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Abstract. Land surface changes can have substantial impacts on biosphere-atmosphere interactions. In South America, rain-

forests abundantly emit biogenic volatile organic compounds (BVOCs), which coupled with pyrogenic emissions from defor-

estation fires, can have substantial impacts on regional air quality. We use novel and long-term satellite records of five trace

gases: isoprene (C5H8), formaldehyde (HCHO), methanol (CH3OH), carbon monoxide (CO), and nitrogen dioxide (NO2);

aerosol optical depth (AOD); vegetation (land cover and leaf area index); and burned area. We characterise the impacts of bio-5

genic and pyrogenic emissions on atmospheric composition for the period 2001 to 2019 in the southern Amazon, a region of

substantial deforestation. The seasonal cycle for all of the atmospheric constituents peaks in the dry season (August-October)

and year-to-year variability in CO, HCHO, NO2, and AOD is strongly linked to burned area. We find a robust relationship

between broadleaf forest cover and total column C5H8 (R2 = 0.59), while burned area exhibits an approximate 5th root power

law relationship with tropospheric column NO2 (R2=0.32), both in the dry season. Vegetation and burned area together show a10

relationship with HCHO (R2=0.23). Wet season AOD and CO follow the forest cover distribution. The land surface variables

are very weakly correlated with CH3OH, suggesting other factors drive its spatial distribution. Overall, we provide a detailed

observational quantification of biospheric process influences on southern Amazon regional atmospheric composition, which in

future studies can be used to help constrain the underpinning processes in Earth System Models.

1 Introduction15

Ten million hectares of forest on average were cut down globally each year over 2010-2020 (Ritchie and Roser, 2021). Such

land cover changes can substantially modify the emissions of biogenic gases and aerosols, for example biogenic volatile organic

compounds (BVOCs) (Fowler et al., 2009; Pacifico et al., 2012). BVOCs are emitted during photosynthesis and particular

plant development stages, e.g. leaf maturation, flowering or senescence, or as a response to stresses on plants, such as droughts

and insect infestations (Loreto and Fares, 2013). Estimates of the global emission of isoprene (C5H8), the globally dominant20
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BVOC, are within the ranges of 300-600 TgC yr-1 (Arneth et al., 2011; Cao et al., 2021; Szopa et al., 2021). This large range

is predominantly driven by uncertainties in the emission rates from different plant functional types (Szopa et al., 2021).

While BVOCs are associated with a wide range of vegetation, particular plant species or functional types emit different

amounts of specific BVOCs.This has driven the use of emission factors, empirically-derived values used to scale calculated

trace gas emissions, to describe the sensitivity of emission strength to plant type (e.g. Guenther et al. (1995, 2012); Pacifico25

et al. (2011); Weber et al. (2023)). For example, isoprene is associated with tropical broadleaf trees, while monoterpenes

(C10H16) are primarily associated with needleleaf trees (Artaxo et al., 2022), which has implications for the geographical

distribution of different BVOC emissions. In the Amazon rainforest, isoprene and methanol (CH3OH), both analysed in this

study, are the most strongly emitted biogenic compounds based on mixing ratio measurements (Yáñez-Serrano et al., 2020).

Although biogenic emissions are the largest sources of isoprene, monoterpenes and methanol, they are also emitted during30

biomass burning (Akagi et al., 2011; Ciccioli et al., 2014; Bates et al., 2021).

Satellite measurements of formaldehyde (HCHO), a common oxidation product of BVOCs, are often used to estimate BVOC

emissions (e.g. Palmer et al. (2006); Millet et al. (2008); Marais et al. (2012); Kefauver et al. (2014); Stavrakou et al. (2015);

Strada et al. (2023)). However, the pyrogenic source of HCHO is more significant than the pyrogenic emission of isoprene.

