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Abstract.

Snowpacks modulate water storage over extended land regions, and at the same time play a central role in the surface albedo

feedback, impacting the climate system energy balance. Despite the complexity of snow processes and their importance for

both land hydrology and global climate, several state-of-the-art land surface models and Earth System Models still employ

relatively simple descriptions of the snowpack dynamics. In this study we present a newly-developed snow scheme tailored5

to the Geophysical Fluid Dynamics Laboratory (GFDL) Land Model version 4.1. This new snowpack model, named GLASS

("Global LAnd-Snow Scheme"), includes a refined and dynamical vertical layering snow structure which allows us to track

in each snow layer the temporal evolution of snow grain properties, while at the same time limiting the model computational

expense, as necessary for a model suited to global-scale climate simulations. In GLASS, the evolution of snow grain size and

shape is explicitly resolved, with implications for predicted bulk snow properties, as they directly impact snow depth, snow10

thermal conductivity and optical properties. Here we describe the physical processes in GLASS and their implementation, as

well as the interactions with other surface processes and the land-atmosphere coupling in the GFDL Earth System Model.

The performance of GLASS is tested over 10 experimental sites, where in-situ observations allow for a comprehensive model

evaluation. We find that, when compared to the current GFDL snow model, GLASS improves predictions of seasonal snow

water equivalent, primarily as a consequence of improved snow albedo. The simulated soil temperature under the snowpack15

also improves by about 1.5 K on average across the sites, while a negative bias of about 1 K in snow surface temperature is

observed.

Copyright statement. TEXT

1 Introduction

Snow is a fundamental component of the global water and energy balance. Over extended regions on Earth, a significant20

fraction of the water budget is stored over land as snow, so that soil moisture, runoff and water availability for ecosystems and

human communities are directly impacted by changes in snow (Cohen and Rind, 1991; Xu and Dirmeyer, 2013). Snow cover
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also plays an important role in the energy balance at the surface (Qu and Hall, 2014; Thackeray et al., 2018). Compared to

other natural surfaces, snow is characterized by the highest reflectivity in the visible range, and by an exceptionally low heat

conductivity. Because of these properties, snow has been shown to significantly affect near-surface temperatures (Armstrong25

and Brun, 2008; Betts et al., 2014) and to play a primary role in modulating the warming rate of arctic regions (Stieglitz

et al., 2003) and permafrost extent (Burke et al., 2013). Thus, the presence of snow fundamentally alters the near-surface

temperature and in turn the energy partitioning between land surface, subsurface and atmosphere (Henderson et al., 2018).

Numerical simulations of snowpacks are used in many scientific applications, ranging from watershed-scale hydrology and

flood forecasting (Nester et al., 2012; Blöschl, 1999) to centuries-long, global simulations of the climate system (Kapnick and30

Delworth, 2013). Given the profound implications of snow for land-atmosphere interactions over extended regions of Earth, it

is paramount that land surface models adequately describe the coupling between snow and soil, vegetation, and the atmosphere.

Fully understanding the implications of snow for land hydrology and the climate system requires a detailed representation

of its physical properties in numerical models. The complexity of snow schemes used in land surface modelling varies greatly

and has been previously classified in three complexity levels (Boone and Etchevers, 2001; Vionnet et al., 2012). The first35

class includes the simplest snow models, which either consist of a single snow layer, or of a composite snow-soil medium.

Traditionally these computationally inexpensive snow models have been employed in numerical weather prediction and global

climate models. The second class of "intermediate complexity models" addresses several deficiencies of the former class of

models by including at least a coarse vertical discretization of the snowpack, and by explicitly modelling the liquid phase

water and variations in snow density. Intermediate-detail snowpack models include the ECMWF snow scheme (Dutra et al.,40

2010; Arduini et al., 2019), the Community Land Model (CLM) 4.5 (Oleson et al., 2013), the Canadian Land Surface Scheme

(CLASS), JULES (Best et al., 2011), Snow17 (Anderson, 1976), and WEB-DHM-S (Shrestha et al., 2010).

Finally, the third class consists of "detailed snowpack models": These are characterized by a much finer vertical layering

of the snow, which can evolve dynamically with snowfall and snow melt. Snow microphysical properties are tracked in each

snow layer, thus allowing for a more realistic description of physical processes. Such highly-detailed snowpack models include45

SNOWPACK (Bartelt and Lehning, 2002; Lehning et al., 2002b, a), SNTHERM89 (Jordan, 1991), and CROCUS (Brun et al.,

1992, 1997; Vionnet et al., 2012). Some models explicitly resolve the propagation of shortwave radiation within the snow layers

(For example, SNICAR (Flanner and Zender, 2005; Flanner et al., 2007), TARTES (Libois et al., 2013) and GEMB (Gardner

et al., 2023)). Since higher-detail snow schemes tend to be computationally expensive, applications of snow models targeting

long, global-scale numerical simulations of the Earth system must strike a balance between physical detail and computational50

demands. Despite the need for this trade-off, it has been recognized that a number of physical processes impacting the evolution

of the snowpack should be resolved in land surface models, as they can be relevant for large–scale hydrological studies and for

coupled climate simulations. These include the effect of thermal insulation (Cook et al., 2008; Lawrence and Slater, 2010) and

the effect on snow microphysics on albedo (Flanner and Zender, 2006; Vionnet et al., 2012; He et al., 2017).

The increasing fidelity of snow processes using detailed snow schemes has been shown to benefit both climate studies (Dutra55

et al., 2010; Decharme et al., 2016) and numerical weather predictions applications (Arduini et al., 2019), as snow does not

only impact the hydrological response, but also interacts with the atmosphere through surface temperature and reflectivity.
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The snow scheme currently implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) land model LM 4.1

(Shevliakova et al., 2024) can be considered a scheme of intermediate complexity: The snowpack is characterized by a �xed

number of vertical layers (routinely set to 5) each characterized by its temperature, ice, and liquid water content. However, the60

density of the snow is set to a constant value (currently,250 kg m� 3), so that the model provides limited information on snow

depth. As a consequence, snow heat conductance is also a constant, which can lead to challenges in determining the vertical

temperature pro�le of snow and soil. Finally, no description of snow microphysics is present, so that dependence of physical

processes on the snow micro structure (e.g., the evolution of snow optical properties with age and snow compaction) is not

accounted for. However, this parsimonious snowpack model has been successfully employed to simulate snow cover at the65

global scale (Kapnick and Delworth, 2013).

The focus of this work is to present the Global LAnd Snow Scheme (GLASS), a novel snow model developed for LM

4.1. The primary objective of the development of GLASS is to increase the realism of the snow processes in LM4.1, while at

the same time limiting the computational burden of the model so that it can be effectively employed in global Earth system

simulations. Key physical processes that were absent in LM4.1 have been adapted in GLASS from existing parameterizations70

used in detailed snow schemes. In particular, GLASS now includes the treatment of snow compaction, wind drift effect, and

snow aging, and accounts for the effects of these processes on snow thermal and optical properties. The evolution of snow

properties with snow aging accounts for both dry and wet metamorphism. In GLASS these processes affect not only the

growth of snow grains, but also the evolution of their shape. This information is in turn employed for evaluating snow albedo,

which in GLASS depends explicitly on both optical size and optical shape of snow grains. While increasing the �delity of the75

snow physical processes, GLASS builds on the existing implicit solution scheme for the �uxes between land and atmosphere,

which is numerically stable and ef�cient for the time step (30 minutes) routinely used in global-scale coupled land-atmosphere

simulations. To avoid an excessive increase in the computational demands of the new snow model, the energy balance at the

land surface is linearized in LM 4.1. This approach leads to a trade-off between computational cost and physical realism,

as an iterative solution of the energy balance would lead to a considerable increase in computational expense. GLASS is80

characterized by a dynamic snow vertical layering structure which allows to ef�ciently track the evolution of snow properties

with age, as is currently done by a few high detail snow schemes such as CROCUS (Brun et al., 1992; Vionnet et al., 2012). A

relayering scheme is used to determine the optimal vertical discretization of the snowpack, so as to obtain a proper trade-off

between model detail and computational expense.

