Evolution of Cloud Droplet Temperature and Lifetime in Spatiotemporally Varying Subsaturated Environments with Implications for Ice Nucleation at Cloud Edges

5

6

Puja Roy^{1,2}, Robert M. Rauber¹, Larry Di Girolamo¹

¹Department of Climate, Meteorology & Atmospheric Sciences, University of Illinois Urbana-Champaign, USA
 ²Research Applications Laboratory, NSF National Center for Atmospheric Research, USA

9

10 *Correspondence to*: Puja Roy (pujaroy@ucar.edu)

11

12 Abstract. Ice formation mechanisms in generating cells near stratiform cloud-tops, where mixing and entrainment 13 occurs in the presence of supercooled water droplets, remain poorly understood. Supercooled cloud droplet 14 temperature and lifetime may impact heterogeneous ice nucleation through contact and immersion freezing; however, 15 modeling studies normally assume droplet temperature to be spatially uniform and equal to the ambient temperature. 16 Here, we present a first-of-its-kind quantitative investigation of the temperature and lifetime of evaporating droplets, 17 considering internal thermal gradients within the droplet as well as thermal and vapor density gradients in the 18 surrounding air. Our approach employs solving the Navier-Stokes and continuity equations, coupled with heat and 19 vapor transport, using an advanced numerical model. For typical ranges of cloud droplet sizes and environmental 20 conditions, the droplet internal thermal gradients dissipate quickly (≤ 0.3 s) when droplets are introduced to new 21 subsaturated environments. However, the magnitude of droplet cooling is much greater than estimated from past 22 studies of droplet evaporation, especially for drier environments. For example, for an environment with pressure of 23 500 hPa, and ambient temperature far from the droplet of -5° C, the droplet temperature reduction can be as high as 24 24, 11, and 5°C for initial ambient relative humidities of 10%, 40%, and 70% respectively. Droplet lifetimes are found 25 to be tens of seconds longer compared to previous estimates due to weaker evaporation rates because of lower droplet 26 surface temperatures. Using these new end-of-lifetime droplet temperatures, the enhancement in activation of ice-27 nucleating particles predicted by current ice nucleation parameterization schemes is discussed.

28

30 1 Introduction

31

32 Ice formation often occurs near cloud tops of stratiform clouds where ice-generating cells (AMS 2024) are frequently 33 found in a variety of cold, cloudy environments (Plummer et al., 2014; Ramelli et al., 2021). These cells play a crucial 34 role in primary ice nucleation and growth (Tessendorf et al., 2015). Evidence of mixing and entrainment and the 35 presence of supercooled liquid water within and between the highly turbulent cells has been observed (Plummer et al., 36 2014; Wang et al., 2020; Zaremba et al., 2024). Within regions of entrainment and mixing at cloud boundaries, cloud 37 droplets are exposed to subsaturated environments and undergo evaporation that leads to droplet temperatures that 38 could be several degrees lower than that of the ambient environment (Kinzer and Gunn, 1951; Watts, 1971; Roy et 39 al., 2023). However, in modeling cloud microphysical processes, the difference in temperature between the cloud 40 droplets and their environment is generally assumed to be negligible (Pruppacher and Klett, 1997), i.e., the droplets' 41 temperatures are approximated to be the same as that of their ambient environment. This assumption is reasonable for 42 cloud droplets inside the cloud but breaks down within entrainment and mixing zones at cloud boundaries and may 43 lead to uncertainties in the numerical simulations of microphysical processes. Cloud droplet temperatures affect the 44 calculated droplet diffusional growth or evaporation rates (Roach 1976; Srivastava and Coen 1992; Marquis and 45 Harrington 2005; Roy et al., 2023), and droplet lifetimes (Roy et al., 2023), radiative effects via temperature-dependent 46 refractive indices (Rowe et al. 2020), and ice formation via pathways that require supercooled liquid water droplets, 47 such as contact nucleation (Young, 1974), immersion freezing (Szakáll et al., 2021), and homogeneous nucleation 48 (Khvorostyanov and Sassen, 1998; Khain and Pinsky, 2018). These uncertainties can propagate into microphysical 49 parameterization schemes, leading to possible inadequate representation of mixed-phase cloud properties across 50 various scales (e.g., Large Eddy Simulations (LES), Cloud Resolving Models (CRM), Climate Models), impacting

- 51 predictions of precipitation or climate change.
- 52

53 Several studies have highlighted the special importance of the air-water interface of the water droplet during ice 54 nucleation. Many experimental and theoretical studies have suggested that ice initiation occurs at the droplet surface 55 (Tabazadeh et al., 2002a; Tabazadeh et al., 2002b; Djikaev et al., 2002; Satoh et al. 2002; Shaw et al., 2005) and the 56 interface thermodynamically favors the contact mode over the immersion freezing mode (Djikaev and Ruckenstein, 57 2008). Based on their laboratory observations, Tabazadeh et al., (2002a) suggested that homogeneous nucleation of 58 nitric acid dihydrate (NAD) and nitric acid trihydrate (NAT) particles within aqueous nitric acid droplets primarily 59 occurs at the droplet surface. This leads to the hypothesis that phase transformations in atmospheric aerosols may 60 predominantly be surface-based (Tabazadeh et al., 2002b), challenging the traditional theory of homogeneous 61 crystallization where freezing begins inside the volume of the droplet (Volmer, 1939). Satoh et al. (2002) studied 62 cooling and freezing in water droplets due to evaporation in an evacuated chamber and found that droplets rapidly 63 froze with significant supercooling, with the freezing initiated from the droplet surface. Studies employing molecular 64 dynamics simulations (Chushak et al., 1999, 2000) and thermodynamic calculations (Djikaev et al., 2002) additionally 65 corroborate that a crystalline nucleus preferentially forms at the droplet surface rather than within the bulk droplet 66 volume. Laboratory observations from Shaw et al., (2005) reveal that freezing temperatures are 4-5 K higher when an

67 ice-forming nucleus is closer to the surface of a supercooled water droplet compared to when it's immersed within the 68 droplet. They found that the nucleation rate at the water surface is significantly higher (by a factor of 10^{10}) than in the 69 bulk droplet, indicating that the free energy required for critical ice germ formation decreases when near the air-water 70 interface, and the jump frequency of molecules from the liquid to the solid phase may be significantly enhanced at the 71 interface. Lü et al., (2005) conducted ice nucleation experiments with acoustically levitated supercooled water 72 droplets. Using statistical analyses of nucleation rates, they found that ice nucleation predominantly initiates in the 73 vicinity of the droplet surface. Therefore, given the importance of the droplet surface in ice nucleation and since 74 evaporation is a surface phenomenon, in the quest to better understand the physical mechanisms responsible for 75 primary ice nucleation, it is important to accurately investigate the thermal evolution of the evaporating droplet surface 76 as well as the internal thermal gradients within the supercooled droplet, as ice nucleation is highly temperature 77 dependent.

78

79 Droplet condensation or evaporation results from vapor density gradients between the surface of the droplet and the 80 ambient environment. The solution to determine the rate of droplet growth or decay was first derived by Maxwell 81 (1890), with an alternative approximate solution presented by Mason (1971) which has since appeared in several 82 textbooks (e.g. Eq. 7.18 of Rogers and Yau, 1989; Eq. 13-28 of Pruppacher and Klett, 1997). The vapor density at the 83 droplet surface is a sensitive function of the temperature at the drop surface. For simplicity, cloud models, while 84 computing the growth/decay rates of cloud droplets, eliminate the use of droplet temperature from the equations by 85 assuming the saturation vapor density difference as a linear function of temperature difference between the droplet 86 and ambient environment (e.g. Vaillancourt et al., 2001, Chen et al., 2020). This quasi-steady approximation is 87 applicable for droplet growth where the supersaturation is typically less than 1% and the difference between the droplet 88 temperature and ambient air is negligible. For evaporation, where vapor deficits can occur over a wide range of relative 89 humidities, the approximation breaks down as the droplet temperature can deviate significantly from the ambient 90 environment (Srivastava and Coen, 1992; Roy et al., 2023).

91

92 Few studies in the cloud microphysics literature have carried out explicit numerical estimations and evolutions of 93 supercooled, evaporating cloud droplet temperatures and lifetimes for a wide range of environmental conditions. Roy 94 et al., (2023) provides a comprehensive review of past theoretical, numerical, or experimental studies of droplet 95 evaporation. Most of these studies examined the evaporation of raindrops for above 0°C temperatures (Kinzer and 96 Gunn, 1951; Watts 1971; Watts and Farhi, 1975), either assuming steady-state expressions (Beard and Pruppacher, 97 1971) or simplifying assumptions of linear dependence of saturation vapor density on temperature (Kinzer and Gunn, 98 1951; Watts 1971; Watts and Farhi, 1975). Srivastava and Coen (1992) assumed the heat storage term in the droplet 99 heat budget to be negligible, and investigated the evaporation of isolated, stationary hydrometeors by iteratively 100 solving the steady-state solutions, using saturation vapor pressure relations from Wexler (1976) to calculate the 101 saturation vapor density. Roy et al., (2023), by including the heat storage term and solving for time-dependent heat 102 and mass transfer between single, stationary cloud droplets evaporating in infinitely large, prescribed ambient 103 environments, demonstrated that the temperatures of the cloud droplets (initial radii between 30-50 µm) reach steady104 state quite quickly (within <0.5 s). They considered a wide range of environmental conditions and found that 105 evaporating droplet temperatures can typically be 1-5 K colder than that of the environment, with values as low as 106 ~ 10 K for low relative humidity, and low-pressure conditions with near 0°C environments. Their steady-state droplet 107 temperatures agreed well with those of Srivastava and Coen (1992). They showed that the droplet temperature during 108 evaporation can be approximated by the thermodynamic wet-bulb temperature of the ambient environment. For most 109 subsaturated conditions, radiative cooling in cloud-top environments was found to play a negligible role in altering 110 evaporating droplet temperatures, except for larger droplets in environments close to saturation.

111

112 However, two main issues have not yet been accounted for in the aforementioned studies. Firstly, water droplets were 113 considered to have a uniform bulk droplet temperature, based on the assumption of infinite thermal heat conductivity 114 of water, thus ignoring the added complexity of simulating the internal thermal gradients within the droplet. (Kinzer 115 and Gunn, 1951; Watts, 1971; Srivastava and Coen, 1992, Roy et al., 2023). As several studies suggest that the droplet 116 surface plays a special role in nucleating ice and evaporation being a surface phenomenon, accurate modeling of the 117 evolution of droplet surface temperature and internal thermal gradients within the droplet volume is required to 118 correctly predict the ice nucleation rates. Secondly, to date, none of these studies considered the spatiotemporally 119 evolving effects of thermal and moisture feedback between the droplet and its immediate environment. The rationale 120 for justifying the usage of constant ambient conditions far away from the droplet was mostly based on studies where 121 ambient conditions were defined by prescribed temperature and moisture fields far away from a droplet (Sedunov, 122 1974; Eq. 7.7 of Rogers and Yau, 1989; Srivastava and Coen, 1992). A correction to the ambient conditions at a radius 123 similar to the mean distance between droplets (~1 mm) was shown to lead to minimal modifications for typical cloud 124 conditions (Fukuta, 1992). Thus, this assumption holds for droplets distributed homogeneously in space. Concerning 125 numerically simulating the growth and decay of a droplet population, Grabowski and Yang (2013) stated: "Cloud 126 droplets grow or evaporate because of the presence of moisture and temperature gradients in their immediate vicinity, 127 and these gradients are responsible for the molecular transport of moisture and energy between the droplet and its 128 immediate environment. One may argue that these gradients need to be resolved to represent the growth accurately. 129 Elementary considerations demonstrate that the moisture and temperature gradients in the droplet vicinity are 130 established rapidly [i.e., with a characteristic timescale of milliseconds or smaller (e.g., Vaillancourt et al. 2001, and 131 references therein)]; thus, the steady-state droplet growth equation is accurate enough. More importantly, the volume 132 affected by these gradients has a radius of approximately 10 to 20 droplet radii.... One can simply neglect molecular 133 transport processes in the immediate droplet vicinity and simulate droplet growth using the Maxwellian approach, that 134 is, by applying the supersaturation predicted by the mean (over the volume occupied by the droplet) temperature and 135 moisture fields...(see Vaillancourt et al. 2001, appendix)." 136

137 Here, we quantitatively revisit these arguments within the context of an evaporating supercooled cloud droplet. We 138 use high-resolution modeling to resolve the spatiotemporally evolving unsteady thermal and vapor density gradients

139 in the vicinity of the droplet as well as include internal heat transfer within the droplet, relaxing the assumption of

140 infinite thermal heat conductivity of water. Using an advanced numerical model, our framework employs the finite141 element method to solve the Navier-Stokes and continuity equations, coupled with heat and vapor diffusion, with

- 142 appropriate boundary conditions. The results from this study extend the findings from Roy et al. (2023) that an
- evaporating droplet can exist at a temperature lower than that of the ambient environment, and that the temperature
- 144 deviation increases from the steady-state value under certain environmental conditions. This may lead to significant
- 145 enhancement in ice nucleation by increasing the predicted number concentrations of activated ice-nucleating particles
- 146 (INPs) either immersed within or externally contacting the supercooled droplet. The current study advances the
- 147 numerical approach presented in Roy et al. (2023) by including the impact of internal heat gradients within the droplet
- 148 and spatiotemporally varying heat and mass transfer between the droplet and its immediate environment. We also

provide droplet lifetime comparisons with estimates from Roy et al. (2023) and pure diffusion-limited evaporation

- 150 calculations. The implications of the evaporating supercooled cloud droplet temperatures and lifetimes on ice
- 151 nucleation at cloud boundaries are discussed.
- 152

149

153 2 Numerical Methodology

154 **2.1 Description of COMSOL**

155

156 The simulation of the spatiotemporally varying droplet temperature and radius of an evaporating cloud droplet 157 embedded in a gaseous domain is difficult to solve analytically because of the moving and shrinking boundary at the 158 surface of the evaporating droplet. These kinds of moving boundary problems are known as Stefan problems. To 159 model this process, we have used an advanced numerical solver, COMSOL (Version 6.0), which employs a finite 160 element method to solve partial differential equations (PDEs). The COMSOL Multiphysics software simultaneously 161 uses spatial, material, and mesh coordinate systems described as the spatial frame, material frame, and mesh frame, 162 respectively. The spatial frame is a fixed, global, Euclidean coordinate system, which in 2D has spatial cartesian 163 coordinates (r, z) with the center of the droplet at (r, z) = (0,0) (Fig. 1). The material frame specifies the material 164 substance, in this case, water or air. The mesh frame is a coordinate system used internally by the finite element 165 method.

