by the total number of ice and water cells) was calculated using PIL, the only metric not calculated by FRAGSTATS.

This resulted in 22 landscape metrics that focus on the global patterns of the surface. Many of these landscape metrics,

however, are correlated with one another; for example, patch density and mean patch size are proportional to one another. This200

is due to the fact that there are limited observations one can make about a surface (number of patches, area of a patch, amount

of edge in a patch, etc.), yet an infinite number of operations one can perform on them. Many of these metrics (especially at

the landscape level) are thus simply different ways to aggregate or statistically analyze these observations.

While colinearity between two metrics can be easily detected through a correlation matrix, multicolinearity (when one

indicator is a linear combination of two or more other indicators) is more likely in these types of data sets. It is thus possible for205

two or more landscape metrics to jointly define another metric. An objective and statistical way of reducing these parameters

is hence needed. Here, we chose the variance inflation factor (VIF),

V IFi =
1

1−R2
i

, (2)

where R2 is the coefficient of determination, to detect multicolinearity of these heterogeneity parameters (see Ibidoja et al.

(2023)). For each metric Xi, where i ∈ [1, ...,22], the VIF was calculated over the regression equation210

Xi = α0 +αi+1Xi+1 +αi+2Xi+2 + ...+α21X21 (3)

where α0 is a constant. The statsmodels Python library (Seabold and Perktold, 2010) was used for these computations. The

metric with the largest VIF was then removed from the dataset, and thus not considered to be important in the quantification

of sea ice surfaces. All VIFs were then recalculated for this ’
:
‘reduced’ dataset, and the new metric with the highest VIF was

removed. Through this process, metrics are removed one by one until all remaining metrics exhibit a VIF less than a pre-defined215

cutoff, which was set as V IF < 2.5. While this low of a cutoff may not be necessary in certain practices of multicolinearity

reduction (O’Brien, 2007), the ultimate goal of this technique is to reduce the parameter space. In other words, for climate

modelers, a lower amount of metrics in their SGS parameterizations result in a more practical models.

Each of these metrics, listed in Table C1, can be clustered into one of six “metric groups”: Area and Edge, Shape, Core Area,

Aggregation, Contrast, and Diversity. The first four metrics are important in a sea ice surface. Area and Edge metrics deal with220

the size of floes and the amount of edge they create, while Shape metrics discriminate based on patch morphologies and overall

geometric complexity. Core Area metrics analyze the area within a patch beyond some specified buffer width. An Aggregation

metric will focus on the tendency of patches of similar types to be spatially aggregated in the landscape, or otherwise dispersed.

The last two metric groups, Contrast and Diversity, are less important for the present application to sea ice. Contrast metrics

refers to the magnitude of difference between adjacent patch types with respect to some attribute - in the case of a sea ice225

surface, with only two classes (ice and ocean), there is only one ’
:
‘contrast’ between two categories, and thus metrics in this

group are simply represented by the contrast of surface temperature and roughness. Diversity metrics are influenced by the
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number of patch types present and the area-weighted distribution of those patch types. In this case we only have two types of

patches (ice and water) so the diversity is the same in all maps, and their weighted distribution is related to the ice fraction.

Further information on all of these metric groups can be found in the FRAGSTATS manual (McGarigal and Marks, 1995).230

3 Results: the MIZ-ABL over Idealized Configurations

The large-eddy simulation technique detailed in Section 2.1 was used to simulate the MIZ-ABL over different configurations of

sea ice patterns, with the results presented here. Figure 4 displays the Reynolds- and horizontally-averaged normalized vertical

profiles of the horizontal wind speed M = ⟨
√
u2 + v2⟩ ,

::::::::::
(normalized

:::
by

::::::::::
geostrophic

:::::::
velocity

::::
Mg),

::::::::
potential

:::
air

::::::::::
temperature

::::::::::
(normalized

::
by

:::
the

::::::
initial

:::::::
potential

:::
air

::::::::::
temperature

::::::
θa,0), total heat flux ⟨wθ⟩

::::::::::
(normalized

::
by

::::::::
Mgθa,0), and total horizontal235

stresses ⟨uw⟩ and ⟨vw⟩
::::
(both

::::::::::
normalized

:::
by

::::
M2

g ). Note that these lump the turbulent fluxes with the dispersive fluxes that

arise over heterogeneous surfaces from the spatial correlation of the mean (time-averaged) fields (Raupach and Shaw, 1982;

Finnigan and Shaw, 2008; Li and Bou-Zeid, 2019). The results clearly display significant differences, underlining the fact that

sea ice fraction is not a sufficient surface metric to describe MIZ-ABL dynamics,
:::::
even

::
in

::::
these

::::::::::
simulations

::::::
where

:::
the

:::::
mean

:::
floe

:::::
size

:::
was

::::
also

::::
kept

:::::::
constant.240

In all five simulations, the largest difference occurs between Pattern4 and Pattern5 (the red and purple lines, respectively),

which is to be expected since the geostrophic wind,
::::
and

::::
thus

:::
the

::::::::::
near-surface

::::::
wind, is flowing parallel vs. perpendicular to

the strips of ice (Willingham et al., 2014; Anderson et al., 2015; Salesky et al., 2022; Fogarty and Bou-Zeid, 2023). Although

wind direction is not a surface property of the sea ice, its orientation relative to that of the surface features is still an important

driver that must be taken into consideration and will be discussed further on. All patterns except for Pattern5 developed a245

low-level jet (LLJ), which can be seen in Figure 4a, though the LLJ
::::
LLJs in Pattern1 is remarkably weak

:::
and

:::::::
Pattern5

:::
are

:::::
weak

:::::::::::::::::::::::::::::::::::
(Tetzlaff et al., 2015; Michaelis et al., 2021). The LLJs seem to increase in Pattern2 and Pattern3, likely due to large swaths

of ice in the direction of the geostrophic wind(and therefore little interruption by the unstable ocean surface ). ;
:::

the
::::::::

unstable

::
to

:::::
stable

:::::::::
transitions

::
in

:::::
these

:::
ice

::::::
regions

::::::::
decouple

:::
the

:::
air

::::
from

:::
the

:::::::
surface

::::::
friction

::::
over

::::
the

::::
long

:::::
stable

:::
ice

:::::::
patches,

::::::::
allowing

:::::::
low-level

:::::::::::
acceleration

::
of

:::
the

:::::
wind.