Further, HCHO is an oxidation product of many other non-biogenic gases, introducing challenges to the interpretation of the35

data (Freitas and Fornaro, 2022; Palmer et al., 2007). Recent work has enabled the measurement of isoprene column densities

from space (Fu et al., 2019; Wells et al., 2020, 2022; Palmer et al., 2022). The new isoprene measurements have created

opportunities to address the uncertainties in regional isoprene emissions. This is particularly relevant for regions experiencing

land cover change and in the southern hemisphere, where ground level measurements are sparse, despite the major BVOC

emission sources being located in the tropical southern hemisphere (Paton-Walsh et al., 2022). In this study, we analyse these40

satellite-derived datasets of column isoprene alongside the more established HCHO product to quantify vegetation-driven

changes in composition in the southern Amazon (see section 2.1).

The Amazon and neighbouring savannas and grasslands experience significant impacts from fire activity, which have been

reviewed by Pivello (2011). Fires in the region have both natural and anthropogenic causes. Lightning can ignite the savanna

and grassland vegetation; these ecosystems are fire-dependent, meaning many of the species have adapted to recurrent fires.45

However, unlike the savanna region, the Amazon rainforest is sensitive to burning and the ecosystem can be destroyed through

fire activity. In the 21st century, the majority of wildfires in Brazil have anthropogenic causes, as natural vegetation (e.g.

the rainforest) is removed for agriculture. In fact, fire is one of the major causes of land cover change globally (Heald and

Spracklen, 2015). This suggests that regions of land cover change driven shifts in biogenic emissions will also often experience

substantial pyrogenic impacts on the atmospheric composition.50

Nitrogen dioxide (NO2) is a trace gas measurable from space that is primarily emitted during combustion, whether that is

biomass burning or anthropogenic emissions. Due to its short lifetime, NO2 can be indicative of biomass burning activity. In

the context of land cover change through biomass burning, the burning of different land cover types is associated with different

NO2 emission rates (Schreier et al., 2014). Wiedinmyer et al. (2023) assign the highest NO2 emission factors for the burning

of tropical forests, followed by savanna grasslands, and lower values for crops and woody savanna. This is in contrast to earlier55
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emission inventory estimates from Akagi et al. (2011), where the biomass burning emission factor for NOx for tropical forests

was lower than for savannas, although uncertainties were substantial. These biomass burning NOx emissions can play a key

role in enabling ozone (O3) formation from VOC emissions, including BVOCs (e.g. Helas et al. (1995)). Particularly in the

Amazon, a NOx-limited region abundant in BVOCs, O3 production increases substantially over the rainforest in plumes of

anthropogenic or pyrogenic emissions (Kuhn et al., 2010; Bela et al., 2015).60

Fires also emit significant amounts of aerosols and carbon monoxide (CO) (Badr and Probert, 1994; Wiedinmyer et al.,

2023) and are a key factor in driving regional aerosol concentrations in the dry season (Reddington et al., 2015). In addition

to the pyrogenic sources of these species, in areas such as the Amazon forest, there may be substantial biogenic contributions,

for example, through the role of BVOCs in the formation and growth of secondary organic aerosol (SOA) (Artaxo et al., 2013;

Shrivastava et al., 2017; Artaxo et al., 2022). SOA, as a component of particulate matter (PM) air pollution, is detrimental to65

human health (Kim et al., 2015). In the Amazon, the biogenic source of aerosols and CO has a greater relative contribution

to regional atmospheric composition outside the wildfire season, when pyrogenic emissions decrease (Artaxo et al., 2022).

Understanding the drivers of biogenic and pyrogenic emissions of O3 and PM precursors is important for both regional air

quality and climate.

Overall, land cover change influences regional atmospheric composition through biogenic and pyrogenic sources, which can70

vary substantially over time and space. In this study, we aim to quantify the relevance of vegetation and fire to spatial and

temporal variations in regional atmospheric composition over the last two decades, as observed using satellite remote sensing,

over an area of significant land cover change and biomass burning: the southern Amazon.