166

167 The Navier-Stokes and Fick's second law of diffusion equation, which follows from the continuity equation, along 168 with appropriate boundary conditions (see Sec. 3) are solved to conserve mass and momentum in the whole system. 169 The following physics interfaces in COMSOL were used to simulate droplet evaporation: (1) Two-Phase Laminar 170 Fluid Flow, which includes a moving mesh to track the shrinking water-air interface of the evaporating water droplet 171 and fluid-fluid interface that incorporates evaporative mass flux; (2) Transport of Diluted Species to track water vapor 172 diffusion through the air domain and predict the evaporation rate at the droplet surface; and (3) Heat Transfer in Fluids 173 which accounts for the non-isothermal flow within the computational domain, temperature-dependent saturation vapor 174 density at the droplet interface, and a boundary heat source to account for the latent heat of evaporation. The 175 computational domain also includes an infinite element air domain (COMSOL 2023b) to specify and maintain 176 boundary conditions far away from the droplet. The physics modules are coupled through non-isothermal flow

between heat transfer and fluid flow, and mass transport at the fluid–fluid interface between fluid flow and speciestransport.

179

180 A non-uniform moving mesh was created by breaking down the computational domain into numerous fine elements

- 181 of variable sizes, using the Arbitrary Lagrangian-Eulerian technique (Yang et al., 2014) to accurately track the moving
- 182 air-water interface at the droplet surface. In the ALE technique, the spatial cartesian coordinate system (r, z) is fixed,
- $183 \qquad \text{while the coordinates of the material (R, Z) and the mesh (R_m, Z_m) nodes are functions of time as the droplet evaporates.}$
- 184 However, the material and mesh node coordinates are always fixed in their respective frames. Initially, the spatial,
- 185 material and mesh frames are all identical. As the simulation starts, the material and mesh frames deform as the moving
- 186 boundary of the droplet shrinks during evaporation. After each time step, the deformed nodes are mapped to the spatial
- 187 frame, where calculations are performed. In this study, we have used triangular mesh elements (COMSOL 2023c)
- 188 within the droplet and quadrilateral mesh elements (COMSOL 2023d) for the rest of the domain as shown in Fig. 1.
- 189 The triangular mesh allows a higher resolution at the droplet surface, and both meshes adjust continually as the droplet
- 190 surface shrinks during evaporation. Finally, to simulate the water droplet evaporating in ambient air system, with
- 191 appropriate initial and boundary conditions, the discretized PDEs are numerically solved with adaptive time steps (\leq
- 192 0.01 s) to maintain numerical stability and obtain the solution (the temporal evolution of droplet temperature and
- 193 radius) for a range of conditions.

- 196 Figure 1: Schematic depicting the evaporating droplet, embedded in the air domain. The spatial frame (r, z) and the
- 197 initial mesh frame (triangular elements within the droplet and quadrilateral elements outside the droplet) are shown (not
- 198 to scale).

2.2 Justification for choice of environmental parameters in the simulations

205

206 Probing the evolution of the droplet and its immediate environment under a wide swath of conditions was 207 computationally too expensive, thus, certain choices regarding the parameter selection were made. The assumption 208 behind the computational set-up is that the supercooled droplet is suddenly introduced to a subsaturated environment 209 with ambient temperature, $T_{\infty} = 273.15$ K, 268.15 K, or 263.15 K, as might happen when the droplets are near cloud 210 boundaries such as those occurring in cloud-top generating cells. These temperatures are the ones where activation of 211 INPs is thought to be least effective. Calculations presented in Sec. 4 consider three different environments having 212 ambient relative humidity, $RH_{\infty} = 10$, 40, and 70%, and two different ambient pressures, P = 500, and 850 hPa, and 213 initial cloud droplet radii, r_0 , of 10, 30, and 50 µm. The pressure levels were chosen based on the occurrence of 273.15 214 K, 268.15 K, and 263.15 K in standard atmospheric profiles for tropical latitudes and middle latitudes under warm 215 and cool season conditions (Standard Atmosphere, 2021). Overall, 90 numerical experiments were performed using 216 various combinations of initial RH_{∞} , T_{∞} , P, and r_{θ} to obtain a better understanding of the relationships between the 217 evolution of droplet temperatures and radii, and environmental variables. Of these, the results of 54 experiments are 218 reported in detail herein. The results of these experiments are later summarized in Figs. 3-10 and Tables 1-2. The 219 specific combinations of environmental parameters and initial droplet radii used in this study were also selected to 220 enable easy comparison with results from a previous study of droplet evaporation (Roy et al., 2023). Also, to be noted, 221 the effect of radiation in this study was neglected based on Roy et al. (2023), which demonstrated the negligible role 222 played by radiation in modifying evaporating droplet temperatures under most subsaturated conditions (RH < 80%).

223

224 2.3 Justification for choice of droplet lifetime cut-off

225

226 For each experiment, the computational time rose exponentially to maintain numerical stability as the droplet radius 227 decreased during evaporation and the grid sizes needed to be smaller. To avoid exceptionally long computation time, 228 the cut-off radius for the simulations was set to be when the volume of the droplets decreased by 99.5% to reach 0.5%229 of the initial droplet volume. For $r_0 = 10, 20, 30, 40, 50 \,\mu\text{m}$, the cutoff radii of the droplets are 1.71, 3.42, 5.13, 6.84, 230 and 8.55 µm, respectively. Note that due to the Raoult effect, for a solution droplet with a mass of dissolved and 231 ionized NaCl = 10^{-13} g, the reduction in the evaporation rate (dr/dt) from that of a pure water droplet is about 1% for 232 a 1 μ m radius droplet and 4% for a 0.7 μ m droplet. As all cut-off radii considered here are > 1 μ m, the solute effect 233 can be neglected. From the Kelvin equation, the equilibrium vapor pressure over a curved surface of pure water 234 approaches the value of equilibrium vapor pressure over a flat surface of pure water for a radius $> 0.01 \mu m$. Thus, 235 curvature effects were also neglected. For simplicity, we will refer to the cutoff time as the *droplet lifetime*, although 236 the droplets will survive for a longer time before complete evaporation. The droplet lifetime increases with the initial 237 droplet radius, higher atmospheric pressure, and higher RH_{∞} (Fig. 2). 238

Figure 2: Droplet lifetimes, t_L in seconds, for droplets with varying initial droplet radii, $r_0 = 10, 20, 30, 40$ and 50 µm, evaporating in an initial ambient environment with three different ambient temperatures, $T_{\infty} = 273.15$ (0°C), 268.15 (-5°C) and 263.15 (-10°C) K, with relative humidity, $RH_{\infty} = 70\%$, with pressure, P = 850 hPa.

244 2.4 Sensitivity to domain size

245

243

It was important to ensure that the spatiotemporally varying thermal and vapor density gradients in the ambient air in the vicinity of the evaporating droplet don't interfere with the constant ambient conditions (RH_{∞} and T_{∞}) at the external boundary of the computational domain. Sensitivity tests with different air domain sizes of 10, 30, and 50 times the initial droplet radius were carried out to determine the droplet temperature and radial dependence on domain size. It was found that the evolution of droplet temperature and radius was not sensitive to domain sizes larger than 10 times the droplet radius considered. Based on the sensitivity analysis, the maximum size of the computational domain for all experiments was fixed at 1500 µm, 30 times the largest droplet considered.

254 **3 Theory**

255

253

256 3.1 Assumptions

257

The framework of the numerical model assumes that an isolated, stationary, spherical, pure water droplet is suspended within a 2D axisymmetric ambient air domain with constant ambient temperature ($\leq 0^{\circ}$ C) and relative humidity (<100%) at a sufficiently far distance away from the droplet that the droplet evaporation does not influence the far environment. The water droplet and air are considered to be Newtonian fluids, with the assumption that no internal circulation occurs within the droplet and that there is no ventilation, no radiative heat transfer, and negligible buoyancy effects due to gravity. This computational approach is an advanced form of the one described in Roy et al., (2023),

264 but also includes the effect of internal droplet heat transfer and spatiotemporal gradients in temperature and vapor 265 density between the droplet and the environment (see discussion in Sec. 5).

266

267 **3.2 Governing Equations**

268

269 Based on the above assumptions, the following are the equations governing the system during droplet evaporation in 270 the ambient air.

271

272 (1) Fluid flow: The Laminar Flow interface models the weakly compressible form of the Navier-Stokes equation, 273 along with the continuity equation in the water and air domains,

274

275

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} + \rho(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = \nabla \cdot [-p\boldsymbol{I} + \boldsymbol{\tau}] + \boldsymbol{F}$$
(1)

$$\tau = \mu(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T) - \frac{2}{3}\mu(\nabla \cdot \boldsymbol{u})\boldsymbol{I}$$
(2)

277
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$
(3)

278 279

280 where t is time, ρ is the fluid density (kg/m³), u is the fluid velocity vector (m/s), p is pressure (Pa), I is the identity 281 tensor, τ is the viscous stress tensor (Pa), F is the external volume force vector (N/m³), which is assumed to be 282 negligible here, and μ is the fluid dynamic viscosity. For water below 273.15 K, the dynamic viscosity can be 283 approximated as 1.79 mPa s. For air, COMSOL uses an empirical equation that produces values equivalent to Sutherland's law (White, 2006), $\mu = \mu_0 \left(\frac{T}{T_0}\right)^{\frac{3}{2}} \left(\frac{T_0 + S_\mu}{T + S_\mu}\right)$ where $\mu_0 = 1.716 \times 10^{-5}$ N s m⁻², $T_0 = 273$ K, and $S_\mu = 111$ K 284 285 for air. The empirical equation is given as: 286 $\mu = -8.38278 \times 10^{-7} + 8.35717342 \times 10^{-8}T - 7.69429583 \times 10^{-11}T^2 + 4.6437266 \times 10^{-14}T^3 - 10^{-14}T^4 - 10^{-14}T^$ 287 $1.06585607 \times 10^{-17}T^4$ (4) 288

289 (2) Heat Transport: The Heat Transfer in Fluids interface models heat transfer in all domains (air, water, infinite 290 element domain) using the following version of the heat equation:

291 292

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p \boldsymbol{u} \cdot \nabla T + \nabla \cdot \boldsymbol{q} = 0$$
⁽⁵⁾

293 294 $\boldsymbol{a} = -k\nabla T$ (6)

295 where ρ (kg/m³) is the fluid density, $C_{\rho}(J/(\text{kg}\cdot\text{K}))$ is the fluid heat capacity at constant pressure, T is the temperature, 296 k (W/(m·K)) is the fluid thermal conductivity, u (m/s) is the fluid velocity field from the Laminar Flow interface, q297 (W/m^2) is the heat flux by conduction. We chose the value of k for supercooled water at 0.56 W m⁻¹ K⁻¹ based on Fig. 298 3 of Biddle et al., (2013) where the thermal conductivity of supercooled water is very close to 0.56 W/(m K) for the range of temperatures used in this study. Based on Beard and Pruppacher (1971), the thermal conductivity of air, given by $k_a = 0.004184[5.69 + 0.017(T - 273.15)]$ (W m⁻¹ K⁻¹), has very weak dependence on temperature over the temperature range used in this study. For both T = 273.15 K and 253.15 K, the value of k_a is 0.02 W m⁻¹ K⁻¹. Hence, we have used a constant value of 0.02 W m⁻¹ K⁻¹.

