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Response to Reviewer 1 

 

We thank the reviewer for providing insightful comments and suggestions on our paper. We believe 
that responding to the comments has further improved the quality of the manuscript. We have 
addressed the comments below. The reviewer comments are in black, our responses in red and any 
text changes in blue.  

 

Review 1 

 

This paper presents a study of the transient effects on the droplet temperature and lifetime when the 
droplet is suddenly immersed in a drier environment. The motivation is that this transient has been 
hypothesized to play an important role in ice nucleation. The authors find that the temperature 
reduction can be threefold the values found in the steady solution. 

The paper could be an interesting contribution to the topic of ice micro-physics. However, some 
parts of the setup, the results and the explanations were a bit unclear. I provide the details below. 

1. I am not sure about the novelty of the result that the gradients inside the droplet dissipate quickly. 
The standard estimate of a diffusive time is r02/κ, where r0 is the length scale, in this case the droplet’s 
radius, and κ is the thermal diffusivity of water. For the typical values consider in this paper, one 
find time scales which are indeed less that 0.1 s. What would be the new contribution from the 
detailed simulations in this paper for this particular aspect of the gradients inside the droplet? 

The reviewer’s standard estimate is correct and is consistent with the results shown in the original 
Figure 3, whose point was to simply show that diffusive timescales are a fraction of a second. To 
shorten the manuscript and address the reviewer’s main point, we have removed the original Fig. 3 
and reduced the discussion of the internal temperature gradient dissipation within the droplet, noting 
that the model results conform to the diffusive timescale as pointed out by the reviewer.  

Comments #2 and #11 are related in that they ask for more insight into the physical mechanisms 
regarding droplet evaporative cooling. We organize the response below to answer these two 
questions together.  

2. What is the physical mechanism that explains the large difference of the droplet’s temperature with 
respect to the steady solution. I understand that the rapid evaporation cools the droplet quickly, but 
the water vapor needs to be diffused away for the evaporation to continue, and thermal energy is 
diffused similarly quick towards the droplet. Textbooks like Rogers and Yau [1989] and Lamb and 
Verlinde [2011] retain the effect of the gradients and the evaporative cooling. Normally, the effect 
on temperature is small but the effect on evaporative rates is large because of the nonlinearity of 
Clausius-Clapeyron, which why I was surprised to see the large changes in T. Why is the diffusion 
of thermal energy towards the droplet not compensating the evaporative cooling as efficiently as in 
the steady state case? 

The authors refer to the dependence of the vapor diffusion coefficient on T to explain part of this 
behavior, e.g. in line 769 in the conclusions. However, this dependence accounts for a change of D 
of only ≈ 7 − 8%, whereas the temperature difference between the droplet and the environment is 2-
3 times, and this should lead to larger thermal energy flux towards the droplet. 
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11. For instance, in section 4.2, the dependence on T∞ and P seems to be much smaller than that on RH∞. 
Why? It might be more useful to differentiate those dependences and concentrate on the latter one 
instead of showing all figures. Otherwise, there are so many figures that it becomes difficult to 
distilled the new information that they convey. 

The dependence on T∞ and P is much smaller than that on RH∞. The strong dependence on RH∞ 

compared to temperature results from the initial conditions. The droplet temperature initially is in 
thermal equilibrium with its environment (the droplet has the same temperature as that of the far 
environment), but the vapor field is far from equilibrium, especially for low relative humidity 
environments. As a result, the vapor diffusion rate (which depends on the vapor density gradient) far 
exceeds the thermal diffusion rate (which depends on the temperature gradient). Because the cloud 
droplets are small, and the relative humidity gradients are large, the droplets never come to an 
equilibrium state before evaporating completely into the subsaturated air. The water vapor flux into 
the larger subsaturated environment maintains a vapor density near the droplet surface that 
approaches but never reaches saturation. As a result, the wet-bulb temperature near the droplet 
surface continues to fall but at a slower rate that depends on RH∞ (Fig. 11). The pressure affects both 
the moisture and temperature diffusion fluxes, so these scale with each other, resulting in pressure 
not having a stronger effect compared to that of the moisture gradient. We added the following 
paragraph to the Discussion section (new Section 5.1) explaining the relative dependencies. 