After presenting the features of GLASS we test its performance over a set of sites widely used as benchmark, including in85

previous snow model intercomparison efforts (Krinner et al., 2018). The data set used here spans a wide range of climate and

terrain conditions, so as to characterize the behavior of the model. The evolution of snowpack in vegetated areas constitutes

a major source of uncertainty, which carries potentially large implications for constraining the snow albedo feedback over

the Northern Hemisphere. We contribute to this challenge by evaluating GLASS at three forested sites that are part of the

ESM-SnowMIP project. The remainder of the manuscript is organized as follows: Section 2 describes in the detail the model90

physics and implementation in LM 4.1, including the existing treatment of snow processes. The GLASS is presented in detail

in Section 3. Section 4 describes the experimental setup used in our study as well as the data used as model input, atmospheric
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forcing and snow data used for model validation. Results and discussion follow in Sections 5 and 6, while model limitations

and considerations for future research directions are discussed in Section 6. Conclusions from this study are featured in Section

7.95

2 Overview of land and snow processes represented in the GFDL Land Model

2.1 Land model overview

The land component of the GFDL ESM 4.1 (Dunne et al., 2020; Shevliakova et al., 2024), hereafter termed LM4.1, provides

a detailed description of the key processes involved in the mass and energy exchanges between land and atmosphere. In

LM4.1, the land domain is discretized in a number of grid cells. To represent the effects of heterogeneity of land-atmosphere100

interactions and terrestrial biogeochemical processes, the model employs a mosaic approach where each grid cell can be

further split into a set of sub-grid tiles: fractions of the grid cell with distinct physical and biogeochemical properties. LM4.1

resolves the land-atmosphere exchanges of energy, water, and tracers separately for each of the tiles. The evolution of the

relevant terrestrial properties — such as the state of vegetation, albedo, soil moisture and temperature, snow cover, etc. — is

also simulated separately for each of the tiles, while allowing for interaction due to land use transitions and other processes105

that can dynamically change the tiling structure. Such an approach captures the effects that land use has on land-atmosphere

physical interactions, as well as on the terrestrial carbon cycle (Shevliakova et al., 2009; Malyshev et al., 2015; Chaney et al.,

2018; Zorzetto et al., 2023). Vegetation in the model is dynamic, represented by a set of cohorts, with each cohort being a

set of plants with similar characteristics, i.e. species, size, and age. Cohorts change as the vegetation assimilates carbon (and

undergoes other processes, such as mortality, reproduction, etc.), and organize themselves in a number of layers, according to110

the Perfect Plasticity Approximation (PPA) approach (Strigul et al., 2008; Weng et al., 2015; Martínez Cano et al., 2020). In

the present application we employ a con�guration of the model where we focus on a single tile that corresponds to each of the

sites where point-scale observations were obtained. The time step used in the model for physical processes related to snow, soil

and land-atmosphere interactions is 30 minutes. In the GFDL LM 4.1, the sensible heat (Hg) and evaporation (Eg) �uxes are

computed using the bulk formulas driven by the gradient in temperature and speci�c humidity between atmosphere (Ta , qa)115

and the near-surface "canopy air" layer (Tc, qc)

Hg = � air cpCD U (Tc � Ta) (1)

Eg = � air CD U (qc � qa) (2)

whereU is the wind above the constant �ux layer andCD is the stability-dependent drag coef�cient computed from the120

Monin-Obukhov similarity theory (Garratt, 1994; Foken and Napo, 2008),cp is the speci�c heat of air, and� air is the air

density. Within the vegetation canopy, the aerodynamic resistance is computed assuming an exponential wind velocity pro�le
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following the approach by Bonan (1996). In the present work we use the same formulation for turbulent �uxes in all model

con�gurations described below.

2.2 Snow scheme in LM4.1125

The existing snow module part of GFDL LM4.1 (termed "Current Model", LM-CM or CM in throughout this work) can be

classi�ed as an intermediate complexity snow scheme according to the de�nition of Boone and Etchevers (2001). Fluxes of

water and heat in the snowpack and soil continuum are based on the model by Milly et al. (2014). If snow is present on the

ground, the snowpack is composed of a �xed number of levels, routinely set to 5. Each snow layer is characterized by its tem-

perature, and by its liquid and ice mass content. No description of snow microphysics is present, so that key snow properties (in130

particular, snow density and heat conductance) are assumed to be constant. Light does not penetrate the snowpack: Shortwave

radiation contributes to the surface energy balance, and the resulting net heat �ux constitutes the upper boundary condition for

resolving the heat diffusion through the snow layers and the underlying soil. The snow albedo is computed with an empirical

formulation based on the Bidirectional Re�ectance Distribution Function (BRDF) described below in Appendix C. This model

does not explicitly account for the effects of snow grain size or for the presence of light absorbing particles within the snow, but135

rather yields typical re�ectivity values for snow-covered surfaces. The effect of snow metamorphism on its optical properties is

mimicked by introducing a dependence of the BRDF model parameters on the temperature of the snow uppermost layer, with

warm snow being characterized by reduced re�ectivity.

3 The Global Land-Atmosphere-Snow Scheme (GLASS) in LM4.1

GLASS was developed building upon the existing LM-CM snow scheme with the objective of including representations of140

important snow physical processes into the model. For each LM4.1 model tile, GLASS is a 1D snow model coupled to the soil

and multi-layer canopy schemes part of LM4.1. GLASS simulates the evolution of the snowpack and the exchanges of water

and energy with the lower atmosphere and the underlying soil. The vertical discretization of the snowpack is dynamic, with

the number and thickness of snow layers being determined both by history (e.g., new snow layers being added on top of the

snowpack due to precipitation events) and by computational considerations, so that snow layers can split and merge tending145

to an optimal vertical pro�le. In GLASS, each snow horizontal layer is characterized by a number of physical properties. A

schematic representation of the snow vertical structure in GLASS is shown in Figure 1. Energy and mass �uxes at the upper

boundary of this medium are determined by liquid and solid precipitation (possibly percolating through canopy layers, if

vegetation is present), evaporation or sublimation, and the net heat �ux into or out of the snowpack is determined by solving

the energy balance at the surface. Shortwave radiation can penetrate the snowpack depending on its thickness and optical150

properties, as discussed below. At the bottom of the snow column, the boundary condition is given by the �ux of heat and water

into the underlying soil layers, or by runoff.
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Name Variable Units Prognostic Size

� zk Thickness m Yes 1

wl;k Liquid content kg m� 2 Yes 1

ws;k Ice content kg m� 2 Yes 1

Tk Temperature K Yes 1

dopt;k Optical diameter m Yes 1

� k Snow dendriticy dimensionless Yes 1

sp;k Snow sphericity dimensionless Yes 1

H sn;k Heat content J m � 2 Derived 1

� k Heat conductance J m � 2 K � 1 Derived 1

ck Heat capacity W m � 1 K � 1 Derived 1

� k Snow density kg m� 3 Derived 1

agek Snow age days Yes 1

Table 1.List of physical variables characterizing thek th snow layer.

3.1 Representation of snow at the ground and its vertical discretization

A �ne vertical discretization of the snowpack is key to resolve the vertical variation of snow physical properties which affect

the overall snowpack mass and energy balance. In GLASS, this requirement is met by employing a vertical structure which can155

change dynamically, designed to strike a trade-off between the desire of physical detail, and the need to limit the computational

requirements of a model used for global-scale simulations. The snowpack, if present, is composed of a variable numbernL of

horizontal layers, numbered from the top of the snowpack to the bottom (k = 1 ; : : : ;nL ). Each snow layer is characterized by

a set of physical properties which evolve dynamically. These are the layer's liquid (wl;k ) and ice (ws;k ) contents, its thickness

� zk , temperatureTk , heat capacityck , and heat conductance� k . In each layer, we assume that ice and liquid water components160

of the snowpack have the same bulk temperature, which can thus be determined by a single heat conservation equation.