Six measures of trace gases and aerosols in the atmosphere were chosen to represent a range of chemical species that

may be impacted by biogenic and/or pyrogenic emissions. These are isoprene, methanol, formaldehyde, carbon monoxide,75

nitrogen dioxide and aerosol optical depth (AOD), which indicates the amount of aerosol in the atmospheric column. These

will be referred to as atmospheric constituents throughout this paper. We compare this range of atmospheric constituents to

vegetation and fire proxies using both new and complementary satellite datasets to build a comprehensive picture of the relative

impact of both biogenic and pyrogenic sources on regional atmospheric composition during the period 2001-2019. The paper

will introduce the region, data and methodology in section 2, before looking at the spatial and seasonal distribution of the80

atmospheric constituents in the region and their links to both land cover and burned area (section 3 for results and section 4 for

discussion and conclusions).

2 Data and Methodology

2.1 Study region

The southern Amazon is one of the regions that has undergone substantial deforestation in the 21st century. The region investi-85

gated in this study: 50◦- 70◦W, 5◦- 25◦S (Fig. 1); covers the majority of the "arc of deforestation", which forms the epicenter

of Amazon deforestation (Santos et al., 2021; Silva Junior et al., 2021; Reddington et al., 2015). The area includes parts of the

southern Amazon, as well savannas and grasslands such as the Cerrado and Sarmiento.
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Figure 1. Change in forest cover (% of grid cell area deforested or re/afforested) between 2001 and 2019 calculated using MODIS land cover

data. The region analysed in this study is marked with the purple box.

2.2 Remote sensing data sources

2.2.1 Land surface data90

The Moderate Resolution Imaging Spectroradiometer (MODIS) land cover data at 0.05◦ resolution (product MCD12C1, Friedl

and Sulla-Menashe (2015), last access July 2022) was chosen as a measure of vegetation type based on its long temporal record

of annual data (Table 1), and a comparison of the magnitude and timing of Amazon deforestation in three land cover datasets

(see Supplement). The MODIS sensor operates on two satellites: Terra (launched in December 1999) and Aqua (launched in

May 2002). For 2001-2020, the time period for which the data was used, the Terra and Aqua crossing times were, respectively,95

10:30 and 13:30 local time. Both had sun synchronous, near polar orbits and an altitude of 705 km. The land cover data

is available since 2001 and combines retrievals from both satellites. From the multiple land cover classifications available

in the MCD12C1 product, the 17-class International Geosphere-Biosphere Programme classification (IGBP, Loveland and

Belward (1997)) was chosen for this project, as it has been used in relevant work, such as the FINNv2.5 fire emission inventory

(Wiedinmyer et al., 2023). The C6 Modis land cover product is assessed to have an accuracy of 73.6% (Sulla-Menashe et al.,100

2019).

The leaf area index (LAI) data is also a MODIS product (MOD15A2H, Myneni et al. (2021), last access January 2024) and

can represent vegetation abundance. The LAI product is based on measurements from the Terra satellite at an 8-day temporal
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Table 1. Summary of satellite datasets analysed in the study. All datasets were analysed on 1◦ × 1◦ spatial resolution. Lifetimes are taken

from Jacob (1999); Holloway et al. (2000); Pacifico et al. (2009); Hodzic et al. (2016); Wells et al. (2020); Bates et al. (2021); Pommier

(2023)

.

Variable Source Temporal Period Period of Data Lifetime

Land Cover MODIS, Terra and Aqua Annual 2001-2020 NA

Leaf Area Index (LAI) MODIS, Terra Monthly/Annual 2001-2020 NA

Burned area GFED4.1s Monthly 2001-2016 NA

Isoprene CrIS, Suomi-NPP Monthly 2012-2020 <1 day

Methanol IASI, Metop-A/B Monthly 2008-2018 Days-Months

Formaldehyde (HCHO) OMI, EOS Aura Monthly 2005-2018 <1 day

Carbon Monoxide (CO) Mopitt, Terra Monthly 2001-2019 Months

Nitrogen Dioxide (NO2) OMI, EOS Aura Monthly 2005-2020 <1 day

Aerosol Optical Depth (AOD) MODIS, Terra Monthly 2000-2019 SOA: Days-Weeks

resolution and, validated against ground measurements, has a root mean square error of 0.69 across all biomes (Devadiga and

Nickeson, 2023). It is available since February 2000 to present-day. We used the LAI product to calculate the annual and105

monthly mean values for the period 2001-2020 at 1◦ by 1◦ resolution in Google Earth Engine (Gorelick et al., 2017).