::::
This

::::::::::
mechanism

::
is

::::::
similar

::
to

:::
the

::::
one

::::::::
advanced

::
by

::::::::::::::::
Blackadar (1957)

::
for

:::
the

:::::::
creation

::
of

::
a250

:::
low

::::
level

:::
jet

:::
via

:::
an

::::::
inertial

:::::::::
oscillation

::
in

::::
time

:::
as

:::
the

::::
ABL

:::::::::
transitions

::
to
::

a
:::::
stable

::::::
regime

::
at
:::::::

sunset.
::::::::
However,

::
in

::::
this

::::
case

:::
the

::::::::
oscillation

::
is

::
in

:::::
space

::
as

:::::::
columns

::
of

:::
air

::::::
advect

::::
from

:
a
:::
hot

::
to

::
a

:::
cold

:::::::
surface

:::
and

::::::::
decouple

::::
from

:::
the

:::::::
surface. The second strongest

LLJ is in Pattern3, and is likely due to the one large ice floe, and would persist for any wind direction (the same can be said

about Pattern2). The strongest LLJ in Pattern4 is similarly explained
:::
also

:::::
likely

:::::::::
reinforced by the secondary circulations (not

shown) that consist of streamwise aligned rolls driven by the lateral contrast in surface temperature, and by the fact that the255

small strips of ocean between the ice floes are not wide enough to ‘interrupt’ the circulationsand the geostrophic flow. However,

unlike Pattern2 and Pattern3, Pattern4 is highly anisotropic, so the geostrophic wind direction is of more importance in this

case, as can be deduced from the fact that Pattern5 has no LLJ despite being
::::::
simply a 90◦ rotated version of Pattern4.

::::
Each

:::::::::
simulation

::::
saw

:::
an

:::::::
increase

::
in

::::::::
potential

::::::::::
temperature

:::
by

:::::::::
2.1-2.2%;

:::
this

::::::::
warming

::
is
:::::::::

consistent
::::
with

::::
the

::::
large

::::::
ocean

::::::
fraction

::
in

:::::
each

::
of

:::
the

:::::::
patterns.

:::::::
Despite

:::::::::
initializing

:::
the

:::
air

::::::::::
temperature

::
to

:::::::
produce

::::
zero

:::::
fluxes

:::::::::
following

:::
the

::::::::::::::
Monin-Obukhov260
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Figure 4. Vertical profiles of normalized (a) horizontal wind speed, (b)
:::::::
potential

::
air

::::::::::
temperature,

::
(c)

:
total heat flux, (c

:
d)

:::::::::
geostrophic

::::
wind

::::::
direction

::
α,
:::

(e) total stress in the streamwise direction, and (d
:
f) total stress in the cross-stream direction, for all five patterns.

:::
flux

::::::
models

::::
that

::::::
assume

::::::::::
equilibrium

::
of

:::
the

:::
air

::::
and

::::
water

::::::
above

::::
each

::::::
surface

::::
grid

::::
cell,

:::
the

::::::
upward

::::::
fluxes

::::
over

:::
the

:::::
warm

:::::
water

::
are

::::::
larger

::::
than

::
the

:::::::::
downward

::::
one

::::
over

:::::
cooler

:::
ice

:::
due

::
to
:::
the

:::::
effect

:::
of

::::::::
advection

:::
that

:::::::
perturbs

:::
the

:::::::::::
equilibrium.

Major differences are also seen in the total streamwise and cross-stream stresses, displayed in Figure 4c and d
:
d

:::
and

:
e, re-

spectively. Again, Pattern4 and Pattern5 exhibit the highest differences from one another due to the geostrophic wind direction.

All simulations have a similar negative streamwise stress in the surface layer, but at higher
::::::
altitudes

:::
in MIZ-ABLheights, the265

differences between simulations are greater. Above the LLJ, some of the stresses turn positive implying upward transfer of

momentum from the LLJ, explaining differences that may be seen below the blending height (Wood and Mason, 1991; Mahrt,
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2000; Brunsell et al., 2011). The cross-stream component
::::::::::
components of the total momentum flux, seen in 4d

:
e, are all quite

distinct from one another indicating significant differences in the wind and stress Ekman rotation with height.

To further explain the differences seen in these patterns, we consider the decomposition of the total flux to its dispersive and270

turbulent counterparts
::::::::::
contributions. Vertical turbulent heat flux is designated as w′θ′, while vertical turbulent streamwise and

cross-stream stress are designated as u′w′, and v′w′, respectively. Dispersive fluxes emerge in a time-averaged but spatially-

variable mean flow (Raupach and Shaw, 1982; Li and Bou-Zeid, 2019). Since our Reynolds averaging is done in time, we

can spatially decompose a
::
any

:
Reynolds-averaged variable following

:::
(for

:::
the

::::::
vertical

:::::::
velocity

:::
as

::
an

::::::::
example)

:
w = ⟨w⟩+w′′,

where the brackets represent the spatial average (as defined in Section 2.1) and the double-prime represents the variations of275

the mean planar fields in space. We then calculate the
::::
local

:
dispersive fluxes, using vertical heat flux as an example, by:

wθ =
(
⟨w⟩+w′′)(⟨θ⟩+ θ

′′)
(4)

= ⟨w⟩⟨θ⟩+w′′⟨θ⟩+ ⟨w⟩θ′′ +w′′θ
′′
. (5)