Figure 11 shows the evolution of the droplet surface temperature and the thermodynamic wet-bulb 
temperature in the air at the grid point nearest to the droplet surface for a range of conditions. Initially 
the droplet temperature rapidly decreases to the thermodynamic wet-bulb temperature of the far 
environment. The novel result from this study is that the droplet temperature continues to decrease 
because of the non-equilibrium condition of the thermal and vapor fields during the evaporation 
process. The droplet temperature continues to conform to the wet-bulb temperature directly adjacent 
to the droplet surface, which is lower than the wet-bulb temperature of the far environment. Note 
that the dependence on T∞ and P is much smaller than that on RH∞. The strong dependence on RH∞ 

compared to temperature results from the initial conditions. The droplet temperature initially is in 
thermal equilibrium with the far environment, but the vapor field is far from equilibrium, especially 
for low relative humidity environments. As a result, the vapor diffusion rate (which depends on the 
vapor density gradient) far exceeds the thermal diffusion rate (which depends on the temperature 
gradient). Because the cloud droplets are small, and the relative humidity gradients are large, the 
droplets never come to an equilibrium state before evaporating completely into the subsaturated air. 
The water vapor flux into the larger subsaturated environment maintains a vapor density near the 
droplet surface that approaches but never reaches saturation. As a result, the wet-bulb temperature 
near the droplet surface continues to fall but at a slower rate that depends on RH∞ (Fig. 11). The 
pressure affects both the moisture and temperature diffusion fluxes, so these scale with each other, 
resulting in pressure not having a stronger effect compared to that of the moisture gradient. 

We reexamined the Rogers and Yau [1989], Pruppacher and Klett (1997), and Lamb and Verlinde 
[2011] textbooks. None of these texts discuss the problem of cloud droplet evaporation explicitly. 
Pruppacher and Klett (1997, page 537-546) provide the steady state equations that can be used to 
calculate falling rain drop evaporation, but never address the problem of cloud droplet evaporation 
and its effect on temperature. For cloud droplets, these texts focus on condensational growth. Based 
on Pruppacher and Klett (1997), typical supersaturations in cumulus clouds rarely exceed 1%. Under 
these levels of supersaturation, the steady state approach is quite valid. The equivalent subsaturations 
for droplet evaporation would be relative humidity (RH) of ~99%. We ran additional simulations 
which we are not including in the paper but show here for RH = 99% to examine whether the droplet 
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temperatures approach steady state close to ambient temperature of 268.15 K used in these 
simulations. Results are shown in the figure below. The figure shows that the temperature of the 50 
µm droplet initially decreases by 0.072 K to reach the ambient wet bulb temperature and then over 
the next 1000 seconds of evaporation, the decrease in droplet temperature is only 0.021 K.  

Therefore, to a good approximation, the difference between the ambient and droplet temperatures is 
sufficiently small that the steady state approximation (e.g. Eq. 8.15 of Lamb and Verlinde [2011]) 
can be used with little error in the droplet evaporation equation. In the simulations in this paper 
which are at a much lower relative humidities, steady state conditions are no longer applicable.  

 
The process we are simulating starts in a condition that is far from equilibrium and undergoes a time 
evolution as it attempts to evolve towards a steady-state where the thermal energy towards the droplet 
compensates for evaporative cooling. The droplet initially rapidly cools to the thermodynamic wet-
bulb temperature of the environment similar to what has been shown in Roy et al., 2023. What is 
novel is that under low relative humidity conditions, the thermal and vapor diffusion are still not in 
equilibrium. As the system attempts to achieve equilibrium, the combination of vapor and thermal 
diffusion in the immediate vicinity of the drop leads to a gradual reduction in the wet-bulb 
temperature of the immediate droplet environment leading to a continued slow decrease in the 
droplet temperature as the droplet continues to evaporate. Under high RH (say RH > 90%) 
conditions, as in the simulations we show above, the equilibrium is established soon, and the droplet 
comes to a steady-state temperature approximately equal to the initial thermodynamic wet bulb 
temperature of the environment.  