Additionally, the physical properties of snow grains in each layer are described by three prognostic variables: The snow grain

dendriticy� k , sphericitysp;k , and optical diameterdopt;k . Together, these three prognostic variables identify optical size and

shape of snow grains and are used for albedo calculations. A complete description of the physical properties of each snow layer

is provided in Table 1.165

In GLASS, the thickness of the snow layers is adaptive to the snow depth and the thermal regime within the snowpack. To

accurately represent the snow thermal conductivity, the layers are generally thinner in the region of the high thermal variability

of gradients (e.g. near the surface, which is subject to high-frequency variation of �uxes, or in the vicinity of soil surface)

and thicker in the middle of the snowpack. The number and thickness of layers is dynamic. Snowfall events of large enough

magnitude can lead to the creation of� nL new layers on top of existing snow or bare soil. Similarly to (Vionnet et al., 2012),170
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� nL is given by

� nL = max[max(3 � nL ;1) ; min(5;dafall � � zfall e)] (3)

where� zfall is the depth of newly fallen snow ([m]) andafall = 100 m� 1. Eq. (3) ensures that after snowfall the number

of snow layersnL + � nL is at least 3. The number of newly created layers� nL originated from the snow falling in a single

time step can be up to 5, depending on the magnitude of the precipitation event. In case of weak precipitation event, instead of175

creating new layers according to eq. (3), the precipitating snow mass is added to the existing snowpack uppermost layer, if any

(this happens if the newly deposited snow depth is up to half the depth of the uppermost existing snow layer). In this case, we

denote the part of solid precipitation ratef s which contributes to the existing top snow layer asf s1 , so thatf s1 = f s in case of

weak snowfall which does not lead to the creation of new snow layers, andf s1 = 0 otherwise. In addition to snowfall, other

physical processes (e.g., sublimation, snow compaction, snow melt) can modify the thickness of existing snow layers. To avoid180

dealing with a snowpack composed of an excessive number of thin layers, GLASS performs at each time step a re-layering

of the snowpack, with the objective of avoiding excessive costs in compute time and memory as well as potential numerical

instabilities originating from dealing with very small snow layers resulting from snow melt or sublimation.

The model optimizes the vertical layering of the snowpack by comparing the current layers with an optimal vertical distribu-

tion of snow layers de�ned for the current snow depth value. The optimal distribution of layers is designed with the objective185

of maintaining relatively thin layers close to the surface in order to better resolve heat diffusion and snowpack properties, and

coarser layers at depth so as to limit the overall number of layers. This is achieved by �rst specifying the optimal thickness

of the top and the bottom layers. Below the �rst speci�ed top layer, the optimal layers increase in thickness with a given

constant ratio (set to 1.5 in the current model con�guration), until they reach a speci�ed maximum thickness (1m in the de-

fault con�guration used here). These parameter values were selected in order to restrain the number of layers for computing190

ef�ciency, while allowing for relatively thin layers close to the surface, so as to better represent the vertical heterogeneity of

snow properties and the temperature gradient close to the snow surface. There is no maximum number of snow layers set in

the model.

At each model time step, the current snowpack vertical structure is compared with the optimal one, and differences are

minimized through merging and splitting of existing snow layers. To merge or split the layerk, GLASS examines a penalty195

functionPL that, given boundaries of the layerszk ;k = 0 : : :nL , returns a value indicating how far the current distribution is

from the optimal con�guration:

PL =
n L � 1X

i =0

(zi +1 � zi � D L (zi ))
2 (4)

whereDL (z) is the optimal layer thickness at depthz given the current snow depth. The model loops through the existing snow

layers, and for each layer compares the current value ofPL with the corresponding metric evaluated after merging the current200

layer with the next. If after the merging of the layers the new value of the error metric is lower, the two layers are merged, unless

the layers are not otherwise prohibited from merging because they have signi�cantly different physical properties. Similarly,

in a second loop GLASS attempts to split each layer by comparing the metricPL with that relative to a new pro�le obtained
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by splitting a layer in two. Any time this comparison leads to a decrease in the metricPL , the layer is split in two before

examining the next. Two layers can be merged only if their physical properties are not too dissimilar. In the current application,205

we allow the merging of layersk andk + 1 only if their differences in grain sphericity, optical diameter and snow density are

below given thresholds (namely,jsp;k � sp;k +1 j < 0:2; jdopt;k � dopt;k +1 j < 1� 10� 4 m, andj� k � � k+1 j < 30 kg m� 3). Thus,

in the process of merging snow layers for computational purposes, the vertical heterogeneity of snow physical properties is

taken into account and preserved to some extent. At each time step, the vertical layering pro�le of the snow is compared to this

theoretical optimal pro�le. The distance of each layer from the optical thickness at that depth is compared to that of the pro�les210

obtained splitting and merging each layers with its neighbours. If such operations lead to a vertical pro�le which is closer to

the optimal one, the split or merge operation is performed on the snow layers. While there is no upper limit on the number of

layers, this approach allows us to control the evolution of the snow vertical pro�le.

3.2 Energy balance at the surface

Figure 1 provides a schematic representation of the physical processes included in the snow model. The energy balance at215

the surface is coupled with that of the snow or soil underneath, and the vegetation layers and canopy air above, and can be

expressed in units of[W m � 2] as

R�
sg + Rlg � Hg � L gEg � G � L f M g = 0 (5)

whereRlg is the longwave net radiative �ux at the surface,L f is the latent heat of water fusion,L g the latent heat of evaporation

or sublimation, respectively,Eg the rate or evaporation or sublimation,G the heat �ux in or out of the ground, andM g the220

melting rate of water at the surface (if> 0, else it is the freezing rate). In the presence of deep enough snowpacks (snow depth

hs > h sw;min = 0 :02 m by default), the net shortwave radiationRsg is absorbed within the snowpack instead of contributing

to the surface energy balance, and thusR�
sg = 0 . In the case of thinner snowpacks,R�

sg = Rsg . Similarly, the latent heat carried

by precipitation is accounted for in the energy balance of the underlying snowpack or soil where precipitation accumulates.

Equation (5) is solved together with the equations of mass and energy balance of canopy air, the energy balance of any225

vegetation canopy layers, and the mass balance of any liquid or solid water intercepted by canopy layers.

In order to run ef�ciently in long global-scale simulations, the solution of this system of equations must avoid excessive

computational costs and be numerically stable for relatively large time steps (the present application uses a 30-minute time step,

which corresponds to physics time step in typical GFDL atmospheric model con�guration). To avoid numerical instabilities,

the system is solved using a fully implicit scheme. This is done by linearizing the system of equations around the current value230

of its prognostic variables. These are the temperatures of the ground, vegetation canopies and canopy air, water/snow mass

intercepted by the canopies, and the speci�c humidity of canopy air. The solution of this system of equations conserves energy

and water mass as required by long Earth system simulations. However, the rateM g of water melt or freeze at the surface of the

snowpack (if present) or at the ground surface (if snow is absent) imposes a signi�cant non-linearity in eq. (5), since this term

is constrained by the amount of liquid or frozen water which can undergo phase change in the snowpack or in the upper soil235

layer. In this case, following the procedure by Milly et al. (2014), the single nonlinear eq. (5) is solved in order to obtain the
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Figure 1. A schematic representation of the �uxes of energy and water included in the GLASS snow model. The red and green dashed

rectangles indicate the energy �ux terms contributing to the surface energy balance, and the shortwave radiative balance at the surface,

respectively. Exchange terms include net longwave (RLg ) and net shortwave (RSg ) radiation (with downward and upward radiation denoted

by RSd andRSu , respectively), as well as sensible heat �ux (H g ) and latent heat of sublimation (L gEg ) and due to the melting rate at the

ground (M g ). Solid (f s ) and liquid (f l ) precipitation rates are also represented. Heat �uxes between layers (H k ) and heat sources due to

shortwave radiation absorption (Sk ) within the snowpack are also represented, as is the snowpack contribution to runoff (Rsn;l ) and liquid

water in�ltration into soil (I sn;l ). Fluxes of liquid water (blue arrows) and ice (pink arrows) are also featured, withqk for liquid �ow between

the snowpack layersk andk + 1 . Note that �uxes of heat advected by solid and liquid precipitation, vertical liquid water �ow within the

snowpack, in�ltration and runoff are all represented in the model although not explicitly represented in this �gure for simplicity.
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change in temperature at the surface of the ground (or, of the snowpack if present, the temperature at the top of the snowpack),

Tg, which in turn is used to obtain the tendencies of all other prognostic variables of the problem from the linearized system.

The solution of eq. (5) uses the current liquid or solid mass available (either in the snowpack, if present, or in the uppermost

soil level) to provide a constraint for the change of phase rateM g. The new temperatureTg + � Tg obtained by the solution of240

eq. (5) will then be propagated downward through the snowpack by solving implicitly the vertical heat diffusion process.