We then spatially average the entirety of Equation 5 over the horizontal plane to obtain

⟨wθ⟩= ⟨w′′θ
′′⟩ . (6)280

The middle two terms in Equation 5 are zero via spatial averaging, since ⟨w′′⟩= 0 and ⟨θ′′⟩= 0 by definition; therefore, these

terms have no impact on spatially-averaged surface-atmosphere exchanges. Furthermore, ⟨w⟩ is assumed to be very small

(unless strong and large scale subsidence or uplift are present); in our LES it must be zero since there cannot be accumulation

or depletion of mass below a given horizontal plane in a periodic domain with an incompressible flow. Thus, the first term on

the right hand side of Equation 5 is also negligible, leading to one remaining term in Equation 6. This term, the dispersive flux,285

is of most interest: it represents the coherent spatial correlation of vertical velocity and
:::::::
potential temperature in regions with

consistent secondary structures (such as consistent warm updrafts or cool downdrafts, or streamwise rolls).

Figure 5 shows the vertical profiles of the total, turbulent, and dispersive horizontally-averaged fluxes of each pattern for

the heat flux, streamwise momentum flux, and cross-stream momentum flux, thus allowing us to decompose and analyze the

total fluxes that were shown in Figures 4b-d
::
c-e. For example, it is clearer now that the cross-stream components of the total290

momentum flux (Figure 4d
:
e) are all distinct from one another due to these dispersive fluxes (dotted green lines). Over these

heterogeneous surfaces, the dispersive cross-stream stress is the dominant forcing
::::::::
dominates

::::
over

::
its

::::::::
turbulent

:
in all patterns

except Pattern5 (see panels c,f,i,l in Figure 5). The formation
:::::::::
magnitudes

:
of these dispersive fluxes are not equal when the

heterogeneous surfaces are different from one another. Thus,
:
it is not the ice fraction or average floe area, but the surface

pattern itself, which
:::
that

:
leads to these differences in total cross-stream flux. The streamwise stresses, on the other hand,295

seem to be a balance of the dispersive and turbulent stresses that are not always of the same sign (middle column of Figure

5), and thus the dispersive components that directly result from the secondary motions imprinted by the surface pattern on

the atmosphere are also critical here.
:::::
These

:::::::::
secondary

::::::::::
circulations

::::
may

::
be

:::::
seen

::
in

:::
the

::::::::::::::
two-dimensional

::::
cross

::::::::
sections

::
in

:::
the

:::::::::
supporting

::::::::::
information.
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Figure 5. Left: Vertical
:::::::::
Normalized

:::
(as

::
in

:::::
Figure

::
4)

::::::
vertical

:
profiles of normalized total heat flux (wθ, blue solid), turbulent heat flux

(w′θ′, orange dashed), and dispersive heat flux (wθ, green dotted) for each individual pattern. Center: Same as left, but for normalized total

streamwise stress (uw, solid), turbulent streamwise stress (u′w′, dashed), and dispersive streamwise stress (ūw̄, dotted). Right column: Same

as left, but for normalized total cross-stream stress (vw, solid), turbulent cross-stream stress (v′w′, dashed), and dispersive cross-stream stress

(v̄w̄, dotted).
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Table 2. Dispersive-to-total atmospheric vertical flux ratios

Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

|wθ|/|wθ| 0.512 0.668 0.697 0.586 0.388

|ūw̄|/|uw| 0.321 0.354 0.250 0.046 0.137

|v̄w̄|/|vw| 1.598 1.101 0.923 0.816 0.365

The total heat flux in all these simulations linearly decreases with height as dictated by the LES setup. As seen in Figure 4b,300

there are minimal differences in the total heat flux, except at the surfacelevel; however
::
c,

:::
the

::::::::
variations

:::
are

:::
not

:::
as

:::::::::
impressive

::
as

:::
for

:::
the

:::::::::
momentum

::::::
fluxes,

:::
but

:::
can

::::
still

:::::
result

::
in

::
a

::::::::
difference

::
of

:::
up

::
to

:::::
30%,

::::::::
especially

::::
near

:::
the

:::::::
surface.

::::::::
However, analyzing

the left column of Figure 5 shows that the relative importance and profiles of the dispersive and turbulent heat fluxes exhibit

more significant differences. The various surface patterns seem to lead to differences in the dispersive fluxes, but in all cases,

these are balanced out by the turbulent fluxes. Nevertheless, in all the figures, there is strong variability near the surface in the305

dispersive and turbulent flux profiles. This is partially due to the shallow internal boundary layers that are created by the mean

flow and secondary circulations over the floes, and it is these differing secondary circulations that arise due to the difference

in surface pattern
::::::
patterns. However, one should also note that the first few points are also strongly influenced by the transition

from the wall model to the SGS model in representing resolved turbulence, a persistent challenge in LES (Piomelli and Balaras,

2002; Brasseur and Wei, 2010); the quantitative details of the results in that region should be interpreted with care.310

Lastly, analyzing the dispersive-to-total atmospheric vertical flux ratios (Table 2) lends insight into the differences between

simulations, as well as comparison to other surface types. For example, in Pattern1 and Pattern2, |v̄w̄|/|vw|> 1, meaning that

the dispersive and turbulent fluxes in the cross-stream axis are in opposite directions, which can be seen in the green and orange

profiles in the right column in Figure 5c,f. The ratios in Pattern4 and Pattern5 are also closer to unity than the other values,

again showing the differences in secondary circulations due to the sea ice pattern. These values have been seen before, for315

example over urban or forest canopies (Moltchanov et al., 2015; Boudreault et al., 2017; Li and Bou-Zeid, 2019).