The simulations in the current paper deal with RH values characteristic of the dry environments 
typically found just above cloud tops of stratiform clouds where cloud-top generating cells are often 
observed. These RH values above cloud top typically vary from as low as 10% to as high as 70%. 
Under conditions where air has a history of descent above a stratiform cloud deck, the vertical 
humidity gradients can be quite large. Observations of relative humidity vertical profiles above Arctic 
stratocumulus clouds reveal strong vertical gradients in RH at cloud top, with RH values as dry as ~ 
50% (Egerer et al., 2021). Also, during the SNOWIE field campaign, dry layer incursions (with RH 
~10-20%) were observed above orographic clouds, which led to very sharp gradients in RH at cloud 
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tops (Xue et al. 2022). Under such conditions, the cloud droplets exposed to these higher 
subsaturations are far from equilibrium. In this study, the numerical simulations conducted to model 
the explicit vapor and thermal diffusion coupling between the evaporating cloud droplet and its near 
environment demonstrate that the droplet never reaches equilibrium with the far environment within 
its lifetime for very dry environments with low RH values. 

As described in the text, the spatiotemporally evolving thermal and vapor density gradients in the 
surrounding air enveloping the droplet play an important role in evolution of the evaporating droplet 
temperature and radius. Section 8.2 and Fig. 8.4 in Lamb and Verlinde [2011] discuss and show the 
steady-state temperature and vapor profiles around the droplet surface. Lamb and Verlinde [2011] 
states “The greater the rate of condensation, the greater the temperature increase.” (Page 328). As we 
can see from our simulations in this study, the greater the rate of evaporation for lower RH∞ values, 
the greater the difference between the droplet temperature and the far environment. The novelty of 
our work lies in simulating the evolution of the evolving thermal and vapor density gradients 
surrounding the evaporating droplet that was never explicitly simulated or considered in these texts 
or other works. 

Egerer, U., Ehrlich, A., Gottschalk, M., Griesche, H., Neggers, R. A. J., Siebert, H., and Wendisch, 
M.: Case study of a humidity layer above Arctic stratocumulus and potential turbulent coupling with 
the cloud top, Atmos. Chem. Phys., 21, 6347–6364, https://doi.org/10.5194/acp-21-6347-2021, 
2021. 

Xue, L., and Coauthors, 2022: Comparison between Observed and Simulated AgI Seeding Impacts 
in a Well-Observed Case from the SNOWIE Field Program. J. Appl. Meteor. Climatol., 61, 345–
367, https://doi.org/10.1175/JAMC-D-21-0103.1. 
 

3. In figure 4.2, it seems that the droplet’s temperature never reaches a steady state. However, since the 
environment has fixed conditions, it should eventually reach a steady state, provided that the droplet 
does not evaporate before. How long does it take to reach this steady state in the cases where the 
droplet has not evaporated yet by the end of the simulation? Somehow it looks like the thermal 
energy in the droplet is decoupled from the environment and cannot be warmed. 

In our response to the Comment 2, we provided results from two additional simulations that consider 
droplets evaporating in a high relative humidity environment where the droplets essentially reach 
steady state before evaporating (the droplet temperature decreases only by one-one hundredth of a 
degree in 1000s after reaching the environmental wet bulb temperature). The RH∞ = 99% condition 
we simulated for this response is analogous to the condensation calculations in textbooks at 
supersaturations of 1%. As we noted in the previous response, droplets do not reach steady state for 
low RH conditions before evaporating.  