303

304 (3) <u>Mass transport</u>: The *Transport of Diluted Species* interface models water vapor transport through Fick's laws of
 305 diffusion, solving the mass conservation equation for vapor transfer in all domains except within the cloud droplet:

306 307

$$\frac{\partial c}{\partial t} + \nabla \cdot \boldsymbol{J} = 0 \tag{7}$$

$$\boldsymbol{J} = -D\nabla c \tag{8}$$

309

where *c* is the concentration of water vapor (mol/m³), *D* denotes the diffusion coefficient (m²/s), and *J* is the mass flux diffusive flux vector (mol/(m²·s)). *D* is calculated following Hall and Pruppacher (1976) and defined as follows: $D = 0.0000211 \frac{P_0}{P} \left[\frac{T}{T_0}\right]^{1.94}$ (m² s⁻¹) with reference pressure, $P_0 = 1013.25$ hPa, reference temperature, $T_0 = 273.15 K$, atmospheric temperature, *T*, and pressure, *P*. In this study, values of *P* are either fixed at 500 or 850 hPa to determine the effect of ambient air pressure on droplet evaporation. *J* is obtained from the Laminar Flow interface through coupling between these interfaces.

317 **3.3 Initial conditions**

The initial velocity components in the r, and z directions are assumed to be 0 m/s in both air and water domains. The initial fluid pressure is $p = P_{0,air}$ (Pa), specified either at 500 or 850 hPa in the air domain, and in the water domain, p $P_{0,water} = \frac{2\sigma}{r_0}$ Pa, where surface tension, $\sigma = 70 \times 10^{-3}$ (N/m). For the heat transfer module, all domains are assumed to be at a prescribed initial ambient temperature, T_0 , which is the same as that of a point at a far distance away from the droplet, T_{∞} .

For the vapor transfer interface, except within the droplet, all domains are at an initial vapor concentration of $c_{0,air}$ which is again assumed to be the same as that of the constant ambient concentration value far from the droplet, c_{∞} , calculated as follows:

326 $c_{\infty} = \frac{RH_{\infty} \times e_{sT_{\infty}}}{R_{univ} \times T_{\infty}}$ where, RH_{∞} is set at a constant ambient relative humidity far from the droplet, $R_{univ} = 8.3145$

327 (J/mol/K), T_{∞} is in K. The saturation vapor pressure is calculated as, $e_{s_{T_{\infty}}} = 610.94 * \exp\left(\frac{17.625*T_{\infty}}{T_{\infty}+243.04}\right)$ (in Pa, with 328 T_{∞} in °C) following Alduchov and Eskridge (1996).

- 329
- 330

331 3.4 Model Constraints and Boundary Conditions

333 1. Within the droplet and throughout the domain, the following conditions are applicable:

 $u \cdot n = 0$

$$[-\mathbf{p}\mathbf{I} + \tau] \cdot \mathbf{n} = 0 \tag{10}$$

$$q \cdot \boldsymbol{n} = -k\nabla T \cdot \boldsymbol{n} = 0 \tag{11}$$

 $-D\nabla c \cdot \boldsymbol{n} = 0$

338 where n is the normal to an outward-pointing vector from the center of the droplet. This constraint limits water 339 mass, water vapor and heat flow to the direction normal to the droplet surface.

340

332

2. At the fluid-fluid interface i.e., droplet-air boundary, the droplet surface is assumed to be at vapor saturation throughout its lifetime. Hence, saturated vapor concentration at the shrinking droplet boundary, using the ideal gas law, is given by, $c_{sat}(T_{sf}) = \frac{e_s(T_{sf})}{R_{univ} \times T_{sf}}$ where T_{sf} is the surface temperature, in K. The saturation vapor pressure $e_s(T_{sf})$ is estimated as $e_s(T_{sf}) = 610.94 * \exp\left(\frac{17.625 * T_{sf}}{T_{sf} + 243.04}\right)$ (in Pa, with T_{sf} in °C) again following Alduchov and Eskridge

- 345 (1996).
- 346

347 The local evaporative mass flux at the interface is given by diffusion of water vapor across the water-air interface, M_J 348 (kg/m² s)

- 349
- 350

 $\boldsymbol{M}_{I} = \boldsymbol{M}_{w} \boldsymbol{n} \cdot (-\boldsymbol{D} \boldsymbol{\nabla} \boldsymbol{c}) \tag{13}$

(9)

(12)

- where the molecular weight of water, $M_w = 0.018$ (kg/mol). Although the temperature is continuous across the dropletair boundary, there is a discontinuity in heat flux across the interface due to the evaporation of water. Thus, the latent heat of evaporation *L*, defined as $L = [2501 - 2.44T_r]$ kJ kg⁻¹ with droplet surface temperature, T_r in °C, is incorporated as a boundary heat sink as $-M_I L$ (W/m²).
- 355

The mass balance at the water-vapor boundary at the droplet surface, and the velocity of the moving mesh u_{mesh} , at the shrinking water-air interface, are expressed by the following equations, based on Scardovelli and Zaleski, (1999): 358

359

$$\boldsymbol{u}_{\boldsymbol{w}} = \boldsymbol{u}_{\boldsymbol{v}} + M_{J} (\frac{1}{\rho_{\boldsymbol{w}}} - \frac{1}{\rho_{\boldsymbol{v}}}) \boldsymbol{n}$$
(14)

360

$$\boldsymbol{u_{mesh}} = (\boldsymbol{u_w} \cdot \boldsymbol{n} - \frac{M_J}{\rho_w})\boldsymbol{n}$$
(15)

361362

363 where the subscripts *w* and *v* represent water and vapor respectively.

364

365 The stresses are balanced at the water-vapor interface by the following conditions, based on Yang et al., (2014):

366			
367		$\boldsymbol{n} \cdot (\mathbf{S}_{\boldsymbol{w}} - \mathbf{S}_{\boldsymbol{v}}) = \sigma (\nabla_{\boldsymbol{\sigma}} \cdot \boldsymbol{n}) \boldsymbol{n} - \nabla_{\boldsymbol{\sigma}} \boldsymbol{\sigma}$	(16)
368		$\mathbf{S} = [-\mathbf{p}\mathbf{I} + \tau]$	(17)
369			
370	where S is the total stress tensor and ∇_{σ} is	the surface gradient operator defined by	
371			
372		$\nabla_{\sigma} = (I - n \cdot n^T) \nabla$	(18)
373			
374	In the normal direction of the boundary, t	he force is balanced by,	
375			
376		$\boldsymbol{n} \cdot (\mathbf{S}_{w} - \mathbf{S}_{v}) = \frac{\sigma}{r} \cdot \boldsymbol{n}$	(19)
377		, c	
378	where r_c is the curvature radius.		
379	t		
380	3. The external air domain boundary is or	pen with the following condition:	
381		$[-\mathbf{p}\mathbf{I} + \tau]\mathbf{n} = -f_0\mathbf{n},$	(20)
382	where normal stress, $f_0 = 0$ N/m ² .		
383			
384	4. The infinite element domain consists of	f air and is considered to be an ideal gas. The temp	erature, relative humidity,
385	and concentration far from the droplet i.e	e., at the inner boundary of the infinite element do	main, are fixed at T_{∞} and
386	c_{∞} , respectively.		
387			
388	3.5 Coupling between the COMSOL in	terfaces	
389			
390	To numerically model the evaporating dr	roplet embedded in the air domain, intercoupling l	between the three physics
391	interfaces - laminar two-phase flow (for	rmulated within the Arbitrary Lagrangian-Euler	an framework), the heat
392	transfer in fluids, and the transport of di	luted species within the air medium are establish	ed through the following
393	mechanisms: (i) the local evaporative ma	ss flux at the droplet-air interface, which is related	d to the mesh velocity for
394	the laminar flow, is estimated by the diff	usion of water vapor in the air domain; (ii) saturat	ed vapor concentration at
395	the droplet-air interface, which serves as	a boundary condition for the vapor diffusion, is	calculated using the local
396	temperature at the droplet interface; and	(iii) the evaporative heat flux at the droplet-air in	terface acts as a heat sink
397	boundary condition for the heat transfer i	n fluids module.	
398			
399	4 Results		
400			
401	Since evaporation is a surface phenomen	on, with the evaporative cooling at the droplet sur	face acting as a heat sink,
402	the temperature of the evaporating drople	et surface should be lower than the center of the d	roplet. In all simulations,

- 403 the center to surface temperature gradient within the droplet forms almost instantaneously as evaporative cooling at 404 the droplet surface occurs extremely fast. The time required for the droplet to reach internal thermal equilibrium 405 depended slightly on the initial size of the droplet and the ambient RH_{∞} , with larger droplets and drier environments 406 leading to more time required by the droplets to reach equilibrium. However, generally, for typical cloud droplet sizes 407 and environmental conditions considered here ($r_0 = 10, 30, 50 \mu m$), the internal thermal gradients dissipate and the 408 temperatures throughout the droplets become uniform in ≤ 0.3 s, consistent with Fick's laws of diffusion with a 409 diffusive timescale of r^2/D , where r is the length scale and D is the thermal diffusivity of water. For this study, we 410 have simulated internal droplet heat transfer for the entirety of the droplet lifetime and will be reporting the average 411 droplet temperatures as "droplet temperatures" in the results, unless noted otherwise.
- 412 413

414 4.1 Droplet Thermal and Radial Evolution: Influence of Initial Droplet Size and Environmental Factors415

416 Figures 3 and 4 depict the early evolution of the droplet average temperatures and radii ($r_0 = 10, 30$ and 50 µm) for 417 the first few seconds of their lifetimes (as defined in Sec. 2c), for different environments with constant ambient 418 conditions (T_{∞} , RH_{∞} , and P) far from the droplet. Tables 1 and 2 provide the final temperature values and total lifetimes 419 of the droplets. Figures 3 and 4 also state the droplet temperatures at the end of their lifetimes (T_L) and the total 420 lifetimes of the droplets (t_L) . For all numerical experiments, the evaporating droplet temperature decreases sharply, 421 within < 0.5 s, to a certain temperature defined here as the transition point, T_i , where the slope of the curve changes. 422 After reaching T_i , the decrease in droplet temperature is relatively more gradual as can be seen from Figs. 3 and 4. For 423 example, in Fig. 3(c), for P = 500 hPa, $T_{\infty} = 268.15$ K (-5°C), $RH_{\infty} = 10\%$, a droplet with $r_{\theta} = 10 \mu m$, takes about 0.03 424 s to reach T_{i} at 260.98 K (a decrease of 7.17 K from initial temperature). In contrast, a 30 µm droplet takes about 0.12 425 s to reach T_i at 260.85 K (a decrease of 7.3 K from initial temperature), and a 50 µm droplet takes about 0.33 s to 426 reach T_i . Finally, the 10 µm droplet reaches the end of its lifetime in 1.05 s i.e. $t_L = 1.05$ s with temperature, $T_L =$ 427 244.12 K after reaching T_i , while for the 30 μ m droplet, $t_L = 11.4$ s with $T_L = 244.31$ K, and $t_L = 32.76$ s for the 50 μ m 428 droplet with $T_L = 244.29$ K after reaching T_i .

429

430 The evaporation process in these experiments starts in a condition that is far from equilibrium. The coupled air-droplet 431 system attempts to evolve towards a steady-state where the thermal energy towards the droplet compensates for 432 evaporative cooling at the droplet surface. In this process, the droplet initially rapidly cools to the thermodynamic 433 wet-bulb temperature of the initial environment similar to what has been shown in Roy et al., (2023). However, under 434 low relative humidity conditions, the thermal and vapor diffusion are not yet near equilibrium. As the system attempts 435 to achieve a steady-state, the imbalance in the heat fluxes associated with vapor and thermal diffusion in the immediate 436 vicinity of the drop leads to a gradual reduction in the wet-bulb temperature of the immediate droplet environment 437 leading to a continued slow decrease in the droplet temperature as the droplet continues to evaporate. 438

439 In general, we can see that a higher ambient T_{∞} , and lower RH_{∞} and P leads to a larger reduction in droplet temperature 440 from its initial temperature. Therefore, drier, relatively warmer (closer to 0°C), and lower-pressure environments lead 441 to the strongest evaporative cooling of the droplets. Also, due to evaporative cooling, the droplets survive longer as

442 compared to the pure diffusion-limited evaporation approach where the decreases in evaporating droplet temperature

443 have not been considered (see Sec. 5). However, drier, relatively warmer (close to 0°C), and lower-pressure

444 environments lead to smaller droplet lifetimes as compared to more humid environments, with lower ambient

temperatures and higher pressures.

446

447 4.2 Environmental Evolution: Evolution of Temperature, Relative Humidity, and Wet-Bulb Temperature in 448 the air domain near the droplet

449

450 Figures. 5-7 (a, d) show radial cross sections of the computational domain, starting from the center of the droplet at 451 (r, z) = (0, 0), along the r axis to the edge of the domain at $r = 1500 \mu m$, while Figs. 5-7 (b, e) expand the dashed box 452 regions of Figs. 5-7 (a, d), and Figs. 5-7 (c, f) further expand the dashed box regions of Figs. 5-7 (b, e). All panels 453 show the spatiotemporal evolution of temperature (Fig. 5), relative humidity (Fig. 6), thermodynamic wet-bulb 454 temperature (Fig. 7), and droplet radius for a droplet with initial radius, $r_0 = 50 \,\mu\text{m}$, introduced to an initial environment 455 with pressure, P = 500 hPa, ambient temperature, $T_{\infty} = 268.15$ K (-5°C), with two different relative humidities, RH_{∞} 456 = 10% and 70%. The evolution of temperature within the droplet is left of the dashed black line, which denotes the 457 droplet radius.