The burned area to represent fire activity was obtained from Version 4.1s of the Global Fire Emissions Database (GFED4.1s,

Giglio et al. (2013), last access August 2022). Monthly burned area is available at 0.25◦ spatial resolution from August 2000

to December 2016. The data for 2001-2016 was used in the analysis. For the period of interest the GFED4.1s burned area is

predominantly based on the MCD64A1 product, which has been found to have a 68% burned area omission error (Padilla et al.,110

2015). However, GFED4.1s includes the addition of small fire burned areas, which likely counter some of the omission error,

as the GFED4.1s burned area is 37% greater than that of GFED3, which did not include small fire estimates (van der Werf

et al., 2017). A summary of the land surface and atmospheric composition datasets is provided in Table 1.

2.2.2 Atmospheric composition data

Gridded total isoprene columns for 2012-2020 at 0.5◦ × 0.625◦ spatial resolution at monthly resolution were obtained from115

Wells et al. (2020). These data are derived from measurements taken using the Cross-track Infrared Sounder (CrIS), a Fourier-

transform spectrometer, onboard the Suomi-NPP satellite. Suomi-NPP was launched in October 2011 and has a sun-synchronous

orbit and near-global twice daily coverage, with a daytime local overpass time of 13:30. Isoprene column densities were cal-

culated using two isoprene infrared absorption features in the spectral range 890-910 cm-1. This novel data product has been

quality assessed through comparison against ground-based isoprene column measurements in the Amazon, which found the120

retrieved isoprene column amounts differ by 20% to 50% compared to ground-based column measurements (Fu et al., 2019;

Wells et al., 2020, 2022).
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The total column methanol data, another recently developed dataset, comes from the Infrared Atmospheric Sounding Inter-

ferometers (IASI) on board the MetOp-A and MetOp-B satellites. These Eumetsat MetOp satellites have/had (Metop-A was

deorbited in 2021) sun-synchronous polar orbits at an altitude of around 817 km and local overpass times of 9:30 and 21:30.125

The daytime (9:30) data for 2008-2018 was produced using the Infrared-Microwave-Sounding (IMS) scheme developed by the

Rutherford Appleton Laboratory (RAL) (Pope et al., 2021). Pope et al. (2021) found a systematic difference of around 30%

compared to the Atmospheric Tomography Mission (ATom) flight measurements in areas of methanol enhancement, as well as

an uncertainty of 40% to 50% for an individual sounding, which will have been reduced here by averaging.

HCHO and NO2 are measured using the Ozone Monitoring Instrument (OMI) located on the Earth Observing System130

(EOS) Aura satellite. OMI employs spectrometers in visible and ultraviolet wavelengths and provides daily global coverage

since late 2004. Aura flies at 705 km and has an equator crossing time of 13:45 local time. Level 2 total column HCHO

data was downloaded from the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC, Chance

(2007), last access: June 2022). Only pixels with the "good" main quality flag, which includes checks of fit convergence,

column uncertainty and absolute column value, and cloud cover less than 20% were used to calculate monthly mean values.135

Uncertainties of individual retrievals of the HCHO columns range within 50% to 105%, with HCHO hotspots characterised by

lower uncertainty values, and averaging leading to uncertainty reduction (OMI Team, 2012). We found an underlying positive

trend in the HCHO data, possibly associated with instrument degradation (Wang et al., 2022), and anomalous values in 2019.

Consequently, only the HCHO data for 2005-2018 was used and the monthly values were de-trended based on a remote Pacific

region (see Supplement). This highlights local variations due to biogenic and pyrogenic emissions, as opposed to those driven140

by changes to the global background.