Overall, these LES results indisputably indicate that ice-water patterns hold key information on how the MIZ-ABL interacts

with the underlying surface, and the rest of the paper is thus dedicated to characterizing these patterns

4 Results: Statistical Analysis

Now that we have established the need for additional surface characteristics beyond sea ice fraction, we aim to examine what320

indicators can be used for that purpose. For each of the nine resolutions considered, there were 44 observed sea ice images

analyzed. Conducting this analysis over the 2m resolution, four metrics (including sea ice fraction) seemed to remain from the

VIF elimination process and not exhibit multicolinearity with one another: sea ice fraction (fi), patch density (PD), splitting

index (SPLIT ), and perimeter-area fractal dimension (PAFRAC). These remaining metrics were then grouped into the

different metric groups defined in Section 2.3: the sea ice fraction is an area and edge metric, PD and SPLIT are both325

aggregation metrics, while PAFRAC is a shape metric. There were no metrics remaining that were in the diversity, core
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area or contrast metric group. We expected there to be no remaining metrics in the contrast metric group, since for a sea

ice-water surface, an edge can only exhibit one “contrast” - however, this might change were this analysis to be conducted with

continuously variable surface temperatures or roughness lengths. We also did not expect any in
::::
from

:
the diversity group, since

many metrics such as evenness or Simpson’s diversity index are functions of sea ice fraction. The absence of any representative330

of the core area was not predicted, but it is probably related to the fact that the shape and area and edge metrics are together

able to represent the core area characteristics.

The first aggregation metric, PD (Riitters et al., 1995; Šímová and Gdulová, 2012), with a V IF = 1.9, is an area-normalized

number of patches, described by the equation

PD =
n

At
, (7)335

where PD is the patch density, At the total area of the surface, and n the total number of distinct patches (of either sea ice

or water). As the PD of a sea ice surface increases, one would expect to find more ice-water edge instances, and thus more

regions of stable-to-unstable stratification transition
:::
and

:::::::::::::::
unstable-to-stable

:::::::::::
stratification

:::::::::
transitions.

:::
We

::::
also

::::
note

:::
that

::::::::
reducing

:::
PD

::::::::
increases

:::
the

:::::::
average

::::
time

:::
the

:::::
parcel

::::::
spends

::::
over

:::
the

:::::
stable

:::
(or

::::::::
unstable)

::::::
surface,

::::::
which

::::::
affects

::::
how

:::
said

::::::
parcel

::::::
adjusts

::
to

::
the

::::::::
transition

::
to
::::
this

:::
new

:::::::
stability

::::::
regime. Patch density may also work in tandem with geostrophic wind direction, as discussed340

in Section 3, as
::::
since

:
a geostrophic wind flowing in one direction may have more ice-to-water edge transitions than another

(see Pattern4 and Pattern5, for example).

The second metric, SPLIT, with a V IF = 1.9 was first described in Jaeger (2000)as "the .
::

It
:::::::::
represents

:::
the

::::::
inverse

:::
of

:::
the

probability that two randomly chosen places in a region will be found
:::::
points

:::
on

:::
the

::::
map

:::
will

:::
be in the same undissected area,

"
:::::
patch,

:
with a corresponding equation of345

SPLIT =
A2

t∑n
i=1 a

2
i

(8)

where ai is the area of patch i, and the index i iterates over all patches. SPLIT = n if there is only one patch or if all patches

are of equal size. However, generally SPLIT < n, with lower values indicating a larger variance in patch sizes. Since we

already use PD, the new information SPLIT brings is precisely about the patch size variance.

The only shape metric, PAFRAC, with a V IF = 2.1 is obtained by regressing each patch’s perimeter Pi against its area350

Ai on a log-log plot such that

A= kP 2/D2/PAFRAC
:::::::::

, (9)

where k is a constant and D
:::::::::
PAFRAC is the perimeter-area fractal dimension. It measures the tortuosity or jaggedness of the

ice-water interface as with any fractal dimension (Mandelbrot, 1982).

Thus, the three metrics, in addition to sea ice fraction fi, that would be useful in describing a sea-ice surface are SPLIT ,355

PD, and PAFRAC. Table 3 details these values for each of the sea ice patterns simulated in Section 3. We observe that

SPLIT is invariant to the shape of floes as long as the area of each floe is equivalent (no variance), which is why SPLIT is

equivalent for all patterns except Pattern3. This is where PAFRAC shows its utility, as it will give different values between

Pattern1/Pattern2, Pattern3, and Pattern4/Pattern5.
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Table 3. Landscape metrics of the simulations conducted in Section 3. Note that for maps with a low number of patches (less than ten)

and/or simple shapes, PAFRAC may exceed the theoretical range, as in Pattern3, but this has not happened in any of the real sea ice maps we

examine next.

Metric Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

fi 0.462 0.462 0.461 0.462 0.462

Average Floe Area (m2) 11.56× 106 11.56× 106 11.56× 106 11.56× 106 11.56× 106

SPLIT 2.91 2.91 2.71 2.91 2.91

PD 5× 10−8 5× 10−8 5× 10−8 5× 10−8 5× 10−8

PAFRAC 1.895 1.895 2.035 1.929 1.929

:::
For

:::
the

:::
real

:::
ice

:::::
maps

::::::::
obtained

::::
from

::::::
Arctic

:::::::
images,

:::
the

:::
ice

::::::
fraction

::
at
::

a
::::
2m

::::
map

::::::::
resolution

:::::
varies

:::::
from

::::
0.19

::
to

:::::
0.99,

::::
PD360

::::
from

:::
5.4

::
to

:::::
42.5,

:::::::
SPLIT

:::::
from

::::
1.23

::
to

:::::
4.07,

:::
and

::::::::::
PAFRAC

:::::
from

:::::
1.338

::
to

::::::
1.726. In many cases

::::::
however, numerical sim-

ulations also require a resampling of the high-resolution surfaces by increasing the grain (pixel) size. For example, sea ice

maps from reconnaissance satellites may have a resolution up to 1m, but this is computationally impractical for numerical

weather models. Large-eddy simulations of the ABL can have up
::::
down

:
to a 50m resolution, while NWP models have 2 to

5 km resolution. Thus
:
to

::::::
10 km

:::::::::
resolution.