458

459 As the droplet evaporates in the subsaturated domain, evaporative cooling occurs at the droplet surface, leading to 460 heat transfer both from within the warmer droplet and the surrounding air to balance the cooling at the droplet surface. 461 Since the droplet has no constant internal heat source, the internal thermal gradients dissipate quite fast (within 0.3 s) 462 and the average droplet temperatures continue to decrease as the droplet evaporates. Due to heat exchange between 463 the droplet surface and the ambient air in its vicinity, transient thermal gradients in the ambient air develop and lead 464 to a decrease in the air temperature near the droplet. As the droplet shrinks in size along with cooling further, the 465 colder envelope of air surrounding the droplet shrinks as well and the ambient air far from the droplet, at a constant 466 temperature, acts as a heat source and supplies heat to the rest of the domain to attempt to equilibrate the air 467 temperature. Comparing Fig. 5 (a) and (d), at the lower RH_{∞} , the magnitude of evaporative cooling is much higher. 468 For example, the average temperature of the 50 μ m droplet decreases by ~ 10 K in 9 s when $RH_{\infty} = 10\%$, while the 469 decrease is ~ 5 K in 120 s, when $RH_{\infty} = 70\%$.

Figure 3: Droplet temperature evolution (left column) and radius evolution (right column) for three different RH_{∞} (RH_{∞} = 473 10% (brown curves), 40% (orange curves) and 70% (green curves)), three different r_{θ} (r_{θ} = 10 µm (dot-dashed lines), 30 µm (solid lines) and 50 µm (dashed lines)), with three different T_{∞} = 273.15 K (0°C) (a, b), 268.15 K (-5°C) (c, d) and 263.15 K (-10°C) (e, f), for P = 500 hPa. For each RH_{∞} , the average droplet temperature at the end of the lifetimes of the three droplets with different r_{θ} (T_L , in K) is given in (a,c,e) and the time taken to reach the end of its lifetime (t_L , in s) is given in (b, d, f). Exact values of final temperature for each r_{θ} are given in Table 1.

478

479 Figure 4: Same as Fig. 3 but for *P* = 850 hPa.

In these simulations, the air in contact with the droplet surface is saturated with respect to water, i.e., RH = 100% (Fig. 6, a-f), consistent with assumptions of isolated, stationary evaporating droplets (Kinzer and Gunn, 1951; Srivastava and Coen, 1992). As the water vapor from the evaporating droplet surface diffuses into the surrounding environment, with an initial RH (same as RH_{∞}) of say 10%, vapor density gradients, similar to the thermal gradients, appear and impact the immediate environment of the droplet. These spatiotemporally varying thermal and vapor density gradients play an important role in affecting the droplet temperatures, evaporation rates, and in turn, droplet lifetimes.

487

488 Figure 5: Evolution of temperature (in K, shaded contours), and droplet radius (in μm, dashed black trace) for a 50 μm

489 droplet, immersed in an environment with $T_{\infty} = 268.15$ K (-5°C), P = 500 hPa, and $RH_{\infty} = 10\%$ (top row) and 70% (bottom 490 rows). Bottom left corner of each plot refers to the center of the droplet at (r, z) = (0, 0). Distance along the domain refers 491 to the radial distance from the center of the droplet. Figures denoted as (b) and (c), and (c) and (f) present zoomed-in plot 492 areas marked by the dashed beyon in (a) and (b) and (c) areas (b) and (c) and (c) and (f) present zoomed-in plot

492 areas marked by the dashed boxes in (a) and (d), and (b) and (e), respectively.

Figure 6: Same as Figure 5, but for Relative Humidity (in %, shaded contours), instead of Temperature.

497 Roy et al. (2023) has shown that an evaporating cloud droplet temperature can be well-approximated by the 498 thermodynamic wet-bulb temperature of the environment, especially at higher relative humidities and pressures, and 499 lower ambient temperatures. Following the iterative procedure used in Roy et al. (2023) to calculate the 500 thermodynamic wet-bulb temperature (T_{WB}) , Fig. 7 (a-f) depicts the evolution of T_{WB} of the surrounding environment. 501 Unlike previous studies (Srivastava and Coen, 1992; Roy et al., 2023), the ambient environment in this study is not 502 assumed to be spatiotemporally invariant. Hence, as the thermal and vapor density gradients evolve in the ambient air, 503 the T_{WB} of the environment evolves as well, depending on the temperature, relative humidity, and pressure, with the 504 droplet surface temperature the same as that of the T_{WB} of its immediate environment at all times. Of interest, the 505 droplet temperature decreases very quickly to T_i within ≤ 0.5 s (Figs. 3 and 4), which agrees very well with the initial 506 T_{WB} of the surrounding environment and the constant value of the thermodynamic wet bulb temperature far from the 507 droplet ($T_{WB\infty}$). For example, in Fig. 7 (a-c), $T_{\infty} = 268.15$ K, P = 500 hPa, $RH_{\infty} = 10\%$, $T_{WB\infty} = 261.64$ K, and in Fig. 7 508 (d-f), for $RH_{\infty} = 70\%$, $T_{WB\infty} = 266.13$ K. Fig. 7 shows the two phases of the evolution of T_{WB} of the immediate 509 environment for two RH_{∞} environments – initially, there is a very fast decrease of the air temperature at the droplet 510 surface to $T_{WB\infty}$ typically within < 0.3 s, and then a more gradual decrease of T_{WB} at the droplet surface as the thermal 511 and vapor density gradients in the ambient air become relatively steadier and more established for a period of time, 512 and as their spheres of influence start shrinking as the droplet starts getting smaller in size.

514 Figure 7: Same as Figure 5, but for thermodynamic wet-bulb temperature (in K, shaded contours).

515

4.3 Influence of initial droplet size and ambient environmental factors on the thermal evolution of the dropletand its surrounding environment

518

519 The overall results spanning the parameter space of the simulations are summarized in Tables 1-2 for the 54 numerical 520 experiments using various combinations of ambient conditions (RH_{∞} , T_{∞} , and pressure, P, and r_{θ}) specified at a 521 distance far away from the droplet.

522

523 4.3.1 Effect of Ambient Relative Humidity, RH_{∞}

524

525 The decrease in droplet temperature is larger when the RH_{∞} is lower due to higher evaporation rates and stronger 526 evaporative cooling under drier conditions. For instance, as shown in Table 1 and Fig. 8 (a, b, c), 30 µm droplets reach 527 ~ 247.3 K (a decrease of 25.8 K from the initial temperature of 273.15 K) for $RH_{\infty} = 10\%$, ~ 261.1 K (a decrease of 528 12.1 K) for $RH_{\infty} = 40\%$ and ~ 268.2 K (a decrease of ~ 5 K) for $RH_{\infty} = 70\%$. The droplet lifetimes vary depending on 529 RH_{∞} , with lifetimes increasing with an increase in humidity. For example, the droplet lifetimes for the 30 μ m droplet 530 are ~ 9.5 s, 16.7 s, and 37.3 s for environments with $RH_{\infty} = 10\%$, 40% and 70%, respectively (Table 2). The decrease 531 in droplet temperature and increase in droplet lifetime show similar dependence with increasing RH_{∞} for 10 and 50 532 µm droplets as well.

- 533 4.3.2 Effect of Initial Droplet Size, *r*₀
- 534

535 From Figs. 8-10, for a given initial environmental condition (RH_{∞} and T_{∞}), the droplet temperatures at the end of their

536 lifetimes are independent of the initial droplet sizes. For example, from Table 1 and Fig. 9 (a-i) at P = 500 hPa, 10,

537 30 and 50 μ m droplets reach ~ 244 K (a decrease of ~ 24 K from the initial temperature of 268.15 K) for $RH_{\infty} = 10\%$, 538 ~ 256.8 K for $RH_{\infty} = 40\%$, and ~ 263.5 K for $RH_{\infty} = 70\%$. On the other hand, the droplet lifetime strongly depends on 539 the initial droplet size, as the larger droplets take more time to evaporate as compared to the smaller ones. For 540 environments with $RH_{\infty} = 10\%$, 40% and 70%, the droplet lifetimes for the 10 μ m droplet are ~ 1.1 s, 1.8 s, and 3.9 s, 541 while for the 30 μ m droplet are ~ 11.4 s, 19.4 s, and 42.8 s, and for the 50 μ m droplet are ~ 32.8 s, 55.8 s, and 123.1

- 542 s, respectively (Table 2). For a higher pressure of P = 850 hPa (Table 1), at the same T_{∞} , irrespective of r_{θ} , the decrease 543 in droplet temperatures is slightly smaller as compared to P = 500 hPa, with values of 22 K, 11 K, and 4.6 K. The 544 radial dependence of the thermal gradients in the ambient air also depends on the initial droplet size, decreasing with
- 545 a decrease in r_0 .
- 546

547 4.3.3 Effect of Ambient Temperature, T_{∞}

548

549 To determine the effect of a lower ambient temperature on droplet temperatures and lifetimes, Figs. 9 and 10 550 demonstrate similar plots as shown in Fig. 8, but for $T_{\infty} = 268.15$ K (-5°C) and 263.15 K (-10°C), respectively. The 551 decrease in droplet temperatures and increase in droplet lifetimes depict similar relationships with RH_{∞} and r_{θ} . 552 Droplets, irrespective of their initial size, cool to a lower temperature depending on the ambient RH_{∞} , with the 553 magnitude of the cooling being inversely proportional to the subsaturation of the ambient environment. For instance, 554 for 10, 30 and 50 µm droplets, from an initial temperature of 268.15 K, the droplet temperatures approximately 555 decrease by 24 K, 11.4 K, and 4.7 K, for environments with $RH_{\infty} = 10\%$, 40%, and 70%, respectively (Table 1). The 556 droplet lifetimes for the 10 μ m droplet are ~ 1.1 s, 1.8 s, and 3.9 s, while for the 30 μ m droplet are ~ 11.4 s, 19.4 s, 557 and 42.8 s, and for the 50 μ m droplet are ~ 32.8 s, 55.8 s, and 123.1 s, for $RH_{\infty} = 10\%$, 40% and 70%, respectively 558 (Table 2). Comparing these values with those of $T_{\infty} = 273.15$ K (0°C), it can be noted that a lower ambient temperature 559 leads to a smaller decrease in droplet temperatures and a slight increase in droplet lifetimes in a spatiotemporally 560 evolving environment, for the same RH_{∞} , r_{θ} and P. Fig. 10 and Table 1 depict that for $T_{\infty} = 263.15$ K (-10°C), the 561 reduction in droplet temperatures is slightly smaller, ~ 21.8 K, 10.7 K, and 4.5 K for environments with $RH_{\infty} = 10\%$, 562 40%, and 70%, respectively, and droplet lifetimes are longer relative to the higher ambient temperatures of 273.15 K 563 and 268.15 K (Table 2). This is because at a lower ambient temperature, the vapor diffusivity into the ambient air is 564 lower, leading to a weaker evaporation rate with slightly reduced cooling, and extended droplet lifetime, relative to 565 those in an environment with a higher ambient temperature.

Figure 8: Evolution of the decrease in temperature (in K, shaded contours) from the initial temperature of the domain = 273.15 K (0°C), and of the droplet radius (in µm, dashed black trace) for 10 (a,b,c), 30 (d,e,f), and 50 (g,h,i) µm droplets, immersed in an environment with $T_{\infty} = 273.15$ K (0°C), P = 500 hPa, and $RH_{\infty} = 10\%$, 40% and 70%.