The tropospheric column NO2 data is the Quality Assurance for Essential Climate Variables (QA4ECV) tropospheric NO2

product (Boersma et al. (2011), last access: December 2022) available as global monthly averages at 0.125◦ × 0.125◦ spatial

resolution. The data was downloaded for 2005-2020. The monthly mean values only include retrievals with cloud radiance

fractions under 50%, which is approximately equivalent to geometric cloud fractions under 20%. Boersma et al. (2011) esti-145

mated the uncertainty for individual retrievals of the NO2 tropospheric columns to be 1.0 x 1015 molecules cm-2 + 25% of the

retrieval.

AOD is a measure of light attenuation by atmospheric aerosols due to either absorbance or reflectance (Wei et al., 2020).

Low AOD values (<0.1) indicate clear sky and low aerosol amounts, while values of 1 suggest very hazy conditions with

high aerosol concentrations. Consequently, an increase in aerosol concentration, e.g. due to emissions of particles during150

combustion, should lead to higher AOD values. AOD is provided as part of a level 3 1◦ × 1◦ spatial resolution monthly

product from MODIS measurements on board the Terra satellite (MOD08_M3, Platnick (2015), last access: May 2022). Each

monthly statistically derived dataset (SDS) is based on the relevant MODIS Atmosphere Daily Global Joint Product. The

quality controlled overland AOD data is available at three wavelengths: 0.47 µm, 0.55 µm and 0.66 µm. AOD retrievals are

expected to have errors within ±0.05 + 0.2 × AOD value (Levy et al., 2013; Sayer et al., 2014). The 0.47 µm data for 2000-155

2019 is used throughout the analysis, as it was found to exhibit the strongest statistical relationship with the land variables (not

shown).
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The total column CO data is from the Measurement of Pollution in the Troposphere (MOPITT) sensor also on board the

Terra satellite. Monthly mean values at 1◦ × 1◦ resolution were calculated for 2001-2019 from the version 7 level 2 product

(NASA/LARC/SD/ASDC (2000), last access: December 2021). The CO total column values have biases of less than 0.2 x160

1018 molecules cm-2 and standard deviations of around 0.2 x 1018 molecules cm-2 compared to NOAA validation sites and a

field campaign (Deeter et al., 2017). The data for 2000 was omitted due to large data gaps that year. Only clear-sky scenes are

included in the MOPITT retrievals.

2.3 Analysis of remote sensing data for the southern Amazon

All observational data was re-gridded to a 1◦ × 1◦ horizontal resolution using linear interpolation to provide spatially consistent165

datasets for analysis and inter-comparison. The atmospheric composition and burned area data were all analysed on a monthly

temporal resolution, while the land cover and LAI data were annual, with the exception of calculating the LAI seasonal cycle.

To better understand the impacts of seasonality, we separated the monthly data into wet (February, March, April) and dry

(August, September, October) seasons. The three month intervals were chosen based on seasonal variations in precipitation

and compatibility with previous definitions (Barkley et al., 2009; Reddington et al., 2015). The dry season data was further170

separated into high burned area (monthly burned areas ≥0.04% grid cell area) and low burned area grid cells. The threshold

for defining high burned area of ≥0.04% was chosen to ensure sufficient sample sizes in each category, while identifying areas

with clear fire signals (see Supplement). There is a 6 km difference in elevation within the region with maximum elevations in

the south west (SW). As some of the satellite retrievals are associated with high errors over the high altitudes of the Andes, the

small portion of the domain >1000 m a.s.l. was not included in our analysis.175

Whenever data for different domains is compared (e.g. difference in isoprene over regions of low and high burned area at

a given forest cover), the mean across all available data satisfying the domain conditions was calculated. First, the relevant

datasets were subset in time so the only years included are those for which land cover, burned area and composition data are

all available. Next, the data were split based on the burned area threshold. Each subset (high and low burned area) was then

sorted into land cover bins, then the mean and standard error for each bin were calculated.180

Regression analysis was used to quantify the relationship between surface variables: land cover, LAI and burned area, and

the atmospheric constituents. Spearman rank correlation (Dodge, 2008):

r = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)
, (1)

where r is the Spearman rank correlation coefficient, n is the sample size and di represents the difference between the ranks of

the ith values from each sample, and ordinary least squared (OLS) and Theil-Sen regression methods (Fernandes and Leblanc,185