3.3 Snowpack mass balance

In GLASS, the evolution of the snowpack is computed by solving the energy and mass conservation equations for each snow

layer. The model representation of all physical processes is energy and mass conserving, as required for century-long simula-

tions. The mass balance of total (liquid and frozen) water for the entire snowpack reads245

dWsn

dt
= f l + f s � Eg � I sn;l � Rsn;l (6)

whereWsn = Wsn;l + Wsn;s [kg m� 2] is the total water content of the snowpack (i.e., the snow water equivalent), withWsn;s =
P n L

k=1 ws;k andWsn;l =
P n L

k=1 wl;k . The �ux terms in the right hand side of eq. (6), in[kg m� 2s� 1] represent respectively

liquid (f l ) and solid (f s) effective precipitation rates (i.e., net of any canopy interception), the snow sublimation rate (Eg), the

liquid water �ux to the underlying soil (I sn;l ), and the contribution to the grid cell runoff from the snowpack (Rsn;l ). If snow250

is present on the ground, only sublimation occurs in GLASS. The mass balance in eq. (6) is solved by adding any new snow

layers created by fresh snowfall according to eq. (3), and by solving the balance of liquid and frozen water for each snow layer.

The liquid mass balance for snow layerk reads

dwl;k

dt
= ql;k � 1 � ql;k + M k (7)

whereM k is the total melt (or freeze) rate in layerk, ql;k � 1 is the �ow rate from layerk � 1 to layerk, andql;k that from layer255

k to k + 1 . The boundary conditions for eq. (7) areq0 = f l at the top of the snowpack, andqn L = I sn;l at the bottom of the

snowpack. For the solid mass balance in layerk we have

dws;k

dt
= � M k + Egk + f sk : (8)

whereEgk = Eg if k = 1 , elseEgk = 0 , andf sk = f s1 if k = 1 , elsef sk = 0 . Heref s1 is the fraction of effective solid precipi-

tation that does not create new snow layers according to eq. (3). Note that in GLASS the total snow meltM k is computed in two260

steps: First, when solving implicitly the surface energy balance, an estimate of the total melt is obtained and the corresponding

latent energy �ux contributes to the energy balance at the snow surface. Then, when solving the vertical water �ow and surface

energy balance through the snowpack, additional melt or freeze can occur in order to satisfy thermodynamic constrains (i.e.,

the thermodynamic equilibrium of each layer is computed, which can lead to additional melt or freeze occurring).
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3.4 Snowpack energy balance265

The vertical energy balance in the snowpack is expressed as

@Hsn

@t
=

@qh
@z

+ Sz (9)

with H sn being the energy content of the snow,Sz the local source term due to shortwave radiation absorbed within the

snowpack, andqh the vertical heat �ux given by

qh = � �
@T
@z

+ cl ql (Tl � TF ) (10)270

whereTl the temperature of the vertical water �ow of rateql , T(z) is the local snow temperature ad depthz, TF is the freezing

temperature of water,� is the snow thermal conductivity, andcl the speci�c heat of liquid water. The boundary condition at

the top of the snow (z = 0 ) is given by the net heat �ux at the surface from eq. (5), and by the effective liquid precipitation rate

ql jz=0 = f l and its temperatureTl jz=0 = Tpr;l .

The bottom boundary condition (atz = zb) between snow and soil reads275

� �
�

@T
@z

� �
�
�
�
z= zb ; soil

= �
�

@T
@z

� �
�
�
�
z= zb ; snow

+ cl (Tl jz= zb � TF ) I sn;l (11)

and additionallyT jz= zb ; snow = Tjz= zb ;soil .

3.5 Numerical solution for the energy balance of the snowpack

Following the approach already used in LM4.1 (Milly et al., 2014), we solve the energy conservation within the snowpack by

separating "dry" processes (heat conduction and sublimation from the top layer) from "wet" processes, i.e., those related to the280

vertical �ux of liquid water. The heat content of a snow layer is de�ned with respect to ice at freezing temperature — i.e., for

snow layerk the heat content is de�ned as

H sn;k = ( cl wl;k + csws;k ) (Tk � TF ) + L f wl;k (12)

Wherecs andcl are the speci�c heats of solid and liquid water, respectively (in [J kg� 1 K � 1]) and L f is the latent heat of

fusion of water at freezing point (in[J kg� 1]). The vertical heat diffusion equation is solved by discretizing the equation over285

the vertical layer structure of the snowpack.

For layerk we have

ck
@Tk
@t

= H k � 1(Tk � 1;Tk ) � H k (Tk ;Tk+1 ) + Sk (13)

whereck = cl wl;k + csws;k , H k is downward heat �ux through the bottom of the layerk to layerk + 1 , andSk represents the

heat source term in layerk from the absorption of solar radiation. We linearize �uxes around their values at the beginning of290

the time step:

H k = H0;k +
@Hk

@Tk
� Tk +

@Hk

@Tk+1
� Tk+1 = H0;k + � k � Tk � � k � Tk+1 (14)

where� k is the heat conductance between the snow layers, de�ned next.
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3.6 Heat conductance between snow layers

For two consecutive snow layers,k andk + 1 , each with its own thickness (� zk ) and heat conductivity (� k ), the resistance to295

downward heat �ux between layers can be expressed as

1
� k

=
� zk

2� k
+

� zk+1

2� k+1
=

1
2

� k � zk+1 + � k+1 � zk

� k � k+1
(15)

The downward heat �ux from layerk to k + 1 is thereforeH k = � k (Tk � Tk+1 ). The thermal conductivity of the snowpack

� k ( in (W m � 1 K � 1) is parameterized as a function of snow density� k in each layer, (kg m� 3) using the parameterization

proposed by Calonne et al. (2011), Sun et al. (1999), and used e.g., in Arduini et al. (2019). In this formulation, the total snow300

thermal conductivity is the sum of two terms: The �rst is a quadratic function of density representing the actual snow thermal

conductivity (Calonne et al., 2011), while a second term accounts for the additional heat advected by water vapor (Sun et al.,

1999):

� k = � c;k + � wv;k =
�
a1� 2

k � a2� k + a3
�

+
P0

Pa

�
b1 �

b2

Tk � b3

�
(16)

wherea1 = 2 :5� 10� 6 Wm5K � 1kg� 2, a2 = 1 :23� 10� 4 Wm2K � 1kg� 1, a3 = 0 :024 Wm� 1K � 1, b1 = � 0:06023 W m� 1 K � 1,305

b2 = 2 :5425 W m� 1, andb3 = 289:99 K. Pa is the near surface atmospheric pressure andP0 = 1000 hPa. In this application

we use eq. (16) for� k as it accounts for the effects of water vapor. As an alternative, we also implemented the snow heat

conductance formulation proposed by Yen (1981) used e.g., in Lafaysse et al. (2017). In this case the effective snow heat

conductance is expressed as

� k = max
n

a�

� � k

� w

� 1:88
; � min

o
(17)310

with a� = 2 :22 (W m � 1 K � 1), and� min = 4 � 10� 2 (W m � 1 K � 1), which are made to match the pure ice heat conductance

� i with appropriate choice ofa� .

3.7 Snow sublimation

The rate of sublimation is computed by solving the nonlinear equation for the surface energy balance, eq. (5). In the case a

snowpack is present, we assume that the entire water vapor �ux comes from sublimation, even if liquid water is present in315

the snowpack. While this is a simpli�ed assumption, we note that the amount of liquid water present in the snow layers is

limited as we will discuss in Section 3.10. The sublimating ice is lost from the uppermost snow layer. In the model, the heat

diffusion through the snowpack and sublimation are resolved separately in two consecutive steps. However, since in reality

the two phenomena occur simultaneously, the change in heat content of the top snow layer associated with sublimating snow

must account for the simultaneous change in the layer's temperature due to heat vertical diffusion. Therefore, this nonlinear320

interaction between heat diffusion and heat �ux due to sublimating snow is accounted for in GLASS by correcting the layer's

temperature to ensure that energy is conserved when both processes are considered to occur simultaneously. The change in
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the snowpack energy content is given by two contributions due to mass lost from the uppermost layer, and by its change

in temperature due to vertical heat diffusion. Due to the implicit numerical scheme used, evaporation and sublimation are

linearized around the current temperature value, and their value depends on the surface temperature tendency. To ensure energy325

conservation, a temperature correction� � E T1 must be applied to the snowpack uppermost layer, since evaporation is computed

before the temperature is updated for the current model time step. This is given by

[cl wl; 1 + cs (ws;1 + � ws;1)]
�
T1 + � T1 + � � E T1

�
� (cl wl; 1 + csws;1) T1 = ( cl wl; 1 + csws;1) � T1 + cs � ws;1T1 (18)

where the left hand side is the change in energy content of the uppermost snow layer, and the two terms in the right hand

side are the change in energy content of the layer due to temperature vertical diffusion, and that due to sublimation. In eq.330