_					P = 500 hI	Pa			Р	= 850 hPa	ı	
T_{∞} (K)	r ₀ (μm)	(%)	$T_{WB\infty}$ (K)	T _{RRD} (K)	T_i (K)	T _L (K)	$\begin{array}{c} T_{\infty} - T_L \\ (K) \end{array}$	$T_{WB\infty}$ (K)	T_{RRD} (K)	Т _і (К)	<i>T_L</i> (K)	$\begin{array}{c} T_{\infty} - T_L \\ (\mathrm{K}) \end{array}$
		10	264.94	264.06	264.15	247.15	26	267.20	266.49	266.35	249.03	24.12
	10	40	267.95	267.41	267.35	261.09	12.06	269.30	268.85	268.95	261.40	11.75
		70	270.67	270.43	270.35	268.21	4.94	271.28	271.07	271.10	268.29	4.86
		10	264.94	264.06	264.15	247.33	25.82	267.20	266.49	266.37	249.01	24.14
273.15 (0°C)	30	40	267.95	267.41	267.35	261.08	12.07	269.30	268.85	268.95	261.43	11.72
-		70	270.67	270.43	270.45	268.20	4.95	271.28	271.07	271.15	268.26	4.89
	50	10	264.94	264.06	264.15	247.31	25.84	267.20	266.49	266.37	249.04	24.11
		40	267.95	267.41	267.36	261.09	12.06	269.30	268.85	268.95	261.45	11.7
		70	270.67	270.43	270.45	268.20	4.95	271.28	271.07	271.15	268.29	4.86
		10	261.64	260.90	260.98	244.12	24.03	263.57	263.01	263.15	246.32	21.83
	10	40	263.96	263.50	263.48	256.77	11.38	265.16	264.79	264.82	257.17	10.98
		70	266.13	265.91	265.9	263.47	4.68	266.68	266.51	266.65	263.57	4.58
						1		1	1			
		10	261.64	260.90	260.85	244.31	23.84	263.57	263.01	263.06	246.18	21.97
268.15	30	40	263.96	263.50	263.46	256.76	11.39	265.16	264.79	264.69	257.18	10.97
(-5 C)		70	266.13	265.91	265.92	263.47	4.68	266.68	266.51	266.56	263.58	4.57
						1			1	1		
		10	261.64	260.90	260.85	244.29	23.86	263.57	263.01	263.06	246.21	21.94
	50	40	263.96	263.50	263.47	256.76	11.39	265.16	264.79	264.72	257.16	10.99
		70	266.13	265.91	265.92	263.46	4.69	266.68	266.51	266.56	263.56	4.59
						1			1	1		
		10	258.14	257.55	257.53	241.38	21.77	259.73	259.28	259.28	243.49	19.66
	10	40	259.89	259.51	259.65	252.46	10.69	260.90	260.60	260.65	252.97	10.18
		70	261.56	261.38	261.4	258.73	4.42	262.04	261.90	261.90	258.88	4.27
		1	T	T		r	1		r	1	T	T
		10	258.14	257.55	257.62	241.36	21.79	259.73	259.28	259.28	243.27	19.88
263.15	30	40	259.89	259.51	259.56	252.47	10.68	260.90	260.60	260.54	252.99	10.16
10°C)		70	261.56	261.38	261.39	258.73	4.42	262.04	261.90	261.91	258.88	4.27
		1	1	1		r		r	r		1	1
		10	258.14	257.55	257.62	241.37	21.78	259.73	259.28	259.28	243.48	19.67
	50	40	259.89	259.51	259.56	252.47	10.68	260.90	260.60	260.56	252.99	10.16
		70	261.56	261.38	261.39	258.73	4.42	262.04	261.90	261.91	258.87	4.28

Table 1. Comparison between thermodynamic wet bulb temperatures in the environment far away from the droplet $(T_{WB\infty})$, simulated droplet steady-state temperatures from Roy et al., (2023) (T_{RRD}) , slope transition point temperatures (T_i) , and droplet temperatures at the end of their lifetimes from this study (T_L) , in K, for initial droplet radii, $r_0 = 10$, 30 and 50 µm, relative humidities, $RH_{\infty} = 10$, 40, 70%, and pressures, P = 500 and 850 hPa, and ambient temperature, $T_{\infty} = 273.15$ K (0°C), 268.15 K (-5°C) and 263.15 K (-10°C).

6 Figure 9: Same as Fig. 8 but for $T_{\infty} = 268.15$ K (-5°C).

Figure 10: Same as Fig. 8 but for $T_{\infty} = 263.15$ K (-10°C).

590

591 **4.3.4 Effect of Ambient Pressure,** *P*

592

The spatiotemporal evolution of the temperature and droplet radius of an evaporating droplet were also investigated for a higher ambient pressure, P = 850 hPa. For a higher pressure, the corresponding decreases in droplet temperatures are smaller and droplet lifetimes are longer. Under the same environmental conditions but with an increase in ambient pressure, water vapor diffusivity decreases, leading to a decreased evaporation rate, reduced cooling, and extended 597

			P = 500 hPa				P = 850 hPa			
T_{∞} (K)	<i>r</i> ₀ (μm)	<i>RH∞</i> (%)	t _{LC} (s)	t _{RRD} (s)	<i>t</i> _{<i>L</i>} (s)	$\frac{t_L - t_{LC}}{t_{LC}} \times 100\%$	<i>t</i> _{LC} (s)	t _{RRD} (s)	<i>t</i> _{<i>L</i>} (s)	$\frac{t_L - t_{LC}}{t_{LC}} \times 100\%$
		10	0.26	0.56	0.87	234.62	0.44	0.77	1.11	152.27
	10	40	0.39	0.89	1.51	287.18	0.66	1.18	1.79	171.21
		70	0.78	1.86	3.36	430.77	1.33	2.43	3.87	190.98
		10	2.34	5.02	9.54	307.69	3.98	6.84	11.63	192.21
273.15 (0°C)	30	40	3.51	7.94	16.68	375.21	5.97	10.59	19.33	223.79
(0 C)		70	7.03	16.73	37.26	430.01	11.95	21.83	42.30	253.97
	50	10	6.51	13.95	27.43	321.35	11.06	19.06	33.35	201.54
		40	9.76	22.08	48.04	392.21	16.59	29.45	55.78	236.23
		70	19.52	46.46	107.45	450.46	33.18	60.64	121.70	266.79
		10	0.38	0.72	1.05	176.32	0.65	1.01	1.32	103.08
	10	40	0.58	1.12	1.77	205.17	0.98	1.54	2.15	119.39
		70	1.15	2.31	3.91	240	1.96	3.14	4.60	134.69
		10	3.45	6.42	11.40	230.43	5.87	9.03	14.27	143.10
268.15	30	40	5.18	10.01	19.35	273.55	8.81	13.83	23.32	164.70
(-5°C)		70	10.36	20.81	42.79	313.03	17.61	28.25	50.15	184.78
		10	9.59	17.88	32.76	241.61	16.31	25.15	40.99	151.32
	50	40	14.39	27.86	55.76	287.49	24.46	38.48	67.02	173.99
		70	28.78	57.80	123.10	327.73	48.92	78.48	144.07	194.50
		10	0.57	0.95	1.29	126.34	0.98	1.37	1.68	71.43
	10	40	0.86	1.45	2.13	147.67	1.47	2.08	2.68	82.31
		70	1.72	2.98	4.60	167.44	2.93	4.21	5.66	93.17
		10	5.17	8.47	13.95	169.83	8.80	12.28	17.99	104.43
263.15	30	40	7.76	13.05	23.08	197.42	13.19	18.67	28.83	118.57
(- 10°C)		70	15.52	26.79	50.12	222.94	26.39	37.85	61.04	131.29
		10	14.37	23.59	40.11	179.12	24.43	34.19	51.59	111.17
	50	40	21.56	36.30	66.42	208.07	36.65	51.93	82.53	125.18
		70	43.12	74.43	144.33	234.72	73.30	105.16	175.50	139.43

600Table 2: Comparison between different timescales (in sec) in this and other studies, all for the cut off radii used in this601study. These include droplet lifetimes using the Maxwellian diffusion-limited evaporation approach (t_{LC}) , the bulk droplet602approach in Roy et al., (2023) (t_{RRD}) , and as calculated from this study (t_L) , for initial droplet radii $(r_0 = 10, 30 \text{ and } 50 \ \mu\text{m})$,603relative humidities $(RH_{\infty} = 10, 40, 70\%)$, and pressures $(P = 500 \text{ and } 850 \ hPa)$, and ambient temperature, $T_{\infty} = 273.15 \ K$ 604 (0°C) , 268.15 K (-5°C) and 263.15 K (-10°C).

605

droplet lifetimes. For example, for an environment with $T_{\infty} = 273.15$ K (0°C), P = 850 hPa, 10, 30 and 50 µm droplets reach 249.0 K, 261.4 K, and 268.3 K for $RH_{\infty} = 10\%$, 40% and 70%, respectively, which are slightly higher as compared to the corresponding droplet temperatures (247.3 K, 261.1 K, and 268.2 K) for P = 500 hPa (Table 1). For higher ambient pressures, droplet lifetimes are also increased due to reduced evaporation rate, with 50 µm droplets now surviving for 33.4 s, 55.8 s, and 121.7 s at P = 850 hPa, instead of 27.4 s, 48.0 s, 107.5 s for P = 500 hPa for RH_{∞} = 10%, 40% and 70%, respectively (Table 2). Similar trends can also be observed for lower ambient temperatures, 268.15 K and 263.15 K, as shown in Table 2.

- 613
- 614 5 Discussion
- 615

616 5.1 Droplet Temperature Sensitivities and Relationship to Thermodynamic Wet-bulb Temperature

617

618 In these experiments, the droplet temperature initially rapidly decreases to the thermodynamic wet-bulb temperature 619 of the far environment. The novel finding from this study is that the droplet temperature continues to decrease beyond 620 the thermodynamic wet-bulb temperature of the far environment because of the non-equilibrium condition of the 621 thermal and vapor fields during the evaporation process (Fig. 11). The droplet temperature continues to conform to 622 the wet-bulb temperature directly adjacent to the droplet surface, which is lower than the wet-bulb temperature of the 623 far environment. Note that the dependence on T_{∞} and P is much smaller than that on RH_{∞} . The strong dependence on 624 RH_{∞} compared to temperature results from the initial conditions. The droplet temperature initially is in thermal 625 equilibrium with its environment (the droplet has the same temperature as that of the far environment), but the vapor 626 field is far from equilibrium, especially for low relative humidity environments. As a result, the vapor diffusion rate 627 (which depends on the vapor density gradient) far exceeds the thermal diffusion rate (which depends on the 628 temperature gradient). Because the cloud droplets are small, and the relative humidity gradients are large, the droplets 629 never come to an equilibrium state before evaporating completely into the subsaturated air. The water vapor flux into 630 the larger subsaturated environment maintains a vapor density near the droplet surface that approaches but never 631 reaches saturation. As a result, the wet-bulb temperature near the droplet surface continues to fall but at a slower rate 632 that depends on RH_{∞} (Fig. 11). The pressure affects both the moisture and temperature diffusion fluxes, so these scale 633 with each other, resulting in pressure not having a strong effect compared to that of the moisture gradient.

637 Figure 11: Evolution of droplet surface temperature (in K, solid lines with cross symbols), and near-surface thermodynamic 638 wet-bulb temperature (in K, dashed lines with square symbols) for (a) 10, (b) 30 and (c) 50 μm droplet, immersed in an 639 environment with $T_{\infty} = 268.15$ K (-5°C), P = 500 hPa, and three different RH_{∞} . The lines representing droplet surface 640 temperature and near-surface thermodynamic wet-bulb temperature essentially overlap.

641 5.2 Droplet Temperature and Lifetime Comparison with Previous Studies

642

643 As noted in the introduction, not many studies in the cloud microphysics literature have taken a close look at the 644 explicit numerical estimation of supercooled, evaporating cloud droplet temperatures for a wide range of 645 environmental conditions. Previously, a study by Srivastava and Coen (1992) investigated the evaporation of isolated, 646 stationary droplets by iteratively solving the steady-state solutions, using saturation vapor pressure relations from 647 Wexler (1976) to calculate saturation vapor density, and assumed the heat storage terms in the droplet heat budget to 648 be negligible. Roy et al., (2023), solving for time-dependent heat and mass transfer between single, stationary cloud 649 droplets evaporating in infinitely large, prescribed ambient environments, demonstrated that the temperatures of the 650 cloud droplets reach steady-state quick quickly (< 0.3 s). Their steady-state droplet temperatures agreed well with those 651 of Srivastava and Coen (1992) and could be approximated by the thermodynamic wet-bulb temperature of the ambient 652 environment. The current study advances the idealized framework of droplet evaporation as described in Roy et al., 653 (2023) by including the impact of internal heat gradients within the droplet and resolving the spatiotemporally 654 evolving thermal and vapor density gradients between the droplet and its immediate environment to estimate the 655 evaporating droplet temperature and lifetime with higher accuracy. P = 500 hPa P = 850 hPa Roy et al., 2023 Rov et al., 2023 25 25 This study This study T_∞ = 273.15 K $T_{\infty} = 273.15 \text{ K}$ $T_{\infty} = 268.15 \text{ K}$ T_∞ = 268.15 K 20 20 $T_{m} = 263.15 \text{ K}$ $T_{m} = 263.15 \text{ K}$

656

657 Figure 12: Comparison between the decrease in droplet temperatures (in K) from an initial temperature the same as T_{∞} , 658 calculated using the bulk droplet model from Roy et al., (2023) (dashed lines), and this study (dashed-dotted lines), for 659 initial droplet radii, $r_{\theta} = 10$, 30 or 50 μm, relative humidities ($RH_{\infty} = 10$, 40, 70 %), and pressures, P = 500 hPa (left column), 660 and 850 hPa right column), and $T_{\infty} = 273.15$ K (0°C, red), 268.15 K (-5°C, green) and 263.15 K (-10°C, blue).

Table 1 provides a comparison between thermodynamic wet bulb temperatures of the initial environment $(T_{WB\infty})$, simulated droplet steady-state temperatures from Roy et al. (2023) (T_{RRD}) , and droplet temperatures at the end of their lifetimes from this study (T_L) , in K for several environments. Interestingly, the temperatures at the slope transition point, T_i , as defined in Sec. 3e, are in excellent agreement with $T_{WB\infty}$ and T_{RRD} . In the current study, the droplet temperature continues to decrease almost steadily as the immediate environment in the vicinity of the droplet cools, finally reaching T_L , unlike the evaporating droplet achieving a steady-state temperature in a prescribed ambient environment far away from the droplet in Roy et al., (2023). The evaporating droplet temperature essentially keeps

- 668 adjusting to the thermodynamic wet-bulb temperature of its immediate changing environment. Therefore, the more
- 669 realistic simulations of evaporating cloud droplets that include the effect of spatiotemporally varying ambient air
- 670 thermal and vapor density gradients, as shown in this study, reveal that droplets can potentially achieve even lower
- 671 temperatures than previously known or estimated from past studies (Srivastava and Coen, 1992; Roy et al., 2023). The
- 672 decrease in droplet temperatures from their initial temperatures can be much larger, especially for drier environments,
- 673 as much as 25.8 K for $RH_{\infty} = 10\%$ and 5.0 K for $RH_{\infty} = 70\%$, for an environment with P = 500 hPa, and $T_{\infty} = 273.15$
- 674 K (Table 1 and Fig. 12a). As shown in Fig. 12, the magnitude of reduction in droplet temperatures decreases with
- higher ambient RH_{∞} and P, and lower T_{∞} , similar to previous studies (Srivastava and Coen, 1992; Roy et al., 2023).