2005) were utilised. The OLS regression aims to minimise the sum of the squared differences between the observations and

the model (residual sum of squares) when fitting a linear model. The Theil-Sen regression is more robust to outliers than OLS

regression, as it fits a slope and intercept based on the spatial median of these parameters calculated on subpopulations of

the data. Where a clear relationship (OLS coefficient of determination (R2) ≥ 0.25) was identified between an atmospheric

constituent and land cover or burned area, the data were binned by the explanatory variable, and a weighted least squares190

7



(WLS) regression was used to account for the variance of the data in each bin. Throughout the text we use standard errors to

represent uncertainty ranges.

3 Results

3.1 Change in atmospheric constituents, land cover and burned area through time

Over the early 21st century (2001-2019), forest cover averaged over the southern Amazon region decreases by 3.8% from195

52.0% to 48.2% of the study region (Fig. 2a). The deforestation is greatest in the north (N) of the domain at around 10◦ S (see

Fig. 1). Generally across the region, forest cover reduces substantially from 2001 to 2013 with a smaller decline thereafter .

Over the same period, savanna and grassland expand from 46.7% to 50.5% (Fig. 2b) (see Supplement for separated savanna and

grassland time series). The two land cover categories: broadleaf forest and savanna/grassland, display opposite trends through

time (Fig. 2a,b), reflecting that broadleaf forest cover is being replaced by the savanna/grassland modal land cover type.200

Mean LAI and total annual burned area averaged over the study region do not have consistent trends over 2001-2019 and

2001-2016, respectively (Fig. 2c,d). Average annual LAI values in the region fluctuate around a value of 3.1 with a standard

deviation of 0.06. As the regional estimate of LAI is dependent on all vegetation types in the domain, any decrease in LAI due

to decreases in broadleaf forest (high LAI values) may be of a lesser magnitude than year-to-year variability in the vegetation

overall due to, e.g., weather or disease. Burned area also exhibits substantial year-to-year variability, with maximum values205

observed in 2007 and 2010, while the least burning occurs in 2009. Since 2011, the monthly average burned area has remained

below 200 km2 in the peak burning months and the inter-annual variability has decreased.

The year-to-year variability for annual regional-mean CO, NO2 and AOD is similar to that for burned area (minima in 2009

and maxima in 2007 and 2010; Fig. 2h,i,j). These atmospheric constituents also show reduced year-to-year variability from

2011 onwards, with the exception of elevated values in 2015 for AOD and CO. The 2007 and 2010 maxima are also observed210

in the HCHO record, although the year-to-year variability does not reduce for this trace gas (Fig. 2g). The similarities in the

temporal record suggest burned area has an influence on the domain averaged AOD, CO, NO2 and HCHO.

Methanol and isoprene are also characterised by substantial inter-annual variability and neither shows a clear trend through

time for the region average (Fig. 2e,f). Consequently, other annually varying factors affecting these constituents, such as

meteorology or changes in other sources and sinks (Pacifico et al., 2009; Wohlfahrt et al., 2015), may have a greater impact215

than the decrease in broadleaf forest cover, which is limited in its spatial extent, over this time period. It is noted that the annual

mean isoprene and methanol datasets do not extend as far back in time as the land cover dataset and the change in broadleaf

forest cover is smaller during the period covered by these datasets.

3.2 Seasonal cycle in atmospheric composition and burned area

The regional average seasonal cycles of the six atmospheric constituents are found to be similar with a peak in the dry sea-220

son (August to October) for all species (Fig. 3). Uniquely, isoprene shows a secondary peak earlier in the calendar year in
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Figure 2. Annual mean values for (a) broadleaf forest cover percentage, (b) savanna and grassland cover percentage, (c) LAI, (d) burned area

(based on monthly sums) and the atmospheric constituents: (e) isoprene, (f) methanol, (g) HCHO, (h) CO, (i) NO2 and (j) AOD; averaged

for the southern Amazon region for all years available for each variable. The shading represents the standard error based on all data included

in calculating the annual mean: the values of each grid cell for a given year for the land cover and LAI, or the monthly values of each grid

cell for burned area and the atmospheric constituents. The larger amount of data used in calculating the mean values for subplots d-j results

in smaller standard errors.
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Figure 3. Seasonal cycles of domain-averaged LAI, burned area, isoprene, methanol, HCHO, CO, NO2 and AOD for the periods where

each dataset is available between 2001-2020. All variables have been normalised (to a value of 1) against their respective regional maximum

monthly mean. The shaded areas represent the standard error for each variable for a given month.