::::::::
Therefore, even with high-resolution data, the aggregation and resampling of these365

surface patterns is inevitable in modeling.
:::::::::::
Furthermore,

:::::
when

::::::::::
considering

:::
the

::::::::::
operational

:::
use

::
of

:::::
these

:::::::
metrics,

:::
the

:::::::
regular

:::::::
updating

::
of

:::::
these

::::::
values

:::::
would

:::::
likely

:::::
draw

:::::
upon

:::::::
multiple

:::::::
satellite

:::::::
products

:::::
with

:::::::
differing

::::::::::
resolutions;

:::::
thus,

::::::
metrics

::::
that

:::
are

:::
able

::
to
:::
be

::::::::::::::::::::
extrapolated/interpolated

:::::::
between

::::::::
different

:::
grid

::::
cell

::::
sizes

:::::
would

:::::
allow

:::
for

:
a
:::::::::
consistent

::::::::::
computation

:::
of

::::::
metrics

:::::
when

::::::::::
standardized

::
to

::
a

:::::
single

:::::::
weather

:::::
model

::::
grid

::::
cell.

Therefore, it is useful to examine how these chosen metrics vary as an image is aggregated to a resolution applicable to370

numerical weather models (or other numerical models, such as LES). An appleaing
:
;
::
an

:::::::::
appealing metric would be one that it

is invariant to a resolution change
::::::::
resolution

:::::::
changes. The sea ice fraction fi is a good example of such an invariant indicator,

as shown in Figure 6a, where it is calculated for all images and then averaged over that resolution. A second-best case would

be a metric that displays a clear scaling law with the resolution, such as PD depicted in Figure 6b. In this case, the PD for the

“real” 2m resolution surface can be extrapolated to higher resolutions based on a scaling power law375

m= k∆Dq , (10)

where m is the metric, ∆ is the map resolution, and k and Dq are scaling coefficients.

Some metrics, such as SPLIT and PAFRAC seems to exhibit close-to-invariant behavior after a sort of ’jump’ in the

resolution. For example, starting from the 10m resolution, SPLIT stays fairly constant as the resolution decreases. There is

also variation in PAFRAC as the resolution decreases from 10m. This is consistent with results from previous studies, as380

some landscape metrics exhibit large errors when these surfaces are aggregated to lower resolutions (Moody and Woodcock,

1994, 1995). Given the close-to-invariant scaling of 3 of the metrics and the predictable power law scaling of the forth, we can

proceed with this set of 4 metrics since it is usable (or translatable) across scales.
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Figure 6. Landscape metric plotted against resolution for (a) sea ice fraction, (b) splitting index, (c) patch density, and (d) fractal dimension.

A power law of the form m= k∆Dq is fitted to the sea ice fraction and patch density plots
:::
plot (dashed blue line), but no such power law is

applicable to splitting index and fractal dimension
::
the

::::
other

::::
three

::::::
metrics.
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5 Principal Direction of Geostrophic Flow
:::
the

:::
Sea

:::
Ice

::::::::
Patterns

Thus far, we have identified four surface pattern indicators that characterize the MIZ surface’s sea ice versus water concentration385

(fi), the density and thus the total number of patches (PD), the variance in the sizes of these patches (SPLIT ), and the

tortuosity of their edges (PAFRAC). However re-examining Pattern4 and Pattern5 in Figure 4 raises the question as to why

these maps have the largest differences in their respective MIZ-ABLs. Their geometric patterns are the same (thus the four

metrics are identical for the two configurations), yet the difference in the geostrophic wind direction results in large differences

in the surface-atmosphere interactions. This reveals that another important attribute is how the surface patterns are oriented390

relative to the wind. If the surface is isotropic, the wind angle should be irrelevant, but most water-sea ice patterns in the

MIZ display a significant degree of anisotropy (Feltham, 2008). Therefore, quantifying the impact of surface orientation and

including it in the metric set obtained from the VIF analysis in Section 4 may provide additional information for modelers to

parameterize MIZ-ABL dynamics in global climate models.

We observe that in Pattern4 and Pattern5, the difference in the geostrophic direction is related to the directional variance of395

the data
:::::::::::
directionality

::
of

:::
sea

:::
ice

:::::::::::
organization. In Pattern4, the wind is consistently blowing over an infinitely repeating pattern

of sea ice and water at regular intervals. In Pattern5, the wind blows over much longer strips of ice and water, even though there

are some sea ice-water transitions present. Any other oblique flow is thus “in between” these two ‘parallel’ and perpendicular

::::::::::::
‘perpendicular’

:
regimes. We characterize the differences between these regimes by the variance of the surface that the surface

wind is exposed to. In other words, Pattern4 exhibits a high variance (since over one domain length, the geostrophic
::::::
surface400

wind flows over a maximum of eight ice-water transitions, and
:::::
while Pattern5 exhibits a low variance , since the geostrophic

::::
since

:::
the

:
wind flows over a maximum of two sea ice-water transitions. This then raises the question of how to obtain some

principal direction for a more complex surface.

We thus
:::::::
therefore attempted to characterize this anisotropy by computing the direction of the eigenvector (the eigendirection)

::
of

:::
the

::::::
surface with the least amount of variance, thus giving the fewest ice-water transitions possible. This was done by imple-405

menting the scikit-learn Python package, via a principal component analysis (PCA) using the sklearn.decomposition.PCA

class (Pedregosa et al., 2011). This method performs the eigendecomposition of the covariance matrix of our sea ice map, yield-

ing two orthogonal eigenvectors. The principal eigendirection points in the direction of minimal variance, denoted by the longer

of the two arrows in Figure 7. That is, the principle or most coherent mode that best explains the pattern is along the direction of

least variability. The secondary eigendirection is, by definition, orthogonal to the principal eigenvector. Some of these eigendi-410

rections are intuitive, as one can ‘imagine’ trying to pick a geostrophic wind direction that passes over a minimal number of

ice-water edges. The maps in Figures 7a and 7g are two such examples. However, the map in Figure 7f, for example, is a bit

less intuitive - visual inspection may suggest that the principle eigendirection should aligned from the lower right to the upper

left, but the results indicate a less obvious orientation.