(18), � T1 is the change in temperature in the top snow layer obtained by solving the vertical heat conduction equation, and

� ws;1 = Eg � t is the change in mass of the top snow layer due to sublimation. From eq. (18) we can solve for� � E T1:

� � E T1 =
cs � ws;1

cl wl; 1 + cs (ws;1 + � ws;1)
� T1 (19)

3.8 Implicit change of phase

Melting imposes an upper limit on the temperature pro�le in the snowpack, since snow temperature should not exceed melting335

point. If the solution of the heat equation produces temperature larger than the freezing temperatures (i.e.,Tk > T F for some

snow layerk), then the excess energy required for increasing layer's temperature of the amount� T� ;k = Tk � TF is instead

used to melt a snow mass equal to

� ws;k = min
�

ws;k ;
(csws;k + cl wl;k ) � T� ;k

L f

�
(20)

whereL f = 334 J kg� 1 is the latent heat of fusion of ice, and the expression in the numerator is the speci�c heat of layerk.340

For mass conservation,� wl;k = � � ws;k . Therefore, the heat required for the phase change isFm;k = L f � ws;k < 0. The new

equilibrium temperatureTF + � T (u )
k of the snow layer is then computed by evaluating the energy conservation equation for

layerk:

(csws;k + cl wl;k ) � T� ;k + wl;k L f = ( cs (ws;k + � ws;k ) + cl (wl;k � � ws;k )) � T (u )
k + ( wl;k � � ws;k ) L f (21)

which can be solved for the new snow layer equilibrium temperature. Similarly, in the case ofTk < T F , if wl;k > 0, additional345

energy is provided to the layer by freezing the available liquid water. Again, the amount of energy is limited by the amount

of liquid water available for freezing. The temperature of the melt water is thenTF while for iceTk < 0. Thus, in the case of

freezing we have� T (u )
k < 0 andFm;k = L f � wl;k > 0. In the following, we justify our choice of numerical method to solve

the snow melt. The implicit numerical solution of heat conduction through the snowpack must occur in two steps: �rst the

heat �uxes through the snow as well as their tendencies are calculated, and only in a second step the temperature pro�le is350
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updated layer by layer. It is therefore possible that, when updating the temperature pro�le, snow layers that were fully frozen

become warmer than freezing, and similarly snow layers which contain water in liquid phase can experience temperatures

below freezing. When this happens, the resulting change of phase is computed according to equations. (20) and (21). However,

solving the phase change according to this procedure, which in the following we term "implicit melt", or IM, can be problematic

in the presence of large time steps, which can produce appreciable temperature increments within the snowpack. In GLASS we355

use an alternative approach termed "explicit melt", or EM. When solving the nonlinear surface energy balance for the ground

temperature balance, we simultaneously compute an estimate for the melt term (M g) as discussed in section 3.2. By adopting

this approach, when we solve the vertical heat diffusion, the heat �uxes we obtain are already consistent with this tentative melt

estimate. In the second heat diffusion step the vertical temperature pro�le is again updated as in the case of IM, and similarly

additional change of phase can occur based on the phase and temperature of the existing snow layers. However, since in this360

approach the tentative meltM g was already evaluated, these additional melt or freeze correction terms are generally smaller

and therefore we expect the numerical solution to be less dependent on the time step. Since Earth System Models generally run

for relatively large time steps (30 minutes in our land model), in the following we investigate the behavior of the IM and EM

approaches for different time steps, in order to test their suitability for our application.

3.9 Snowfall and snowpack solid water balance365

In the case of snowfall, if (i) there is already snow on the ground and (ii) the new depth� zfall is smaller than a threshold (set

to half the depth of the uppermost snow layer before the frozen precipitation event), then the new snow is added to the existing

layer and no additional layers are created. The density of fresh snow is used to compute� zfall and this snow depth is summed

to the thickness of the existing layer, so that the resulting density of the merged layer will be a weighted average of those of

new and existing snow (note, snow density� k is a derived model variable and it is computed asws;k =� zk ). If instead there is370

no initial snow on the ground, or if the amount of new snow is larger than the set threshold, a number of fresh snow layers are

created as discussed in Section 3.1. The properties assigned to the freshly fallen snow are computed following Vionnet et al.

(2012): The density� fall of new snow is

� fall = a� + b� (Ta � TF ) + c� U
1=2

(22)

a three-parameters expression in which fresh snow density is expressed as a function of the mean wind velocity (U), and the375

atmospheric temperature (Ta), TF = 273:15 K the freezing point of water. Parameters used in eq. (22) area� = 109kg m� 3,

b� = 6kg m � 3 K � 1, andc� = 26kg m � 7=2 s� 1=2, setting a minimum snow density of50kg m� 3. The temperature of the fresh

snow is equal to that of precipitation, which in the current model con�guration is set equal to the temperature of the lower atmo-

sphere. The optical diameter of fresh snow is set to the constant value ofdopt;fall = 10 � 4 [m], as recommended by Carmagnola

et al. (2014). The (dimensionless) sphericity of fresh snow is computed as done by Vionnet et al. (2012):380

sfall = min
�
max

�
0:08U + 0 :38; 0:5

�
; 0:9

�
(23)

whereU is the mean wind speed ([m s� 1]). Once density is known, the newly fallen snow depth can be computed from the

snowfall rate as� zfall = f s � � t=� fall .
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3.10 Rainfall and the snowpack liquid balance

After updating the snow temperature pro�le and performing the solid mass balance, the mass balance for the liquid phase is385

performed. In this stage, the liquid water balance is evaluated sequentially for all snow layers from the top of the snowpack

down, coupled with energy conservation to determine any changes in water phase and temperature originating from the vertical

water �ow. For the top layer, liquid precipitation is added to the layer. Then, the new thermal equilibrium of the snow layer

is computed, determining the new layer temperature and the new mass of liquid and solid water. Finally, the new solid phase

properties are used to determine the pore space available for liquid water within the ice matrix of the layer. As done by Vionnet390

et al. (2012), the maximum water holding capacity in each layerWliq;max;k is set to:

Wliq;max;k = 0 :05� w � zk

�
1 �

� s;k

� i

�
(24)

with � s;k the density of the snow layer (solid phase only),� i = 917 kg m� 3 the density of ice, and� w the density of liquid

water.

3.11 Snow metamorphism395

The snow microstructure in each snow layerk is characterized by three parameters (the layer indexk will be omitted in the

rest of this section for simplicity): Snow optical diameterdopt , snow dendricity� , and snow sphericitysp. The optical diameter

dopt represents the diameter of a monodisperse set of spheres with the same surface/mass ratio, or Surface Speci�c Area (SSA).

SSA can be obtained fromdopt asSSA = 6=(dopt � � i ). We choose to use thedopt as prognostic variable because, as pointed

out by Carmagnola et al. (2014), it can be directly used to parameterize snow albedo. However, the optical shape of snow400

grains also can have signi�cant impact on the optical properties of the medium (He et al., 2017; Robledano et al., 2023). The

evolution of snow microphysical properties here is obtained as a combinations of the parameterizations proposed by Brun et al.

(1992); Carmagnola et al. (2014); and Flanner and Zender (2006). In GLASS, all three snow grain properties (grain dendriticy,

grain sphericity and optical diameter) are prognostic variables.

The parameterization of Flanner and Zender (2006), termed F06 in the following, is used to model the effects of dry snow405

metamorphism ondopt . In this formulation, the time evolution of the snow optical diameter is computed as a function of

snowpack temperature, vertical temperature gradient, and snow density. A parametric equation is used to predict the rate of

change of snow effective radius

dr
dt

=
�

dr
dt

� �
�
�
�
t =0

�
�

r � r 0 + �

� 1=�

(25)

where
�

dr
dt

�
jt =0 , � and� are parameters derived from a look-up table (here made available in the online assets) as functions410

of snow density, temperature, and temperature gradient. This parameterization was developed by Flanner and Zender (2006)

using a physically based model describing the evolution of snow speci�c surface area due to dry aging. The optical diameter

of fresh snow is taken to be that corresponding to a SSA of60 m2=kg. This equation predicts an effective radius in� m which

is then converted to the optical diameterdopt in [m] used in GLASS. For wet snowpacks, the additional size increase of snow
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grains due to wet metamorphism is described using the model put forward by Brun et al. (1992), in which grain size evolution415

is given by

dr
dt

=
1018C1� 3

B

4�r 0
(26)

whereC1 = 4 :22� 10� 13 and� B = wl =(ws + wl ) the snow liquid fraction. Brun's equation here is expressed in terms of snow

grain radius in [� m] which in our model is then converted to snow optical diameter in [m]. In addition to the optical diameter,

the snowpack layers are characterized by two additional parameters describing the shape of snow grains: dendricity� and420

sphericitysp. These are both dimensionless quantities ranging from 0 to 1. Fresh fallen snow is assumed to be in a dendritic

state, with a dendricity value decreasing over time due to the combined effects of wind drift and metamorphism. When the

dendricity parameter approaches zero, the snow reaches a non-dendritic state. Similarly,sp = 1 indicate perfectly spherical

particles andsp = 0 completely non-spherical particles, i.e., faceted snow crystals.