676

677Figure 13: Comparison between droplet lifetimes (as defined in this study) calculated using the Maxwellian diffusion-limited678evaporation approach (solid lines), bulk droplet model from Roy et al., (2023) (dashed lines), and this study (dashed-dotted679lines), for initial droplet radii, $r_0 = 30 \ \mu m$ (upper panel), and 50 μm (lower panel), relative humidities ($RH_{\infty} = 10, 40, 70\%$),680and pressures, P = 500 hPa (left column), and 850 hPa right column), and ambient temperature, $T_{\infty} = 273.15$ K (0°C, red),681268.15 K (-5°C, green) and 263.15 K (-10°C, blue). 10 µm droplets (not shown here) have much smaller lifetimes compared682to 30 and 50 µm droplets.

Table 2 and Fig. 13 provide comparisons between 10, 30 and 50 μ m droplet lifetimes (as defined earlier in Sec. 3a) using the Maxwellian pure-diffusion-limited evaporation approach (t_{LC}), which ignores evaporative cooling at the droplet surface (Maxwell, 1890; Eq 13-10 of Pruppacher and Klett, 1997), the "bulk" droplet approach as described in Roy et al., (2023) (t_{RRD}), which ignores internal droplet heat transfer and spatiotemporally varying thermal and

- 687 moisture gradients in the ambient air, and results from this study (t_L) . The magnitude of t_L is greater than the
- 688 corresponding values of t_{LC} and t_{RRD} . This is because the droplet temperatures in this study never reach steady-state,
- and are much lower than the corresponding droplet temperatures from the diffusion-limited approach ($\sim T_{\infty}$), and Roy
- 690 et al., (2023) ($\sim T_{RRD}$). The greater decrease in evaporating droplet temperature leads to a greater reduction in saturation
- 691 vapor pressure at the droplet surface. This results in a slower droplet evaporation rate, therefore increasing the droplet
- 692 lifetime. As shown in Fig. 13, the increase in droplet lifetime depends on the environmental subsaturation, ambient
- 693 temperatures, and pressures, with a greater increase for more humid, higher pressure, and lower ambient temperature
- 694 environments. The increase in droplet lifetimes can potentially enhance ice nucleation by increasing the chances of
- 695 activation of ice nucleating particles (INPs) within the supercooled cloud droplets (see Sect. 5.3).
- 696

697 5.3 Implications for ice nucleation

698

699 Ice nucleation rates are influenced by temperature (Wright and Petters, 2013; Kanji et al., 2017) and time (Vali, 1994). 700 There are two theories in ice nucleation modeling: the time-independent "singular hypothesis," which suggests 701 instantaneous ice formation, and the time-dependent "stochastic hypothesis," which proposes that ice clusters in 702 embryos form and vanish continually, with a frequency that depends on temperature. Supercooled cloud droplet 703 temperatures and their lifetimes are potential contributing factors for the enhancement of ice formation within 704 evaporating regions of clouds such as cloud-tops and edges. As discussed in Roy et al., (2023), evaporative cooling 705 of supercooled cloud droplets in subsaturated environments can enhance ice nucleation near cloud boundaries in two 706 ways: by instantly increasing ice-nucleating particle activation due to lower droplet temperatures (consistent with the 707 singular hypothesis) and/or by extending supercooled droplet lifetimes, allowing more time for nucleation events 708 (consistent with the stochastic hypothesis). Based on limited laboratory investigations available on time dependency 709 of heterogeneous ice nucleation, conducted between temperatures -14 and -30 °C, varying fractions of the droplets 710 were reported to freeze within a range of 1 s to 500 s (Welti et al., 2012; Broadley et al., 2012; Murray et al., 2012; 711 Jakobsson et al., 2022).

712

713 Droplet freezing events can potentially occur within the time frame when the evaporating cloud droplets reach lower 714 temperatures due to evaporative cooling before they completely dissipate into the subsaturated air. This can be seen 715 by comparing the values in Table 2 and Fig. 13 with reported droplet freezing timescales available from experimental 716 studies. Droplet lifetimes as estimated from both approaches (t_{RRD} and t_L), which include droplet evaporative cooling, 717 are longer as compared to the Maxwellian diffusion-limited evaporation approach (t_{LC}) , allowing more time for 718 potential occurrence of an ice nucleation event. For temperatures between -5 °C and -10 °C, for the three different 719 subsaturated environments ($RH_{\infty} = 10, 40, \text{ and } 70\%$) examined in this analysis, t_{RRD} typically ranged from 0.7 - 4.2 s 720 for 10 µm, 6-38 s for 30 µm and 18-105 s for 50 µm initial radius of droplets, respectively. For similar environments, 721 $t_L > t_{RRD} > t_{LC}$, with t_L typically ranging from 1.1-5.7 s for 10 µm, 11-61 s for 30 µm and 33-176 s for 50 µm initial 722 radii droplets, respectively. For larger droplets, say 30 and 50 µm, the droplets survive much longer as compared to 723 10 µm droplets, likely enhancing the chances of an ice nucleation event.

Results from this study further strengthen evidence of the hypothesized mechanism of enhancement of ice nucleation
 via droplet evaporation. Together with the consistent observation of supercooled water in cloud-top generating cells

- 727 (Plummer et al., 2014; Zaremba et al., 2024), these results contribute to explaining the observations of the prodigious
- production of ice particles produced in generating cells at the cloud-tops of winter storms and other clouds (e.g.,
- 729 Plummer et al., 2015, Wang et al., 2020). Rauber et al. (1986), Plummer et al. (2015), and Tessendorf et al. (2024)
- have shown that cloud droplet concentrations at the generating cell level near cloud-tops are of the order of 30-50 cm⁻
- 731 ³, while ice-particle concentrations in the plumes of ice particles falling beneath generating cells are of the order of
- 732 0.01 cm⁻³. Based on these values, if less than one frozen cloud droplet in 1000 survive sublimation after freezing and
- fall back into the cloud, that would be sufficient to create the ice-particles observed falling from a generating cell.
- 734

735 Due to the observational evidence of a higher dependency of ice nucleation on temperature than time (Wright and 736 Petters, 2013), and the increased difficulty of representing time-dependent stochastic nucleation in numerical models, 737 the simpler and more widely used approach is to use the time-dependent singular hypothesis framework to simulate 738 ice initiation processes. Drawing from theoretical insights, laboratory experiments, and field campaigns, numerous 739 parameterization methods for modeling heterogeneous ice nucleation in cloud and climate models have been created 740 over the years (Fletcher, 1962; Cooper, 1986; Meyers et al., 1992; DeMott et al., 1998; Khvorostyanov and Curry, 741 2000; Phillips et al., 2008). Most of the conventionally used schemes (Fletcher, 1962; Cooper, 1986; Demott et al., 742 2010) share a common feature, which is the utilization of the ambient air temperature for estimating activated INPs, 743 as opposed to relying on the droplet temperature, even for primary ice-nucleation modes such as immersion freezing 744 and contact nucleation.

- 745
- 746 Similar to Roy et al. (2023), we investigate the maximum enhancement in activated INP concentrations that can occur 747 due to evaporative cooling of supercooled water droplets in a spatiotemporally varying environment, assuming that 748 the activation in the parameterization schemes (Fletcher, 1962; Cooper, 1986; Demott et al., 2010) is related to the 749 droplet temperatures towards the end of their lifetimes (T_L) rather than the ambient temperature. Fig. 14 presents a 750 comparison between Roy et al. (2023), and the current study in terms of the highest fractional increase in activated 751 ice-nucleating particles (INPs), as projected through the Fletcher, Cooper, and Demott schemes (considering ambient 752 aerosol concentration, N_a , with diameters greater than 0.5 μ m). Owing to even lower droplet temperatures during 753 evaporation, the fractional increase in activated INPs is higher as calculated from this study, with several orders of 754 magnitude increase for drier environments. For example, the Fletcher Scheme predicts an enhancement in activated 755 INPs by a factor of ~10⁶ for $RH_{\infty} = 10\%$, $T_{\infty} = 268.15$ K, P = 500 hPa based on droplet temperatures from this study, 756 while the corresponding number from Roy et al. (2023) is ~100 (Fig. 14a). The fractional increases are slightly smaller 757 for higher pressure environments due to lower evaporative cooling of the droplets under such conditions (compare 758 Figs. 14a, d, b,e, and c,f). Consistent with previous results from Roy et al. (2023), compared to the Fletcher Scheme, 759 the Cooper and Demott schemes demonstrate relatively lower enhancement in activated INPs. For the same

reprint the corresponding activated INP enhancement factor values for Cooper and Demott schemes are $\sim 10^3$ and 80, respectively (Figs. 14b and c).

762

763 Therefore, results from the current study further corroborate the hypothesized ice nucleation enhancement mechanism 764 through evaporative cooling of supercooled droplets (Mossop et al., 1968; Young, 1974; Beard, 1992; Roy et al., 765 2023), providing much higher estimates of activated INP concentrations from previous analyses (Roy et al., 2023). 766 This potential increase in INP concentrations in subsaturated environments near cloud tops and edges, particularly at 767 higher sub-freezing temperatures, may partially help resolve the several orders of magnitude discrepancy between 768 predicted INP and observed ice particle concentrations in such regions of the cloud. To evaluate the effectiveness of 769 the potential ice-nucleation enhancement mechanism through evaporation, future modeling experiments within a 770 robust dynamical model setup, considering a population of both freezing and evaporating droplets, along with their 771 lifetimes, droplet-droplet interaction, different species of INPs, and the impact of turbulence and other feedbacks, are 772 required.

Figure 14: Comparison between the maximum fractional increase in INPs as estimated by Roy et al., (2023) and this study for three different parameterization schemes: (i) Fletcher (1962) (ii) Cooper (1986), and (iii) Demott et al., (2010), for three different environmental relative humidities ($RH_{\infty} = 10$, 40 and 70%), and two ambient temperatures ($T_{\infty} = 268.15$ K (-5°C) and 263.15K (-10°C)) and two different pressures (P = 500 and 850 hPa).

- 778
- 779
- 780

- 781 6 Conclusions
- 782

783 In this study, we presented a quantitative investigation of the temperature and lifetime of an evaporating droplet, 784 considering internal thermal gradients within the droplet as well as resolving spatiotemporally varying unsteady 785 thermal and vapor density gradients in the surrounding ambient air. The computational approach involved solving the 786 Navier-Stokes and continuity equations, coupled with heat and vapor diffusion equations, using an advanced 787 numerical model that employs the finite element method. This is the first simulation of the spatiotemporal evolution 788 of droplet temperature, radius, and its environment for an isolated, stationary, and supercooled cloud droplet 789 evaporating in various subsaturated environmental conditions. Various ambient pressure (P), temperature (T_{∞}), 790 relative humidity (RH_{∞}) , and initial droplet radii (r_{θ}) were considered. The motivation behind this study was to provide 791 more exacting calculations to support the hypothesized ice nucleation enhancement mechanism due to the evaporation 792 of supercooled cloud droplets at cloud boundaries, such as cloud-top ice-generating cells, and for ambient temperatures 793 between 0°C and -10°C where ice nucleation is least effective.

794

The numerical simulations show for typical cloud droplet sizes ($r_0 = 10, 30, 50 \ \mu m$) and environmental conditions considered here, the internal thermal gradients dissipate quite quickly ($\leq 0.3 \ s$) when the droplet is introduced to a new subsaturated environment. Thus, spatial thermal gradients within the droplet can be reasonably ignored. Hence, one can potentially ignore the extra computational expense of simulating conductive heat transfer within the droplet for timescales > 1 s.

800

801 The results from this study are similar to findings from the literature that an evaporating supercooled cloud droplet 802 can exist at a temperature lower than that of the ambient atmosphere and that the tendencies of the dependence of 803 decrease in droplet temperatures on environmental factors and initial droplet sizes (Srivastava and Coen, 1992; Roy 804 et. al, 2023). The novelty of this study lies in demonstrating that the magnitude of droplet cooling can be much higher 805 than estimated from past studies of droplet evaporation, especially for drier environments. For example, a droplet 806 evaporating in an environment with P = 500 hPa, $T_{\infty} = 268.15$ K (-5°C), $RH_{\infty} = 10\%$, Roy et al., (2023) estimated a 807 7.3 K decrease in droplet temperature, while this study shows that there can be as much as a 23.8 K decrease in droplet 808 temperature. This is because previous studies assumed prescribed ambient environments at all distances from the 809 droplet, while this analysis shows that as a droplet evaporates and cools, the air in the vicinity of the droplet cools as 810 well, giving rise to spatiotemporally varying thermal and vapor density fields in the immediate environment 811 surrounding the droplet. Here, the net conductive warming from the environmental air enveloping the droplet is lower 812 as compared to Roy et al., (2023), effectively leading to a much lower droplet temperature. At a particular time, the 813 strength and radial dependence of these gradients depend on the subsaturation of the air medium and the magnitude 814 of droplet cooling due to evaporation, with the largest cooling at lower RH_{∞} . In this study, the temperature and vapor 815 density in the ambient air continually evolve, thus affecting the transfer of heat and vapor between the droplet surface 816 and the environment far away from the droplet. This affects the temperature evolution and decay rates of the

817 evaporating droplet to a greater degree than shown in previous studies for a similar environment (Srivastava and818 Cohen, 1992; Roy et al. 2023).