4. I was confused by the set-up of the problem. It seems that the authors use cylindrical coordinates 
instead of spherical coordinates. At the beginning of 3.1., I understood that still the droplet is 
spherical and it was only the overall domain that was cylindrical, which is fine. But then section 3.4 
indicates that boundary conditions are applied at the center of the domain r = 0 and not at the center 
of the droplet, which would mean a whole diameter across the droplet. That was confusing because 
it seems to indicate that the authors do not consider a spherical droplet but a cylindrical droplet. Is 
this so? If so, what are the implications in the results? Maybe the authors can clarify this in the paper. 

We have expanded the description of the coordinate systems that are used in COMSOL. For 3D 
problems, COMSOL has an option to use cartesian, spherical or cylindrical coordinates. For a 2D 

https://doi.org/10.1175/JAMC-D-21-0103.1
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axisymmetric domain used in this study, the default coordinate system used by COMSOL is 
cylindrical coordinates, which in 2D is the same as a cartesian coordinate system in r and z. To avoid 
any further confusion, we have removed the word cylindrical and used cartesian coordinates.  

The physics and the governing equations are the same irrespective of coordinate systems, with the 
only difference is that all dependent variables (temperature, vapor concentration, etc) will be 
expressed as functions of r and z. The form of differential operators such as gradient and divergence 
also changes accordingly. The built-in interface takes care of these changes, along with applying the 
boundary conditions at appropriate boundaries as indicated. More details regarding the coordinate 
transformations can be found here. In the end, the results will be independent of coordinate system 
chosen.  

It is actually more complicated since COMSOL uses three coordinate system simultaneously 
(referred to as the spatial, material and mesh frames). We have added additional information in the 
text to help the reader understand the Arbitrary Lagrangian-Eulerian framework used in the study. 
The new text is below: 
The simulation of the spatiotemporally varying droplet temperature and radius of an evaporating 
cloud droplet embedded in a gaseous domain is difficult to solve analytically because of the moving 
and shrinking boundary at the surface of the evaporating droplet. These kinds of moving boundary 
problems are also known as Stefan problems. To model this process, we have used an advanced 
numerical solver, COMSOL (Version 6.0), which employs a finite element method to solve partial 
differential equations (PDEs).  The COMSOL Multiphysics software simultaneously uses spatial, 
material, and mesh coordinate systems described as the spatial frame, material frame, and mesh 
frame, respectively. The spatial frame is a fixed, global, Euclidean coordinate system, which in 2D 
has spatial cartesian coordinates (r, z) with the center of the droplet at (r, z) = (0,0) (Fig. 1). The 
material frame specifies the material substance, in this case, water or air. The mesh frame is a 
coordinate system used internally by the finite element method.  

The Navier-Stokes and Fick’s second law of diffusion equation, which follows from the continuity 
equation, along with appropriate boundary conditions (see Sec. 3) are solved to conserve mass and 
momentum in the whole system. The following physics interfaces in COMSOL were used to 
simulate droplet evaporation: (1) Two-Phase Laminar Fluid Flow, which includes a moving mesh to 
track the shrinking water–air interface of the evaporating water droplet and fluid–fluid interface that 
incorporates evaporative mass flux; (2) Transport of Diluted Species to track water vapor diffusion 
through the air domain and predict the evaporation rate at the droplet surface; and (3) Heat Transfer 
in Fluids which accounts for the non-isothermal flow within the computational domain, temperature-
dependent saturation vapor density at the droplet interface, and a boundary heat source to account 
for the latent heat of evaporation. The computational domain also includes an infinite element air 
domain (COMSOL 2023b) to specify and maintain boundary conditions far away from the droplet. 
The physics modules are coupled through non-isothermal flow between heat transfer and fluid flow, 
and mass transport at the fluid–fluid interface between fluid flow and species transport. 