The evolution ofsp and � due to wet and dry snow metamorphism are described according to the model by Brun et al.425

(1992). In the case of wet snow metamorphism, we have

d�
dt

= �
1
16

� 3 (27)

dsp

dt
=

1
16

� 3 (28)

With � = 100 � wl =(wl + ws) the percent liquid fraction. For dry metamorphism, the evolution equations forsp and� are, in430

case of a mild temperature gradient (G = jdT=dzj � 5 K=m)

dsp

dt
= 109 e� 6000=T (29)

d�
dt

= � 2 � 108e� 6000=T (30)

While in the case of an intermediate or steep temperature gradient (G = jdT=dzj > 5 K=m)435

dsp

dt
= � 2 � 108e� 6000=T G0:4 (31)

d�
dt

= � 2 � 108e� 6000=T G0:4 (32)

These equations hold for the case of dendritic snow. When the snow reaches a non-dendritic state, dendricity remains zero

while sphericity continue evolving in time, and snow effective radius also evolves according to eqns. (25) and (26). Note that440

in the case of weak temperature gradients, the time evolution of dendricity and sphericity have opposite signs: As the snow

ages, the dendricity decreases while snow grains tend towards a rounder shape. However, this is not the case in the presence of

sharp vertical temperature gradients: In this case, the snow grains tend to become faceted crystals instead of spheres, so that

the sphericity also decreases with snow aging.
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3.12 GLASS snow albedo model445

In GLASS, in addition to the BRDF albedo model (see Appendix C) we employ the albedo parameterization proposed by He

et al. (2018b) derived based on a stochastic radiative transfer model. In this formulation, snow albedo in the visible (b= V IS)

and near infrared (b= NIR ) bands is expressed as a function of snow grain shape and size as

� b = b0 (b; �p;sp) + b1 (b; �p;sp) Rn + b2 (b; �p;sp) R2
n � � � b (33)

where450

Rn = log 10

�
Re� b (� )

R0

�
(34)

with Re the snow grain effective radius de�ned asRe = 3Vs=(4As), whereVs andAs are the snow grain volume, and the

projection of its surface area average across all directions, respectively.R0 = 100 � m is a reference snow grain effective radius.

The grain radius can be related to the SSA asRSSA = 3=� i =SSA. For convex shapesRSSA = Re while for Koch snow�akes

RSSA = 0 :544Re. The model parametersb0;b1;b2 depend on the band and on the shape of the snow grains, and are tabulated in455

He et al. (2018b). The correction term� � b accounts for the effect of impurities deposited on old snow. While this phenomenon

will be examined separately in future extensions of this study, here we use a simple correction similar to that used in Vionnet

et al. (2012) for an alpine site conditions. We evaluate the decrease in visible albedo as� � V IS = min f 0:2;0:2 age=60g. There

is no correction in the near infrared band, so that� � NIR = 0 . In eq. (34),� b is a correction factor for direct light depending

on the cosine of the solar zenith angle� . While for diffuse light� b = 1 , in case of direct radiation the dependence of snow460

albedo on the direction of incident radiation is accounted for following Marshall (1989)

� b (� ) = (1 + a�;b � � )2 (35)

with a�;b = 0 :781for visible band (b= V IS) anda�;b = 0 :791for the near infrared band (b= NIR ), and� � = � � � D , where

� = cos� and� D = 0 :65 corresponds to� = 49:5� . Grain shape has been recognized to play an important role in determining

the optical properties of the snow medium (Robledano et al., 2023). He et al. (2018a) developed the parameterization de�ned465

by eq. (33) for different snow grain shapes, idealizing snow as a collection of either (a) spheres, (b) spheroids, (c) hexagons, or

(d) Koch snow�akes. In GLASS, snow microphysical properties are represented through three variables: grain sphericity,

dendricity and optical diameter. These three parameters are used to characterize the effect of snow grain shape on snow

re�ectivity. In particular, a grain size with dendricity larger than0:5 is considered for radiative balance purpose as a Koch

snow�ake. Conversely, non-dendritic or weakly dendritic snow is modelled as a collection of spheroids, hexagonal crystals,470

or spherical particles. For high-sphericity parameter (sp > 0:8), we compute snow albedo using the parameters relative to a

collection of spheres in eq. (33). For non-spherical or weakly spherical snow, the parameters relative to a collection of hexagons

are used. In the remaining case (non dendritic snow, with sphericity larger than 0.2 but smaller than 0.8) the spheroid case is

used. This approach allows us to capture the effect of snow grain shape on the optical properties of the snowpack. To our

knowledge, this is the �rst time a snow model developed for Earth System model simulations includes a prognostic description475
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Figure 2. A schematic representation of the main model steps in GLASS and their interface to other relevant physical processes in the GFDL

LM4.1.

of snow grain shape and its effect on snow optical properties. Numerical studies have shown that accounting for shape can

impact snow optical properties depending on snow optical diameter and content of impurities (He et al., 2017).

In GLASS, when snow is thick enough, shortwave radiation penetrates the snowpack. The absorbed radiation is distributed

exponentially within the snowpack if this is thick enough (d > 0:02 m) as

Qs (z) =
2X

b=1

(1 � � b) Rs;be� � b z (36)480

the heatQs (z) absorbed at snow depthz can be then integrated to obtain the heat source termsSk for each snow layerk as

required to solve the vertical energy balance in eq. (13). The penetration of light in the snow is evaluated as in CROCUS for

our two bands (VIS and NIR). For visible light,� V IS = 0 :003759� d � 0:5
opt , with density and optical diameter averaged over the

near-surface layer of the snowpack, up to3 cm. For the NIR band,� NIR = 400 m� 1. These values follow the values proposed

by Jordan (1991) and by Shrestha et al. (2010).485
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3.13 Models steps summary

Figure 2 provides a schematic representation of the computational steps performed to update the state of the snowpack at each

model time step, summarized in panels A - G. Due to the nature of the implicit solution adopted for the energy and water

balance, the heat diffusion through the snowpack must be solved in two separate steps. In a �rst snow model ("step 1", panel

B), the heat �uxes through the snowpack are computed starting from the lower boundary accounting for possible heat sources490

within the snowpack (e.g., due to shortwave radiation absorption). In this �rst step, an estimate of the ice available for melting

is also computed. Then, the surface energy balance is performed, according to eq. (5) (panel D). Solving this equation yields

the tendency for the surface temperature� Tg as well as the amountM g of melting ice or freezing water, depending on its

sign. This information is then used in the second model step ("step 2", in panel E) of the snow energy and mass balance: The

temperature pro�le in the snow is �rst updated based on the upper boundary tendency� Tg and the vertical �uxes obtained in495

step 1 (panel E1). The mass of liquid and ice in the snowpack is then updated, based on the estimate of water changing phase

(M g) previously computed (panel E2). Note that after this step it is still possible that the solution of the heat equation yields

above-freezing temperatures in some snow layers, or below-freezing temperatures in layers where liquid water is present, which

are resolved with an additional change of phase. This implicit melt is then applied by evaluating the thermal equilibrium of

each snow layer (panel E3): In the case of layers with solid ice and temperature above freezing, a new equilibrium temperature500

is computed and the excess heat is used to melt part of the available ice. Conversely, in case of layers containing liquid water

and below-freezing temperature, liquid water is frozen until thermal equilibrium is reached.