819

820 This study also demonstrated that the lifetimes of the evaporating droplets are longer compared to Roy et al. (2023) 821 because as the droplet temperature gets lower, the saturation vapor pressure at the droplet surface reduces, leading to 822 a weaker evaporation rate. For an environment with P = 500 hPa, $T_{\infty} = 268.15$ K (-5°C), $RH_{\infty} = 10\%$, a 50 µm droplet 823 reaches the end of its lifetime, as defined in this study, in 32.8s, while the corresponding values for the diffusion-824 limited evaporation approach as estimated from Roy et. al, (2023) are 9.6 s and 17.9 s, respectively. The rates of 825 evaporation tend to be lower in this study due to even lower droplet temperatures as well as spatiotemporally varying 826 vapor density gradients around the droplets. As the droplet evaporates, the envelope of air surrounding the droplet is colder, has lower values of diffusivity leading to lower evaporation rates, and has higher vapor concentration than the 827 828 ambient air, thus decreasing the evaporation rates.

829

830 To summarize, if one considers the more realistic case of droplet evaporation, including the spatiotemporally varying 831 thermal and vapor density gradients in the vicinity of the water droplet, the evaporating droplet can experience a 832 substantial reduction in temperatures by several degrees, strongly dependent on the ambient relative humidity and 833 weakly dependent on ambient pressure and temperature. Similar to the case of an isolated, stationary droplet 834 evaporating in a prescribed ambient environment, the droplet almost immediately reaches its slope transition point 835 temperature, which can be well-approximated by the thermodynamic wet-bulb temperature of the initial ambient 836 environment around the droplet. Droplet temperatures then continue to steadily decrease as they adjust to the evolving 837 thermodynamic wet-bulb temperature of the surrounding air. In more humid environments, the droplets may not 838 experience a larger droplet cooling, but their lifetimes, as defined in this study, get extended by tens of seconds as 839 compared to the Maxwellian estimation which neglects droplet cooling.

840

841 The current analysis also demonstrates that lower evaporating droplet temperatures would lead to an enhancement of 842 activated INPs from three widely used INP parameterization schemes, further corroborating the hypothesized ice 843 nucleation enhancement mechanism through evaporative cooling of supercooled droplets. Notably, the estimates of 844 activated INP concentrations from this study are higher than previous analyses, as the droplet temperatures are much 845 lower towards the end of their lifetimes, with several orders of magnitude increase in activated INPs for drier 846 environments. The Fletcher Scheme predicts the greatest enhancement in activated INPs by a factor of $\sim 10^6$ for RH_{∞} = 10%, T_{∞} = 268.15 K, P = 500 hPa, while the corresponding enhancement factor values for Cooper and Demott 847 848 schemes are $\sim 10^3$ and 80, respectively.

849

This study suggests a need for a more in-depth examination of supercooled cloud droplet temperatures and their lifetimes in subsaturated environments, especially when simulating heterogeneous ice nucleation processes that require the presence of supercooled water droplets. This is crucial because the concentration of activated icenucleating particles (INPs) is influenced by both droplet temperature and how long evaporating droplets persist.

854	Additionally, the findings from this investigation may also partially help understand disparities between observed ice
855	particle concentrations and activated INPs, especially at relatively higher sub-0°C temperatures. Including the effect
856	of droplet evaporative cooling on droplet temperatures and lifetimes, while modeling cloud microphysical processes
857	in subsaturated environments, will also lead to improved accuracy of the evolution of the droplet size distribution as
858	well as primary ice nucleation mechanisms.
859	
860	Author contribution: PR, RMR and LDG conceptualized the problem and numerical experiments. PR designed and
861	performed the simulations, analyzed the data, and prepared the first draft of the manuscript. RMR and LDG reviewed
862	and edited the manuscript. RMR and LDG acquired required funding for the project.
863	
864	Competing interests: The authors have no competing interests.
865	
866	Acknowledgements: This work was funded by the NASA CAMP ² Ex program under grant 80NSSC18K0144 and the
867	NASA Earth Venture Suborbital-3 (EVS-3) IMPACTS program under grant 80NSSC19K0355. This research was
868	also supported by the National Science Foundation under grant NSF AGS-2016106.
869	
870	Code/Data availability: This modeling analysis used the proprietary COMSOL Multiphysics version 6.0 software
871	package which can be licensed through https://www.comsol.com/.
872	
873 874	References
873 874 875	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of
873 874 875 876	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-
873 874 875 876 877	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520- 0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996.
873 874 875 876 877 878	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520- 0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell
873 874 875 876 876 877 878 879	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520- 0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. <u>https://glossary.ametsoc.org/wiki/Generating_cell</u> (Last accessed May 10, 2024)
 873 874 875 876 877 878 879 880 	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520- 0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i> ,
873 874 875 876 877 878 879 880 881	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i> , 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992.
 873 874 875 876 877 878 879 880 881 882 	References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520- 0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell
 873 874 875 876 877 878 879 880 881 882 883 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i>, 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992. Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, <i>87</i>(4), p.042302, https://doi.org/10.1103/PhysRevE.87.042302, 2013.
 873 874 875 876 877 878 879 880 881 882 883 884 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. <u>https://glossary.ametsoc.org/wiki/Generating_cell</u> (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i>, 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992_ Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, 87(4), p.042302, <u>https://doi.org/10.1103/PhysRevE.87.042302</u>, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.:
 873 874 875 876 877 878 879 880 881 882 883 884 885 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i>, 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992_ Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, 87(4), p.042302, https://doi.org/10.1103/PhysRevE.87.042302, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral
 873 874 875 876 877 878 879 880 881 882 883 884 885 886 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i> 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992_ Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, <i>87</i>(4), p.042302, https://doi.org/10.1103/PhysRevE.87.042302, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric minerai dustAtmospheric Chemistry and Physics, 12(1), pp.287-307, https://doi.org/10.5194/acp-12-287-2012.
 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i> 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992_ Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, <i>87</i>(4), p.042302, https://doi.org/10.1103/PhysRevE.87.042302, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust_Atmospheric Chemistry and Physics, 12(1), pp.287-307, https://doi.org/10.5194/acp-12-287-2012, 2012.
 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. <u>https://glossary.ametsoc.org/wiki/Generating cell</u> (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i>, 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992_ Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, <i>87</i>(4), p.042302, <u>https://doi.org/10.1103/PhysRevE.87.042302</u>, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.: Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust_Atmospheric Chemistry and Physics, 12(1), pp.287-307, https://doi.org/10.5194/acp-12-287-2012, 2012. Chen, S., Xue, L. and Yau, M.K.: Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case
 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating_cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, Atmos. Res., 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992. Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. Physical Review E, 87(4), p.042302, https://doi.org/10.1103/PhysRevE.87.042302, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.; Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust_Atmospheric Chemistry and Physics, 12(1), pp.287-307, https://doi.org/10.5194/acp-12-287-2012, 2012. Chen, S., Xue, L. and Yau, M.K.: Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach, Atmospheric Chemistry and Physics
 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 	 References Alduchov, O.A. and Eskridge, R.E.: Improved Magnus form approximation of saturation vapor pressure, Journal of Applied Meteorology and Climatology, 35(4), pp.601-609, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2, 1996. American Meteorological Society (AMS 2024): Generating cell. https://glossary.ametsoc.org/wiki/Generating cell (Last accessed May 10, 2024) Beard, K.: Ice Initiation in warm-base convective clouds: An assessment of microphysical mechanisms, <i>Atmos. Res.</i> 28, 125-152, https://doi.org/10.1016/0169-8095(92)90024-5, 1992_ Biddle, J.W., Holten, V., Sengers, J.V. and Anisimov, M.A.: Thermal conductivity of supercooled water. <i>Physical Review E</i>, <i>87</i>(4), p.042302, https://doi.org/10.1103/PhysRevE.87.042302, 2013. Broadley, S.L., Murray, B.J., Herbert, R.J., Atkinson, J.D., Dobbie, S., Malkin, T.L., Condliffe, E. and Neve, L.; Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust_Atmospheric Chemistry and Physics, 12(1), pp.287-307, https://doi.org/10.5194/acp-12-287-2012, 2012. Chen, S., Xue, L. and Yau, M.K.: Impact of aerosols and turbulence on cloud droplet growth: an in-cloud seeding case study using a parcel–DNS (direct numerical simulation) approach, <i>Atmospheric Chemistry and Physics</i>, 20(17), pp.10111-10124. https://doi.org/10.5194/acp-20-10111-2020, 2020.

- Chushak, Y.G. and Bartell, L.S.: Simulations of spontaneous phase transitions in large, deeply supercooled clusters
 of SeF6, The Journal of Physical Chemistry B, 103(50), pp.11196-11204, <u>https://doi.org/10.1021/jp992818g</u>,
 1999.
- Chushak, Y. and Bartell, L.S.: Crystal nucleation and growth in large clusters of SeF6 from molecular dynamics
 simulations, The Journal of Physical Chemistry A, 104(41), pp.9328-9336,
 https://doi.org/10.1021/jp002107e, 2000.
- 898 COMSOL 2023a Cylindrical System Documentation, Last Accessed Sept 15, 2023
- 899 https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol ref definitions.12.090.html
- 900 COMSOL 2023b Infinite Element Domain Documentation, Last Accessed Sept 15, 2023
- 901 <u>https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_definitions.12.116.html</u>
- 902 COMSOL 2023c Free Triangular Documentation, Last Accessed Sept 15, 2023
- 903 https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_mesh.15.38.html
- 904 COMSOL 2023d Mapped Documentation, Last Accessed Sept 15, 2023
- 905 https://doc.comsol.com/5.6/doc/com.comsol.help.comsol/comsol ref mesh.20.40.html
- Cooper, W.A.: Ice initiation in natural clouds. In Precipitation enhancement—A scientific challenge (pp. 29-32).
 American Meteorological Society, Boston, MA, <u>https://doi.org/10.1175/0065-9401-21.43.29</u>, 1986.
- DeMott, P.J., Rogers, D.C., Kreidenweis, S.M., Chen, Y., Twohy, C.H., Baumgardner, D., Heymsfield, A.J. and Chan,
 K.R.: The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from
 SUCCESS, *Geophysical Research Letters*, 25(9), pp.1387-1390, <u>https://doi.org/10.1029/97GL03779</u>, 1998.
- DeMott, P.J., Prenni, A.J., Liu, X., Kreidenweis, S.M., Petters, M.D., Twohy, C.H., Richardson, M.S., Eidhammer,
 T. and Rogers, D.: Predicting global atmospheric ice nuclei distributions and their impacts on
 climate, *Proceedings of the National Academy of Sciences*, 107(25), pp.11217-11222,
 https://doi.org/10.1073/pnas.0910818107, 2010.
- Djikaev, Y.S., Tabazadeh, A., Hamill, P. and Reiss, H.: Thermodynamic conditions for the surface-stimulated
 crystallization of atmospheric droplets, The Journal of Physical Chemistry A, 106(43), pp.10247-10253,
 https://doi.org/10.1021/jp021044s, 2002.
- Djikaev, Y.S. and Ruckenstein, E.: Thermodynamics of heterogeneous crystal nucleation in contact and immersion
 modes, The Journal of Physical Chemistry A, 112(46), pp.11677-11687, <u>https://doi.org/10.1021/jp803155f</u>,
 2008.
- Fletcher, N.H.: The physics of rainclouds/NH Fletcher; with an introductory chapter by P. Squires and a foreword by
 EG Bowen. Cambridge University Press, <u>https://doi.org/10.1002/qj.49708837821, 1962</u>.
- Fukuta, N.: Theories of competitive cloud droplet growth and their application to cloud physics studies, *Journal of the Atmospheric Sciences*, 49, 1107–1114, <u>https://doi.org/10.1175/1520-</u>
 <u>0469(1992)049<1107:TOCCDG>2.0.CO;2., 1992.</u>
- Grabowski, W.W. and Wang, L.P.: Growth of cloud droplets in a turbulent environment, *Annual Review of Fluid Mechanics*, 45, pp.293-324, <u>https://doi.org/10.1146/annurev-fluid-011212-140750, 2013</u>.