It is hypothesized that for a fixed fi, the geostrophic wind flowing in a principal direction with minimal variance will behave415

more so like Pattern5, and the perpendicular angle to that principal direction (the secondary direction) will behave more so

like Pattern4 (similar to the parallel and perpendicular cases in the simulations conducted in Fogarty and Bou-Zeid (2023)),
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Figure 7. Eight maps from the sea ice dataset overlayed with their principal eigendirection (long arrow) and secondary eigendirection (short

arrow), computed via principal-component analysis
:
.

but further LES simulations are needed to elucidate the exact impact of this relative orientation and the other parameters we

identified on the MIZ-ABL.

However, some of these maps exhibit a higher degree of anisotropy than others, such as Figure 7c. To measure the degree of420

anisotropy in these maps, one may also look into percentage of variance (POV), defined as

POV(λi) =
λi∑1
i=0λi

λi∑n
i=0λi

:::::::

, (11)

for an eigenvector λi in an i
:
n-dimensional matrix. The POV of an eigenvector for a two-dimensional surface

:::::
(n=2) thus de-

scribes the amount of variance that can be explained (or reconstructed) by that eigenvector alone, such that λ0 +λ1 = 1
::::::::::::::::::::
POV(λ0)+POV(λ1) = 1.

In theory, a sea ice map with a high POV(λ0),::::
and

:::
thus

::
a

:::
low

::::::::
POV(λ1),:would be anisotropic, since the principal eigendirection425
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Table 4. Eigenvector (vi) angle and eigenvalue (λi) for principal (i= 0) and secondary (i= 1) eigenvectors, as well as percentage of variance

(POV) of λ0, corresponding to each map in Figure 7. Note that these angles are not traditional meteorological wind angles, but are instead in

Cartesian coordinates, as
:
; 0◦ is a left-to-right westerly wind

:
,
:::
and

:::
90◦

::
is

:
a
:::::::
southerly

:::::
wind.

Map ∠v0 λ0 ∠v1 λ1 POV(λ0)

(a) 41◦ 3396 311◦ 3286 0.508

(b) 69◦ 4784 339◦ 2688 0.640

(c) 229◦ 3339 319◦ 3330 0.501

(d) 0◦ 3337 90◦ 3285 0.504

(e) 50◦ 3347 320◦ 3332 0.501

(f) 209◦ 3624 299◦ 2688 0.574

(g) 269◦ 3370 359◦ 3293 0.506

(h) 102◦ 3697 12◦ 3033 0.549

explains
::::::::
secondary

::::::::::::
eigendirection

::::::
would

::::::
contain

:
much more of the variance than the other mode

:::::::
principal

::::::::::::
eigendirection, and

the surface thus has a preferential direction of variability (one would expect Figure 7g to have a high POV(λ0)). Conversely, a

map with a low POV(λ0) would be a fairly isotropic map.

By definition, POV(λ0)> 0.5, since the
::::::::::::
POV(λ0)≥ 0.5

:::::
(with

:::::::::::::::::::::::
POV(λ0) = POV(λ1) = 0.5

::::::::
resulting

:::
for

::
a

::::
truly

::::::::
isotropic

:::::::
surface),

:::::
since POV(λ0) is the POV for the principal eigendirection. However, most of the ratios in these examples lie in the430

range of 0.50< POV(λ0)< 0.60, showing little variability among these maps. Thus
:
,
:
in this small subset of sea ice maps,

solely looking at POV(λ0) would not give information on how much influence the principal eigendirection has.

6 Conclusions

The ice
:::::::
Although

:::
the

:::::::
stability

:::::
over

::
an

::::
ice-

::
or

::::::::::::::
water-dominated

:::::::
surface

:::::::
depends

::
on

::::::
many

::::::
factors

::::
such

::
as

:::
the

:::::
wind

::::::::
direction

:::
and

:::
air

:::::::
potential

:::::::::::
temperature,

:::
for

:::
the

::::
cases

::::::
where

:::
the

:::
air

:::::::
potential

::::::::::
temperature

::::
falls

::::::::
between

:::
the

:::::::
surfaces

:::::::::::
temperatures

::
of

:::
ice435

:::
and

:::::
water,

:::
the

:::
ice

:
fraction of a sea ice surface itself can be fair indicator of the behavior of the MIZ-ABL, if

:
;
:::
but

::::
only

:::::
when

the ice fraction approaches 0.0 (all ocean, leading to an unstable atmosphere) or 1.0 (all ice, leading to a stable atmosphere).

However
:::
On

:::
the

::::
other

:::::
hand, when the fi is between these limits (in other words, if the surface flow alternates between very

stable or very unstable), ice fraction alone is not enough to predict the dynamics and thermodynamics of the MIZ-ABL. Large-

eddy simulations conducted for five different sea ice surfaces, detailed in Figure 2, have shown that surfaces with the same ice440

fraction, number of floes, and mean floe size can result in very distinct atmospheric dynamics. Differences were examined in

the horizontal wind speed (Figure 4a) and total surface stresses (Figures 4c,d
:::
d,e and 5).