After performing the energy balance, the following steps are computed. Fresh snow is added to the snowpack in the presence

of snowfall (E5). The model �rst tries to add the new snow to the existing uppermost layer. If the snowfall mass exceeds a

threshold, a variable number of layers is added to the top of the snowpack. We then perform the liquid balance in the snowpack505

(E6): Liquid precipitation is added to the top layer. The maximum liquid water capacity of the layer is computed as a fraction

of the layer pore space, given by eq. (24). If this liquid water content is exceeded, the excess water �ows vertically to the

underlying layers. This step is followed by the sequential solution of the liquid water balance for all snow layers, down to

the bottom of the snowpack. In panels E7 we perform in sequence snow compaction (described in Appendix B), wet and dry

snow metamorphism, and evaluate the effect of wind drift (see Appendix A). Finally, at each time step we also re-layer the510

snowpack in two steps (panels E4 and E8 in Figure 2), trying to merge or split existing layers based on their distance from the

optimal layering structure for the given snow depth, as discussed in Section 3.1. After computing this second snow physics

step, the new integral properties of the near-surface snow layer are computed. The near-surface layer is de�ned as the top three

centimeters or the entire snowpack, whatever is smaller. These properties are then used to compute snow albedo (panel G) as

discussed in Section 3.12.515
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Table 2.Experimental sites used for model validation.

Station ID Obs. Years Lat. Lon. Elev. Climate Veget.

Col De Porte CDP 1994-2014 45.30 N 5.77 E 1325 m Alpine No

Reynolds M. E., USA RME 1988-2008 43.06 N 116.75 W 2060 m Alpine "

Senator Beck, USA SNB 2005-2015 37.91 N 107.73 W 3714 m Alpine "

Swamp Angel, USA SWA 2005-2015 37.91 N 107.71 W 3371 m Alpine "

Weiss�uhjoch, CH WFJ 1996-2016 46.83 N 9.81 E 2540 m Alpine "

Sapporo, JP SAP 2005-2015 43.08 N 141.34 E 15 m Maritime "

Sodankyla, FI SOD 2007-2014 67.37 N 26.63 E 179 m Arctic "

Old Jack Pine, CA OJP 1997-2010 53.92 N 104.69 W 579 m Boreal Pine

Old Aspen Site, CA OAS 1997-2010 53.63 N 106.20 W 600 m Boreal Aspen

Old black Spruce, CA OBS 1997-2010 53.99 N 105.12 W 629 m Boreal Spruce

4 Data and methods

4.1 Forcing and validation data

To test model performance, we employ a reference dataset widely used in the snow modelling community (Ménard et al., 2019),

and used — for example — in the SnowMIP project (Krinner et al., 2018; Menard et al., 2021). Details for each observation

site are reported in Table 2 and the location of the sites is shown in Figure 3. The 10 sites span a range of climates, elevation520

and terrain types. In particular, three of the sites are forested while the other 7 are characterized by either bare soil, or grass

and low vegetation. The three forested sites located in the Canadian boreal forest are described in (Bartlett et al., 2006).

For this reason, for the 7 sites with little to no vegetation we run the model turning off vegetation. For the three forested

sites, the long spin-up allows model vegetation to fully develop before starting the historical run with in-situ meteorological

forcing. We force two of the sites (ojb, obs) to grow evergreen vegetation, while for the third (oas) we force deciduous species525

only, to match the existing vegetation types.

In this dataset, each site includes both in-situ meteorological forcing for the observation period (as reported in Table 2),

and a locally-corrected Global Soil Wetness Project Phase 3 (GSWP3) forcing dataset (Ménard et al., 2019) for the period

1980-2015. This forcing dataset is used here to spinup the model for each station up to the year when in-situ metereological

observational record begin. After that point, the experiment is run forcing the model with in-situ data. Both GSWP3 and in-situ530

forcing data are at hourly temporal resolution, and are interpolated at the model 30-min time step. Atmospheric forcing input

to LM 4.1 includes liquid and frozen precipitation, downward radiation (direct and diffuse, for both visible and near-infrared

bands), longwave radiation, air temperature, humidity, pressure and wind speed. At the Col de Porte site, measurements are

done at constant height above the snow surface. However, this is not the case for the other sites in the dataset, and the model

does not correct for the varying height of the measurements above the surface when calculating turbulent �uxes at the snow535

surface. The dataset forcing only provides total downward shortwave radiation: In our experimental setup, this was divided
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Figure 3. Sites used for model validation. Information about the sites are reported in Table 2.

between direct and diffuse (0.46 and 0.54 of the total �ux, respectively) as well as in visible and near infrared bands (0.41 and

0.59 respectively) using average climatological values obtained from the GFDL AM4.0 (Zhao et al., 2018) atmospheric model

output.

4.2 Experimental setup540

In order to perform a meaningful comparison between model and observations, we need to obtain a suitable initial condition

for the state of the land model. This is done by performing a model spinup in which key land variables (e.g., vegetation if

present, water and heat content in the soil) evolve driven by the atmospheric forcing observed at each site. We found that for

all sites presented here in our model the soil is not frozen during the summer, and that the equilibration times characteristic for

equilibrium is reached after less than 20 model years of model run. For model spinup, we use at each study site the corrected545

GSWP3 data provided by Ménard et al. (2019). The model spinup runs for 200 years from 1781 to 1981, cycling through the

forcing for the decade 1981-1991. This allows for the soil to equilibrate and for vegetation to grow in the sites where it is

present (i.e., the three Canadian BERMS sites).

After the spinup, the model is run using GSWP3 forcing data up to the date when in-situ forcing measurement start, which

for each site is shown in Table 2. Then, the actual experiment is run for the entire length of the in-situ forcing dataset. As the550

model is designed for long climate simulations, it is important mass and energy are conserved with good accuracy throughout

a simulation. Mass and energy conservation are strictly enforced in the model: In the current application, we run the model

checking at each model physics time step (30 minutes) that conservation violations do not exceed10� 7 Kg m � 2 for water, and

10� 6 J m� 2 for energy.
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4.3 Performance Metrics555

For a description of statistical model performance metrics, we follow Lafaysse et al. (2017). To assess the improvement in

model performance due the new snow scheme we compute a set of goodness of �t measures. For model con�gurationi (e.g.,

i = LM-GLASS or i = LM-CM) we compute bias (̂B i ) and root mean square error (R̂i ) as

B̂ i =
1

N i

N iX

k=1

(mk i � ok ) (37)

and560

R̂i =

"
1

N i

N iX

k=1

(mk i � ok )2

#0:5

(38)

whereN i model simulated values (mk i ) are compared toN i observed values (ok ).

5 Results

5.1 Bulk snow properties

Simulating the seasonal evolution of the snowpack over the 10 SnowMIP sites allows to demonstrate the behavior of the land565

model with the new GLASS snow scheme (LM-GLASS) model over a wide range of climate conditions. Time series of snow

water equivalent (de�ned here inkg m� 2 of snow) is reported in Figure 4 for all sites. For each site, we show the last 6 snow-

years of the simulation, including as a benchmark the results from old snow model LM-CM. Overall, both models appear in

good agreement with observations for most stations and simulated snow-years. Depending on the station, LM-GLASS produces

SWE estimates that are either very similar to the old LM-CM snow scheme, or larger in magnitude. The latter is the case for570

the swa, snbandwfj sites. In these cases, the larger SWE magnitudes predicted by LM-GLASS are closer to observations.

These differences in SWE predictions primarily originate from difference in modelled snow optical properties, with predicted

broadband albedo values that tend to be lower for the LM-CM model. For example, for theswasite with some of the largest

differences between the two models, the BRDF albedo scheme used in LM-CM leads to a signi�cant underestimation of daily

albedo (Fig. 5A). This underestimation is not present in the LM-GLASS albedo scheme. For the three BERMS forested sites575

(ojp, obs, andoas), where the model simulates the effects of multi-layer canopy on radiative �uxes, the SWE predictions of the

two models are much closer (Fig. 5B). However, in this case modelled and observed albedo values differ signi�cantly in both

LM-GLASS and LM-CM. Arguably, this behavior primarily originates due to the fact that the vegetation structure produced

for the model at this site does not match the dense canopy of the experimental site.