- Hall, W.D. and Pruppacher, H.R.: The survival of ice particles falling from cirrus clouds in subsaturated air, *Journal of* Atmospheric Sciences, 33(10), pp.1995-2006, <u>https://doi.org/10.1175/1520-</u>
 0469(1976)033<1995:TSOIPF>2.0.CO:2, 1976.
- Jakobsson, J.K., Waman, D.B., Phillips, V.T. and Bjerring Kristensen, T.: Time dependence of heterogeneous ice
 nucleation by ambient aerosols: laboratory observations and a formulation for models. *Atmospheric Chemistry and Physics*, 22(10), pp.6717-6748, https://doi.org/10.5194/acp-22-6717-2022, 2022.
- Kanji, Z. A., Ladino, L. A., Wex H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J. and Krämer, M.: Overview of Ice
 Nucleating Particles, *Meteor. Monogr.*, 58, 1.1–1.33, <u>https://doi.org/10.1175/AMSMONOGRAPHS-D-16-</u>
 0006.1, 2017.
- 937 Khain, A.P. and Pinsky, M.: Physical processes in clouds and cloud modeling, Cambridge University Press, 2018.
- 938 Khvorostyanov, V.I. and Curry, J.A.: A new theory of heterogeneous ice nucleation for application in cloud and
- 939
 climate models,
 Geophysical
 Research
 Letters,
 27(24),
 pp.4081-4084,

 940
 https://doi.org/10.1029/1999GL011211, 2000.
- Khvorostyanov, V. and Sassen, K.: Toward the theory of homogeneous nucleation and its parameterization for cloud
 models, *Geophysical research letters*, 25(16), pp.3155-3158, <u>https://doi.org/10.1029/98GL02332</u>, 1998.
- Kinzer, G. D., and Gunn, R.: The evaporation, temperature and thermal relaxation-time of freely falling waterdrops,
 J. Meteor., 8, 71–83. <u>https://doi.org/10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2, 1951.</u>
- Lü, Y.J., Xie, W.J. and Wei, B.: Observation of ice nucleation in acoustically levitated water drops, Applied Physics
 Letters, 87(18), <u>http://dx.doi.org/10.1063/1.2126801, 2005.</u>
- Marquis, J. and Harrington, J.Y.: Radiative influences on drop and cloud condensation nuclei equilibrium in
 stratocumulus, *Journal of Geophysical Research: Atmospheres*, 110(D10),
 https://doi.org/10.1029/2004JD005401, 2005.
- 950 Mason, B. J.,: The Physics of Clouds, Clarendon Press, Oxford, 671pp.1971.
- 951 Maxwell, J.C.: Theory of the wet bulb thermometer, Scientific Papers of James Clerk Maxwell, 2, p.636, 1890.
- Meyers, M.P., DeMott, P.J. and Cotton, W.R.: New primary ice-nucleation parameterizations in an explicit cloud
 model, *Journal of Applied Meteorology and Climatology*, 31(7), pp.708-721, <u>https://doi.org/10.1175/1520-</u>
 0450(1992)031<0708:NPINPI>2.0.CO;2, 1992.
- 955Mossop, S.C., Ruskin, R.E. and Heffernan, K.J.: Glaciation of a Cumulus at Approximately- 4C, Journal of956AtmosphericSciences,25(5),pp.889-899,<a href="https://doi.org/10.1175/1520-0469(1968)025<0889:GOACAA>2.0.CO;2">https://doi.org/10.1175/1520-9570469(1968)025<0889:GOACAA>2.0.CO;21968.
- Murray, B.J., O'sullivan, D., Atkinson, J.D. and Webb, M.E.: Ice nucleation by particles immersed in supercooled
 cloud droplets, Chemical Society Reviews, 41(19), pp.6519-6554, doi:10.1039/c2cs35200a., 2012.
- Phillips, V.T., DeMott, P.J. and Andronache, C.: An empirical parameterization of heterogeneous ice nucleation for
 multiple chemical species of aerosol, *Journal of the Atmospheric Sciences*, 65(9), pp.2757-2783,
 https://doi.org/10.1175/2007JAS2546.1, 2008.

- Plummer, D.M., McFarquhar, G.M., Rauber, R.M., Jewett, B.F. and Leon, D.C.: Structure and statistical analysis of
 the microphysical properties of generating cells in the comma head region of continental winter cyclones,
 Journal of the Atmospheric Sciences, 71(11), pp.4181-4203, https://doi.org/10.1175/JAS-D-14-0100.1, 2014.
- Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and Leon., D. C.: Microphysical properties of
 convectively generated fall streaks in the comma head region of continental winter cyclones, *J. Atmos. Sci.*, 72, 2465–2483, doi:10.1175/JAS-D-14-0354.1, 2015.
- Pruppacher, H. R., and Klett, J. D.: *Microphysics of Clouds and Precipitation*. 2d ed. Kluwer Academic, 954 pp.,
 1997.
- Ramelli, F., Henneberger, J., David, R.O., Bühl, J., Radenz, M., Seifert, P., Wieder, J., Lauber, A., Pasquier, J.T.,
 Engelmann, R. and Mignani, C.: Microphysical investigation of the seeder and feeder region of an Alpine
 mixed-phase cloud, Atmospheric Chemistry and Physics, 21(9), pp.6681-6706, <u>https://doi.org/10.5194/acp-</u>
 21-6681-2021, 2021.
- Rauber, R. M., Grant, L. O.: The characteristics and distribution of cloud water over the mountains of northern
 Colorado during winter-time storms. Part II: Spatial distribution and microphysical characteristics. J.
 Climate Appl. Meteor., 25, 489–504, <u>https://doi.org/10.1175/1520-</u>
 0450(1986)025<0489:TCADOC>2.0.CO;2, 1986.
- Roach, W. T.: On the effect of radiative exchange on the growth by condensation of a cloud or fog droplet, *Quart. J. Roy. Meteor. Soc.*, 102, 361–372, <u>https://doi.org/10.1002/qj.49710243207</u>, 1976.
- 981 Rogers, R.R. and Yau, M.K.: *A Short Course in Cloud Physics*. Pergamon Press, 294 pp., 1989.
- Rowe, P.M., Fergoda, M. and Neshyba, S.: Temperature-dependent optical properties of liquid water from 240 to 298
 K. *Journal of Geophysical Research: Atmospheres*, 125(17), <u>https://doi.org/10.1029/2020JD032624, 2020.</u>
- Roy, P., Rauber, R.M. and Girolamo, L.D.: A closer look at the evolution of supercooled cloud droplet temperature
 and lifetime in different environmental conditions with implications for ice nucleation in the evaporating
 regions of clouds, *Journal of the Atmospheric Sciences*. https://doi.org/10.1175/JAS-D-22-0239.1, 2023.
- Satoh, I., Fushinobu, K. and Hashimoto, Y.: Freezing of a water droplet due to evaporation—heat transfer dominating
 the evaporation—freezing phenomena and the effect of boiling on freezing characteristics, *International Journal of Refrigeration*, 25(2), pp.226-234, http://dx.doi.org/10.1016/S0140-7007(01)00083-4, 2002.
- Scardovelli, R. and Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow, *Annual review of fluid mechanics*, 31(1), pp.567-603. <u>https://doi.org/10.1146/annurev.fluid.31.1.567</u>, 1999.
- 992 Sedunov, Y. S.: *Physics of the Drop Formation in the Atmosphere*, John Wiley and Sons, 234 pp., 1974.
- Shaw, R.A., Durant, A.J. and Mi, Y.: Heterogeneous surface crystallization observed in undercooled water, *The Journal of Physical Chemistry B*, 109(20), pp.9865-9868, <u>https://doi.org/10.1021/jp0506336</u>, 2005.
- Srivastava, R.C. and Coen, J.L.: New explicit equations for the accurate calculation of the growth and evaporation of
 hydrometeors by the diffusion of water vapor, *Journal of Atmospheric Sciences*, 49(17), pp.1643-1651,
 <u>https://doi.org/10.1175/1520-0469(1992)049<1643:NEEFTA>2.0.CO;2, 1992.</u>
- Standard Atmosphere: ISO 2533:1975, updated 2021: <u>https://www.iso.org/standard/7472.html</u>, 2021, last accessed
 09/26/2022.

- Szakáll, M., Debertshäuser, M., Lackner, C.P., Mayer, A., Eppers, O., Diehl, K., Theis, A., Mitra, S.K. and Borrmann,
 S.: Comparative study on immersion freezing utilizing single-droplet levitation methods, Atmospheric
 Chemistry and Physics, 21(5), pp.3289-3316, <u>https://doi.org/10.5194/acp-21-3289-2021</u>, 2021.
- Tabazadeh, A., Djikaev, Y.S., Hamill, P. and Reiss, H.: Laboratory evidence for surface nucleation of solid polar
 stratospheric cloud particles, *The Journal of Physical Chemistry A*, 106(43), pp.10238-10246,
 https://doi.org/10.1021/jp021045k, 2002a.
- Tabazadeh, A., Djikaev, Y.S. and Reiss, H.: Surface crystallization of supercooled water in clouds, *Proceedings of the National Academy of Sciences*, 99(25), pp.15873-15878, https://doi.org/10.1073/pnas.252640699, 2002b.
- Tessendorf, S.A., Boe, B., Geerts, B., Manton, M.J., Parkinson, S. and Rasmussen, R.: The future of winter orographic
 cloud seeding: A view from scientists and stakeholders, Bulletin of the American Meteorological Society,
 96(12), pp.2195-2198, https://doi.org/10.1175/BAMS-D-15-00146.1, 2015.
- 1011 Tessendorf, S., Ikeda, K., Rasmussen, R., French, J., Rauber, R., Korolev, A., Xue, L., Blestrud, D., Dawson, N.,
- Meadows, M., Kunkel, M. and Parkinson, S.: Characteristics of Generating Cells in Wintertime Orographic
 Clouds. Journal of the Atmospheric Sciences, 81(3), pp. 649-673.
- 1014 https://journals.ametsoc.org/view/journals/atsc/81/3/JAS-D-23-0029.1.xml, 2024.
- 1015 Vaillancourt, P.A., Yau, M.K. and Grabowski, W.W.: Microscopic approach to cloud droplet growth by condensation.
 1016 Part I: Model description and results without turbulence, *Journal of the Atmospheric Sciences*, 58(14),
 1017 pp.1945-1964, https://doi.org/10.1175/1520-0469(2001)058%3C1945:MATCDG%3E2.0.CO;2, 2001.
- 1018
 Vali,
 G.:
 Freezing
 Rate
 Due
 to
 Heterogeneous
 Nucleation. J.
 Atmos.
 Sci., 51,
 1843–

 1019
 1856, https://doi.org/10.1175/1520-0469(1994)051<1843:FRDTHN>2.0.CO;2, 1994.
- 1020 Volmer, M.: Kinetic der Phasenbildung (Steinkopff, Dresden, Leipzig), 1939.
- Wang, Y., McFarquhar, G.M., Rauber, R.M., Zhao, C., Wu, W., Finlon, J.A., Stechman, D.M., Stith, J., Jensen, J.B.,
 Schnaiter, M. and Järvinen, E.: Microphysical properties of generating cells over the Southern Ocean: Results
 from SOCRATES, *Journal of Geophysical Research: Atmospheres*, 125(13),
 https://doi.org/10.1029/2019JD032237, 2020.
- Watts, R.G.: Relaxation time and steady evaporation rate of freely falling raindrops, *Journal of Atmospheric Sciences*,
 28(2), pp.219-225, https://doi.org/10.1175/1520-0469(1971)028<0219:RTASER>2.0.CO;2, 1971.
- 1027Watts, R.G. and Farhi, I.: Relaxation times for stationary evaporating liquid droplets, Journal of the Atmospheric1028Sciences,32(9),pp.1864-1867,https://doi.org/10.1175/1520-10290469(1975)032%3C1864:RTFSEL%3E2.0.CO;2, 1975.
- Welti, A., Lüönd, F., Kanji, Z.A., Stetzer, O. and Lohmann, U.: Time dependence of immersion freezing: an
 experimental study on size selected kaolinite particles. *Atmospheric Chemistry and Physics*, 12(20), pp.98939907, 2012.
- Wexler, A.: Vapor pressure formulation for water in range 0 to 1008C. A revision, *J. Res. Natl. Bur. Stand.* (U.S.),
 80A, 775–785, https://doi.org/10.6028%2Fjres.080A.071, 1976.
- 1035 White, F.M.: Viscous Fluid Flow, 3rd ed., McGraw-Hill, 2006, 656 pp.

- Wright, T. P., and Petters, M.D.: The role of time in heterogeneous freezing nucleation, *J. Geophys. Res.*, 118, 3731–
 3743, <u>https://doi.org/10.1002/jgrd.50365</u>, 2013.
- Yang, K., Hong, F. and Cheng, P.: A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary
 Lagrangian–Eulerian formulation. *International Journal of Heat and Mass Transfer*, 70, pp.409-420,
 https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.017, 2014.
- Young, K. C.: The Role of Contact Nucleation in Ice Phase Initiation in Clouds, *Journal of the Atmospheric Sciences*,
 31, 768–776,

1043 https://doi.org/10.1175/1520-0469(1974)031<0768:TROCNI>2.0.CO;2, 1974.

Zaremba, T.J., Rauber, R.M., Heimes, K., Yorks, J.E., Finlon, J.A., Nicholls, S.D., Selmer, P., McMurdie, L.A. and
 McFarquhar, G.M.: Cloud-Top Phase Characterization of Extratropical Cyclones over the Northeast and
 Midwest United States: Results from IMPACTS, Journal of the Atmospheric Sciences, 81(2), pp.341-361,
 <u>https://doi.org/10.1175/JAMC-D-22-0154.1</u>, 2024.