A non-uniform moving mesh was created by breaking down the computational domain into 
numerous fine elements of variable sizes, using the Arbitrary Lagrangian-Eulerian technique (Yang 
et al., 2014) to accurately track the moving air-water interface at the droplet surface. In the ALE 
technique, the spatial cartesian coordinate system (r, z) is fixed, while the coordinates of the material 
(R, Z) and the mesh (Rm, Zm) nodes are functions of time as the droplet evaporates. However, the 
material and mesh node coordinates are always fixed in their respective frames. Initially, the spatial, 
material and mesh frames are all identical. As the simulation starts, the material and mesh frames 
deform as the moving boundary of the droplet shrinks during evaporation. After each time step, the 

https://www.comsol.com/support/learning-center/article/Modeling-with-PDEs-Coordinate-Transformations-47951/142
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deformed nodes are mapped to the spatial frame, where calculations are performed. In this study, we 
have used triangular mesh elements (COMSOL 2023c) within the droplet and quadrilateral mesh 
elements (COMSOL 2023d) for the rest of the domain as shown in Fig. 1. The triangular mesh allows 
a higher resolution at the droplet surface, and both meshes adjust continually as the droplet surface 
shrinks during evaporation. Finally, to simulate the water droplet evaporating in ambient air system, 
with appropriate initial and boundary conditions, the discretized PDEs are numerically solved with 
adaptive time steps (£ 0.01 s) to maintain numerical stability to obtain the solution (the temporal 
evolution of droplet temperature and radius) for a range of conditions. 

Our wording concerning boundary conditions in the original manuscript was confusing. We replaced 
the first point with the following:  

Within the droplet and throughout the domain, the following conditions are applicable: 

𝒖 ⋅ 𝒏 = 0 

[−p𝑰	 + t] ⋅ 𝒏 = 0 

𝒒	 ⋅ 𝒏 = −𝑘Ñ𝑇 ⋅ 𝒏 = 0 

−𝐷Ñ𝑐 ⋅ 𝒏 = 0 

where 𝒏 is the normal to an outward-pointing vector from the center of the droplet. This constraint 
limits water mass, water vapor and heat flow to the direction normal to the droplet surface.   

5. In section 3.2, the equations do not have a number, which makes it difficult to refer to them. 

Thank you for pointing this out. We have now added numbers for all equations. 

6. In section 3.2, the mass diffusivity retains the dependence on T but the other molecular transport 
coefficients drop that dependence. Why? If the dependence of D on T plays a role, at least the 
dependence of the thermal conductivity k on T should be explored, since both transport phenomena 
are equally important for the problem. Maybe the effect of T on k is negligible compared to that of 
T on k, but then the authors could explain it. 

       The value of thermal conductivity of water used in the simulations is constant at 0.56 W/(m K). We 
chose this value based on Fig. 3 of Biddle et al., (2013) where the thermal conductivity of 
supercooled water is very close to 0.56 W/(m K) for the range of temperatures used in these 
simulations.  

       Based on Beard and Pruppacher (1971), the thermal conductivity of air has very weak dependence 
on temperature over the temperature range used in these simulations. Their thermal conductivity (𝑘!) 
equation is given by  

𝑘! = 	0.004184[5.69 + 0.017(𝑇 − 273.15)]   (W m-1 K-1) 

       For both T = 273.15 K and 253.15 K, the value of 𝑘! is 0.02 W m-1 K-1. Hence, we have used a 
constant value of 0.02 W m-1 K-1. We have added this information to the paper in Section 3.2: 

(2)  Heat Transport: The Heat Transfer in Fluids interface models heat transfer in all domains (air, water, 
infinite element domain) using the following version of the heat equation: 
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𝜌𝐶"
#$
#%
+ 𝜌𝐶"𝒖×Ñ𝑇 + Ñ×	𝒒 = 0 (4) 

𝒒 = 	−𝑘Ñ𝑇 (5) 

       where ρ (kg/m3) is the fluid density, Cp (J/(kg·K)) is the fluid heat capacity at constant pressure, T is 
the temperature, k (W/(m·K)) is the fluid thermal conductivity, u (m/s) is the fluid velocity field from 
the Laminar Flow interface, q (W/m2) is the heat flux by conduction. We chose the value of k for 
supercooled water at 0.56 W m-1 K-1 based on Fig. 3 of Biddle et al., (2013) where the thermal 
conductivity of supercooled water is very close to 0.56 W/(m K) for the range of temperatures used 
in this study. Based on Beard and Pruppacher (1971), the thermal conductivity of air, given by 𝑘! =
	0.004184[5.69 + 0.017(𝑇 − 273.15)] (W m-1 K-1), has very weak dependence on temperature 
over the temperature range used in this study. For both T = 273.15 K and 253.15 K, the value of 𝑘! 
is 0.02 W m-1 K-1. Hence, we have used a constant value of 0.02 W m-1 K-1. 