When comparing snow depths predicted by the two models, again LM-GLASS yields generally larger snow depths compared580

to the LM-CM (Figure 6). This behavior is not limited to the sites characterized by appreciable SWE differences between the

two models. For instance, in the case of the three BERMS forested sites, LM-GLASS predicts thicker snowpacks despite

predicting virtually the same SWE, indicating lower snow density than the constant value used in LM-CM.
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Figure 4. Comparison in predicted SWE between LM-CM (orange) and LM-GLASS (blue). Manual observations (and automatic observa-

tions, for sites where these are available) are reported by black markers.
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Figure 5. Comparison in predicted daily average broadband albedo for the Swamp Angel (swa) site (panel A) and the BERMS Old Black

Spruce (obs) site (panel B). Model results are shown for LM-CM (orange dashed lines) and LM-GLASS (blue solid lines). Daily albedo

observations are reported by black markers.
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Figure 6. Comparison in predicted snow depth between LM-CM (orange) and LM-GLASS (blue). Manual observations (and automatic

observations, for sites where these are available) are reported by black markers.
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5.2 Model performance metrics over the SnowMIP sites

To quantify the relative performance of the two model con�gurations, we compute for all sites the metrics introduced in section585

4.3, namely bias and RMSE. To attribute the change in model performance to revised snow optical properties, or to other snow

physical properties, we compare the old snow scheme (LM-CM) not only to the new snow model (LM-GLASS), but also

to a version of GLASS in which the original BRDF albedo model is retained (LM-GLASS-BRDF). Error metrics for these

three model con�gurations were computed for daily SWE, snow depth, surface albedo soil temperature, and surface snow

temperature, for all sites where observations of these variables were available.590

The LM-GLASS-BRDF model produces little improvement in SWE compared to LM-CM. A general underestimation of

the SWE is observed for both models at all sites. On the other hand, this bias is generally reduced in LM-GLASS simulations,

leading to a substantial improvement in SWE estimates as shown in Figure 7A.

When considering predictions of snow depth, the difference in performance between the models is less marked compared

to SWE results (Figure 7B). LM-CM generally exhibit a small overestimation, which is mitigated in the case of LM-GLASS-595

BRDF. In the case of LM-CM, this result implies that the snow density in the model, which is constant, is lower than obser-

vations, given the underestimation observed for SWE. When the full LM-GLASS model is considered, multiple sites show

modest positive model biases in snow depth. Since SWE predicted by LM-GLASS is the best between the three model con-

�gurations, these discrepancies in snow depth also arise from an underestimation in snow density, which in LM-GLASS is

primarily driven by the process of snow compaction described in Appendix B.600

For daily snow albedo (Figure 7C) LM-GLASS performs better than both LM-GLASS-BRDF and LM-CM, which generally

underestimate daily albedo. An exception to this behavior is observed for two of the BERMS sites, where all models signi�-

cantly overestimate surface albedo. We argue this is a consequence of the land model failure to correctly represent vegetation

characteristics and snow-vegetation interactions at these sites, as already shown in the case of albedo at theobssite, reported

in Figure 5B. The effect of the revised albedo model in LM-GLASS is negligible at these forested sites, where a large role is605

played by the energy balance of canopy layers above the snow. Differences in predicted albedo are very small between LM-CM

and LM-GLASS-BRDF. This is not surprising since these two snow scheme have an identical BRDF albedo speci�cations,

and any differences between the two models thus arise as a consequence of different snow surface temperature values, which

is the only snowpack property used in the BRDF albedo parameterization.

Finally, biases in snow surface temperature are reported in Figure 7D for the sites where this variable was recorded. For610

this variable the new LM-GLASS model exhibit a larger negative bias compared to LM-CM. Since the bias is also smaller

for LM-GLASS-BRDF than for LM-GLASS, this behavior is at least in part connected to the larger surface re�ectivity, which

however does agree with daily albedo observations as shown in Figure 7C. As an example, three snow-years of daily surface

temperature from model simulations and observations for the Col De Porte site are shown in Figure 8. Here it can be seen that

while overall temperature variations are consistent between models and observations, cold temperature extremes during winter615

are several degrees lower in the case of LM-GLASS.
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Figure 7. Model bias in SWE (panel A), snow depth (panel B), albedo (panel C) and surface temperature (panel D) at the 10 SnowMIP sites.

Results for each variable are shown for all sites where observations are available.

A potential reason for the colder snow surface values predicted by LM-GLASS is that the near-surface snow layers in LM-

GLASS can be thinner than those in LM-CM, especially in the case of thick snowpacks. In this case, it is not surprising that

thin surface layers with small heat capacity and increased insulating properties of the underlying snow layers would lead to

a colder surface temperature. While this could be a limitation of LM-GLASS, it is also possible that cold temperatures at the620

surface originate from discrepancies between modelled and actual turbulent �uxes in the atmospheric surface layer. For all the

snowpack variables, RMSE was also computed to complement bias, and is reported in Figure 9.

When examining error metrics in soil temperature, there are important differences between LM-CM and LM-GLASS (Fig-

ure 10). LM-CM exhibits a consistent negative bias at all sites examined here, of up to� 2:5 K. This bias in soil temperature is
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Figure 8. Comparison of predicted daily average surface temperature between the LM-CM (orange dashed line) and LM-GLASS (blue solid

line) models for the Col De Porte site. Observed values (daily averages) are reported as black markers.

greatly mitigated in LM-GLASS. This improvement in soil temperature is also observed in case of LM-GLASS-BRDF, indi-625

cating that this behavior is not directly related by the update in snow optical properties. Rather, we argue that the improvement

originates in a re�ned representation of snow heat conductance. LM-GLASS is not only characterized by a �ner vertical dis-

cretization of the snowpack, but also by the explicit representation of snow compaction. Snow heat conductance in LM-GLASS

is explicitly modelled as a function of snow density. Therefore, the insulating properties of snow with respect to the underlying

soil layers are more realistic in LM-GLASS, although a small negative bias remains indicating that to some extent the actual630

snow heat conductance could be smaller than predicted by LM-GLASS. As a representative example of the performance of the

models in capturing temperature variations in the underlying soil, we show results for soil temperature at three depths for the

Col de Porte site, for which observations are available (Figure 11). Modelled values are overall consistent with observations,

although for the deeper layer a cold bias is observed for both models. However during the winter season when snow is on the

ground the LM-GLASS predicted temperatures greatly reduce the cold bias observed for the original model LM-CM.635

5.3 Implications of the implicit scheme to solve phase change

The treatment of melt and freeze processes can be dependent on the numerical scheme used to resolve these processes. To

investigate this issue in LM-GLASS, we examine the differences of the two schemes discussed in section 3.8. SWE predictions

obtained from LM-GLASS with the default explicit melt scheme are compared with the same predictions from the implicit

scheme. As discussed in section 3.8, in the latter case the change of phase for each snow layer is computed only after the640
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Figure 9. For each model con�guration, rmse metrics for daily SWE (panel A), snow depth (panel B), albedo (panel C) and surface temper-

ature (panel D) at the 10 SnowMIP sites. Results are reported for all sites where observations are available. Higher rmse values correspond

to poorer model performances.
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Figure 10. Model bias and rmse for soil temperature. For each site, error metric were computed for the uppermost soil depth at which

observations were available

temperature pro�le is updated from solving implicitly the heat transfer through the snowpack. The differences between explicit

and implicit melt schemes are shown in Figure 12 (panels A and B, respectively). In the case of implicit melt, the modelled SWE

exhibits a marked dependence on the the time step used in the calculations, with longer time steps leading to an underestimation

of the snow melt. On the other hand, when explicit melt is included in the model, as is the case for the default LM-GLASS

con�guration, this undesirable dependence on the time step effectively disappears. Within the range of time steps examined645

here (ranging from 5 to 30 minutes) the results of the explicit melt scheme are closer to the implicit melt results obtained for a

5 minute time step. However, while this model time resolution may be attainable for local studies, is still out of reach for global

scale climate simulation. For a time step of 30 minutes, which is currently used in global simulation with GFDL LM 4.1, the

difference between the two model con�guration can become signi�cant.

6 Discussion650

A key improvement using LM-GLASS is the increase in winter soil temperature below the snowpack. It has been reported

that ESMs participating in IPCC often underestimate soil temperature, especially at high latitudes (Koven et al., 2013), and

this is also the case for the GFDL model. Correcting this bias has important implications for the correct representation of

biogeochemical cycles, as warmer soil can lead to climate feedbacks due to the release of greenhouse gases from thawing

permafrost. On the other hand, existing cold biases at the snow surface are not resolved in LM-GLASS and are even exacerbated655

in some cases examined in our experimental test sites. Cold temperatures observed at nighttime are common to other snow

30