While Figure 5 shows moderate differences in the total heat flux that is here constrained by the simulation setup, more

significant differences are seen in the dispersive and turbulent fluxes that make up this flux (see also Table 2). The total,

turbulent, and dispersive fluxes of the streamwise and cross-stream momentum were even more sensitive to the surface patterns.445
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These dispersive fluxes are shown to drive many of the differences, and are thus non-negligible in climate models (Margairaz

et al., 2020; Fogarty and Bou-Zeid, 2023; Lu et al., 2023).

To understand what other information one can obtain from a two-dimensional binary lattice surface, we examined 44 spatial

metrics traditionally used in the field of landscape ecology, since knowing the cover fraction (ice fraction), and the number

and median area of the floes is not enough to fully describe the ice-water-atmosphere physics. These 44 additional spatial450

metrics were used on LIDPs
:::::
literal

:::::
image

:::::::
derived

:::::::
products

:
of real-world satellite sea ice imagery to determine which metrics

were important, and the variance inflation factor was used to detect and remove multicolinearity in this dataset. The remaining

metric set included ice fraction, patch density (representing the number of sea ice floes and thus their mean size in a given

total area), splitting index (representing the variance in the floe sizes) and the perimeter-area fractal dimension (representing

edge tortuosity). We also propose the use of the surface eigendirection relative to the mean wind direction, to characterize the455

influence of surface anisotropy and its interaction with the wind direction.

The resulting five metric set, including eigendirection, is not only useful for describing a two-dimensional surface, but based

on the VIF analysis, it is also a minimal set of indicators needed to describe such a surface since they contain distinct and

important information. However, the development of practical parameterizations for sea ice and the MIZ-ABL will ultimately

need to include additional considerations including the ease of obtaining these parameters for modeling applications, the460

computing time needed to calculate these surface metrics dynamically versus resolving the surface features when running an

ESM, the availability of easier-to-compute surrogate metrics, among others.

The first step in answering this broad question is investigating to what degree these other metrics affect the MIZ-ABL, in

comparison with the first-order effect on the MIZ-ABL of ice fraction. In other words, given an ice fraction, how will changing

any of the metrics in the resulting set affect the overlying MIZ-ABL? While this was answered in this paper
::::
study

:
for idealized465

surfaces, proving that under some conditions these parameters are relevant, which of these parameters will be critical over real

ice maps, and how often and to what degree, requires additional simulations (and is an underway followup
:
a
::::::::
follow-up

:
to this

study
:
is
:::::::::
underway,

:::
see

:::::::::::::::::
Fogarty et al. (2024)). More turbulence-resolving numerical simulations of the real ice surface are thus

needed.

Another crucial step to answering this question is figuring out how one would go about creating an accurate parameterization470

based on the available external grid-cell
:::
grid

::::
cell

:
variables; the resources to answer this question may be extensive as well

:
,

::::::::
especially

::::::::::
considering

:::
that

::
in

::::
this

:::
age

::
of

:::::::
machine

::::::::
learning,

:::::::::::::
high-resolution

:::::::
synthetic

:::::::
satellite

:::::::
imagery

::
is

:::::
being

::::::::
generated

:::::
more

::::
often

::::
(see

::::::::::::::::::::
Au-Boehm et al. (2024)). Again, even more large-eddy simulations, beyond what has been done here, over real sea

ice maps are imperative to answer this question. Lastly, this open question also requires looking at how to incorporate the

resulting metrics and eigendirections into these climate models, such as examining (i) how the geostrophic wind at certain475

principal directions interacts with the resulting metric set, (ii) other possible metrics of anisotropy, and (iii) how the sea ice

model in an ESM can provide the data needed to capture the heterogeneity of the sea ice surface - among other questions that

remain unanswered at this time.
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Code and data availability. A dataset containing the simulation results for the five patterns, and the FRAGSTATS output for the sea ice maps,

are publicly available at https://doi.org/10.34770/5x2y-5485. FRAGSTATS is publicly available for download/use at https://fragstats.org/480

(McGarigal and Marks, 1995), and the prepossessed sea ice maps are available at Fetterer et al. (2008).

Appendix A: Large-Eddy Simulation Details

In this study, the incompressible filtered Navier-Stokes equations (with the Boussinesq approximation for the mean state) and

heat budget are solved for a horizontally periodic flow, where a variable with a tilde represents a quantity filtered via the

numerical grid spacing ∆:485

∂ũi

∂xi
= 0 , (A1)

∂ũi

∂t
+ ũj

∂ũi

∂xj
=− 1

ρr

∂p

∂xj
+ F̃i + fcϵij3ũj − gδi3

(
1− θ̂

θr

)
− ∂τij

∂xj
, (A2)

∂θ̃

∂t
+ ũj

∂θ̃

∂xj
=− ∂qj

∂xj
. (A3)

The equations above invoke the Einstein summation rule, where i is the free index and j the repeated index; ui is the

velocity vector; xi is the position vector; p is a modified pressure (see Bou-Zeid et al. (2005) for details); θ is the potential490

temperature;θr and θ̂ are, respectively, the Boussinesq reference (planar mean in our calculations) and the perturbation from

that reference for potential temperature; ρr is the reference mean density corresponding to θr; and Fi is the main flow-driving

force (a synoptic pressure gradient). The Coriolis force is represented by the third term on the right-hand side of Eq.
:::::::
Equation

A2, where fc is the Coriolis parameter and ϵij3 represents the Levi-Civita symbol. Buoyancy is represented by the fourth term

on the right-hand side of Eq.
:::::::
Equation

:
A2, where δij represents the Kronecker delta.495

An overbar denotes averaging in time, used as a surrogate for ensemble Reynolds averaging, while spatial averaging over

the heterogeneous domain (in both x and y) will be
::
is denoted by angled brackets. The sub-grid scale stress τij = ũiuj − ũiũj

and buoyancy flux qj = ũjθ− ũj θ̃, which result from the filtering, are modelled using a Lagrangian scale-dependent dynamic

model (Bou-Zeid et al., 2005) with a constant sub-grid scale Prandtl number of Pr = 0.4. As noted before, the numerical grid

is the inherent filter of the model, but any explicit filtering needed to compute the dynamic Smagorinsky constant cs is done at500

scales 2∆ and 4∆ (2∆ for the local wall model); for these computations, a sharp-spectral cutoff filter is used. This model was

validated by Bou-Zeid et al. (2005) for boundary layer flows over both homogeneous and heterogeneous terrain by reproducing

experimental velocity and stress profiles obtained by Bradley (1968) after a change in surface roughness. It was then further

validated for urban flows (Tseng et al., 2006; Li et al., 2016), and both stable and unstable boundary layers (Kleissl et al., 2006;

Kumar et al., 2006; Huang and Bou-Zeid, 2013). Therefore, the ability of this model to successfully capture the impacts of505

stability and spatial transitions in surface properties was not tested further in this paper.