7. In section 3.2, what is the mathematical expression to calculate Qb? 

The algorithm in COMSOL includes an external heat source or sink term for the air and water 
domain. We are assuming no external heat source, so the value of Qb = 0. To avoid confusion, we set 
Qb = 0 so that it no longer appears in the paper. 

8. In section 3.2, a reference for the interfacial conditions for the stresses would be useful. 

We have added the reference of Yang et al., (2014) in the paper.  

9. In line 392, the authors use the term “the inflection point in the curves,” but this might be misleading 
because those are not inflection points in the usual sense of calculus and curves, i.e., change in the 
sign of the curvature. Maybe a different term is convenient. 

       We have changed the term “the inflection point in the curves” to “the slope transition point” and 
continue to denote it as Ti.  

10. In section 4, most of the text repeats what one can see in the figures without adding more insight 
about the reasons behind that behavior. It might be more helpful to discuss more the physics behind 
the results. 

We have reduced the number of figures by eliminating the three figures showing the results at P = 
850 hPa since the results are summarized in Tables 1 and 2. We have expanded our discussion of the 
remaining figures and the tables in Section 4 to focus on the physics behind the results. In section 
4.1, we have added the following paragraph, describing the physics behind the simulations.  

The evaporation process in these experiments starts in a condition that is far from equilibrium. The 
coupled air-droplet system attempts to evolve towards a steady-state where the thermal energy 
towards the droplet compensates for evaporative cooling at the droplet surface. In this process, the 
droplet initially rapidly cools to the thermodynamic wet-bulb temperature of the initial environment 
similar to what has been shown in Roy et al., (2023). However, under low relative humidity 
conditions, the thermal and vapor diffusion are not yet near equilibrium. As the system attempts to 
achieve a steady-state, the imbalance in the heat fluxes associated with vapor and thermal diffusion 
in the immediate vicinity of the drop leads to a gradual reduction in the wet-bulb temperature of the 
immediate droplet environment leading to a continued slow decrease in the droplet temperature as 
the droplet continues to evaporate. 
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We have also added Section 5.1 in response to review questions #2 and #11.  

11. For instance, in section 4.2, the dependence on T∞ and P seems to be much smaller than that on RH∞. 
Why? It might be more useful to differentiate those dependences and concentrate on the latter one 
instead of showing all figures. Otherwise, there are so many figures that it becomes difficult to 
distilled the new information that they convey. 

Please see our response to comment #2. As noted above, we eliminated three of the six figures 
showing results and focused the text more on the physics behind the results.  

12. In line 431, the authors write “while the decrease is 5 K in 120 s.” However, figure 6 seems to 
indicate 2 K instead of 5 K. Is the reference to the figure correct? 

Yes, it’s correct. The correct panel to look at is Fig. 5 (d) in the revised manuscript (Fig. 6(d) in the 
original manuscript), which shows the full 120s evolution. The other two figures (5e, 5f) only show 
the evolution of temperature at < 1 s. The exact value of decrease in droplet temperature (4.69 K) 
can be read off Table 1.  

13. In that same section, section 4.3, it seems that the main result is that the droplet’s temperature is well 
approximate by the wet-bulb temperature. On the other hand, would not that be expected because of 
the definition of wet-bulb temperature? 

       Also, it is difficult to see something in Fig 8. Why not plot the wet-bulb temperature in figure 4 and 
5 and see how it approaches the droplet’s temperature at a time Ti? 

Rather than clutter figures 4 and 5 (now Figs. 3 and 4) with more lines, we have added Figure 11 to 
the revised paper showing this evolution for one pressure (500 hPa), temperature (268.15 K), three 
relative humidities, and three droplet sizes. Just to be clear, the main result is that the droplet’s 
temperature decreases to the wet-bulb temperature directly adjacent to the drop surface which is 
lower than the wet-bulb temperature of the far environment because of the non-equilibrium of the 
thermal and vapor fields during the evaporation process. Our previous paper (Roy et al., 2023) 
showed that at steady-state, the drop temperature can be well-approximated by the thermodynamic 
wet-bulb temperature of the far environment. 

14. Line 489 indicates the “The droplet lifetimes vary widely...”, but I am not sure what is meant by 
widely because the lifetime changes by a factor of 4 while the RH has been changed by a factor of 
7. It seems that the lifetime simply follows the change in the control parameter RH. 

We removed the word “widely”.  

15. Line 496 says “From Figs. 9-14, the decrease in droplet temperatures is independent of the initial 
droplet size if all other initial environmental conditions are kept constant.”. I am not sure if I 
understand this because fig 9 shows a difference between panels a, d, an g.  

       Sorry for the confusion. We have revised the statement to read as follows: 

From Figs. 8-10, for a given initial environmental condition (RH∞ and T∞), the droplet temperatures 
at the end of their lifetimes are independent of the initial droplet sizes.  

16. In fig 4 and 5, the initial decrease of T until Ti seems independent of r0 but later on there seems to be 
a dependence... 
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       Fig. 3 and 4 only show the first 10s of the droplet lifetimes. The differences that the reviewer points 
out exist because the total lifetimes don’t appear on the figure. Table 2 lists the values of the total 
lifetimes.  

17. In line 512, “The decrease in droplet temperatures and increase in droplet lifetimes depict similar 
relationships with RH∞ and r0.” Why is the dependence on T∞ smaller than the dependence on other 
parameters? 

Please see response to Comment #2.  

18. Line 634 indicates “the classical pure-diffusion-limited evaporation approach, which ignores 
evaporative cooling at the droplet surface”. I am not sure what is meant because this effect is 
discussed textbooks like Rogers and Yau [1989] and Lamb and Verlinde [2011] which are often used 
to teach microphysics. 

By “classical”, we mean Maxwellian approach (Maxwell, 1890; Eq 13-10 of Pruppacher and Klett, 
1997), which is what is discussed in relationship to condensation in both Rogers and Yau [1989] and 
Lamb and Verlinde [2011]. In that approach, the droplet temperature is assumed to be in equilibrium 
with the ambient environment. Again, these textbooks don’t address the evaporation problem with 
regards to evolving cloud droplet temperature and lifetime. We changed the term “classical” to 
Maxwellian to be clear what we are referring to.  

19. Line 669 seems to contain the main message “Comparing these values with reported droplet freezing 
timescales available from experimental studies, droplet freezing events can potentially occur within 
the time frame when these droplets can reach lower temperatures due to evaporative cooling before 
they completely dissipate into the subsaturated air.” However, this message was a bit lost in the 
middle of a long paragraph. Maybe it helps to make the statement at the beginning and then elaborate 
it. 
Thank you for your suggestion. We have reorganized the paragraph to move this point toward the 
front.  

20. In the conclusions, the first sentence says “...internal thermal gradients within the droplet as well as 
resolving thermal and vapor density gradients in the surrounding ambient air.” suggesting that this 
is new. However, these gradients are retained in the classical studies, e.g., Rogers and Yau [1989] 
and Lamb and Verlinde [2011]. Do the authors mean the temporal variation of those gradients? 
The reviewer is correct. We have changed the sentence to read: 
In this study, we presented a quantitative investigation of the temperature and lifetime of an 
evaporating droplet, considering internal thermal gradients within the droplet as well as resolving 
spatiotemporally varying thermal and vapor density gradients in the surrounding ambient air. 
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