The LES employs boundary conditions that are periodic in the horizontal, with zero vertical velocity at the top and bottom

of the domain, as well as a stress-free top lid (∂zui = 0 where i= 1,2), with zero heat flux. These mimic a very strong top

inversion, and are adequate for our setup since the top of the domain is not stably stratified and there is thus no need for a sponge
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to avoid wave reflection. This allows for the surface characteristics to be isolated from zi and the inversion strength. The indices510

i= 1,2,3 represent the x, y, and z directions, oriented along the streamwise, cross-stream, and vertical directions, respectively.

At the bottom of the domain, the surface stress and heat flux are computed by a wall model based on a local law-of-the-wall

formulation (Bou-Zeid et al., 2005), with Monin-Obukhov buoyancy correction. Numerically, a pseudo-spectral approach is

employed in the horizontal, and an explicit second-order centred difference scheme used in the vertical. Time advancement is

done using the fully explicit second-order Adams-Bashforth scheme. Dealiasing of the convective terms is performed using515

the 3/2 rule (Orszag, 1971). Pressure is computed from a Poisson equation obtained by taking divergence of the momentum

equation and applying the incompressibility assumption.

Appendix B: Temperature Initialization

The initial
:::::::
potential

:
temperature was chosen to be one such that the

::::
mean

:
heat flux over the

:::::
entire

::::::
domain

::
is
:::::
zero;

::
in

:::::
other

:::::
words,

:::
the

::::
heat

::::
flux

:::::
going

::::
into

:::
the

:
ice is equivalent

:
in

:::::::::
magnitude

:
to the heat flux coming from the water, based on the area520

fraction (ice fraction, in this case) of the of the domain. Thus, the initial air
:::::::
potential temperature of the large-eddy simulation

was chosen such that the ice-fraction weighted heat flux over the ice (fiHi) was equivalent to the water fraction weighted heat

flux over the ocean (fwHw),

−fiHi = fwHw , (B1)

where fi + fw = 1. Using Monin-Obukhov flux profiles relations to express the surface fluxes:525

θi − θa =
Hi

κu∗,iρcp

[
ln
( z

z0h,i

)
−Ψs

( z

Li

)]
, (B2)

θw − θa =
Hw

κu∗,wρcp

[
ln
( z

z0h,w

)
−Ψu

( z

Lw

)]
, (B3)

where θa is the bulk air
:::::::
potential temperature; θi is the temperature of the ice surface; θw is the temperature of the ocean surface;

κ≈ 0.4 is the von Kármán constant; u∗,i and u∗,i ::::
u∗,w:

are the friction velocities of the ice and water surface
:
,
:
respectively;

ρ is the density of air; cp is the specific heat of air; z is a height near the surface (taken at z = 50m); z0h,i and z0h,w are530

the scalar roughness lengths of the ice and water surface, respectively; Li and Lw are the Obukhov lengths over the ice and

water surface,
:
respectively; and Ψs and Ψu represent the stable and unstable correction functions, respectively, as reported in

Brutsaert (2005). These Obukhov lengths are defined as

Li =
−u3

∗,iρcp

Hiκ(g/θa)
, (B4)

Lw =
−u3

∗,wρcp

Hwκ(g/θa)
, (B5)535
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where the value of Hi and Hw in these equations is taken as a first-order estimate obtained by rearranging Equations B2 and

B3 without the stability functions (i.e., for a neutral atmosphere),

Hi = (θi − θa)κu∗,i

(
ln

z

z0h,i

)−1

, (B6)

Hw = (θw − θa)κu∗,w

(
ln

z

z0h,w

)−1

, (B7)

which allows one to write a function substituting Equations B2 and B3 into Equation B1 to obtain a function that can be solved540

for θa via numerical root-finding. Of course, this is only a first guess to initialize the LES, which will then dynamically create

its air
:::::::
potential

:
temperature field during the warm-up period.

:::
As

:::::
noted

::
in

:::
the

:::::
main

::::
text,

:::
the

:::::
actual

::::::
domain

::::::::
averaged

::::
heat

::::
flux

::
in

:::
the

:::::
LES

:::
will

:::
not

:::
be

::::
zero.

Appendix C: Landscape Quantification Metrics

Table C1 lists the landscape metrics used in the VIF analysis conducted in Section 4. For more information on each individual545

metric (other than ice fraction), consult the FRAGSTATS manual (McGarigal and Marks, 1995).

Table C1. All landscape metrics used in the VIF analysis conducted in Section 4

Ice Fraction Edge Density Interspersion and Juxtaposition Index

Number of Patches Landscape Shape Index Patch Cohesion Index

Patch Density Perimeter-Area Fractal Dimension Landscape Division Index

Largest Patch Index Contagion Index Effective Mesh Size

Total Edge Percentage of Like Adjacencies Splitting Index

Modified Simpson Evenness Index Aggregation Index Shannon Diversity Index

Simpson Diversity Index Modified Simpson Diversity Index Shannon Eveness Index

Simpson Evenness Index
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