March/April, when the isoprene column densities reach 80% of the annual maximum (August regional mean of 8.6 ± 0.5 ×
1015 molecules cm-2).

Several of the constituents also have co-occurring minima. Isoprene, methanol and AOD all have the lowest values of 4.7 ±
0.1 × 1015 molecules cm-2, 0.1 ± 0.01 ppbv, and 0.11 ± 0.004, respectively, around June. HCHO, CO and NO2 remain more225

stable between December and June.

The amplitudes of the seasonal cycles of the different constituents vary. Isoprene, HCHO and CO have relatively low intra-

annual variation, as their column amounts remain above 50% of their maxima throughout the year. In comparison, methanol,

AOD and NO2 exhibit a more extreme seasonality, with values dropping below 30% of their annual maxima. This pronounced

dry season peak in the atmospheric constituents is consistent with the burned area seasonal cycle, which rises from 0.02 ±230

0.002% of the study region in July to 0.06 ± 0.009% in September, before decreasing to 0.02 ± 0.002% again in October.

Burned area values remain below 10% of the September peak for the rest of the year.

The LAI seasonality is substantially different, as values remain above 70% of the maximum throughout the whole year. LAI

is elevated at >3 (>90% of the maximum value) between April and October. The regional monthly mean drops slightly (<2.7

or <80%) from December to February. The lower percentage amplitude of the LAI seasonal cycle may be driven by different235

phenologies of the vegetation in the domain, e.g. Cerrado savanna grassland flowering is relatively consistent throughout the

year, while Amazon forest vegetation tends to flower in the dry season (Morellato et al., 2013). Other research in Brazil has

found that while seasonal changes in forests are associated with solar radiation, they are driven by rainfall for savannas and

grasslands, resulting in opposite cycles for the different land cover types (Myneni et al., 2007). A comparison of 6 LAI datasets

consistently shows that in the southern Amazon the LAI in regions of broadleaf forest cover is higher in July, compared to240
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January, while the savanna/grassland region has the opposite LAI signal (Fang et al., 2013). Consequently, phenology-driven

LAI values may peak at different times depending on the land cover types, resulting in full/partial vegetation coverage of the

region throughout the year.

The magnitudes of all atmospheric constituents examined in this study increase in the dry season when burned area is largest,

suggestive of changes to the atmospheric chemistry due to a substantial pyrogenic source. In particular, the seasonal variabil-245

ity of NO2 and AOD closely matches the seasonality in burned area, while methanol does so with a lag of one month. As

outlined above, vegetation cover, as represented by the LAI, shows more consistent values throughout the year. Therefore, con-

stituents with lower seasonal amplitudes are potentially more strongly linked to the seasonality of biogenic emission sources,

although other factors such as atmospheric lifetime will have an important impact on the respective atmospheric constituent

concentrations.250

3.3 Spatial distribution of vegetation, fire and atmospheric composition

Across the southern Amazon, broadleaf forest, savanna and grasslands represent the dominant vegetation types. Annual average

broadleaf forest cover dominates in the north west (NW), with land surface coverage typically between 80 and 100%, while

savannas and grasslands represent the main land cover (80-100% coverage) in the south east (SE) (Fig. 4). In the centre of the

domain, a transition region exists where the competing phenologies typically have 40-60% coverage. The corresponding LAI255

spatial distribution highlights larger values (3.5 to >5.0) in the NW and lower values (2.0-3.5) in the SE. This is consistent with

broadleaf forest having a larger biomass (per unit area) in comparison to savanna/grassland vegetation types.

For the dry season burned area data, there are sporadic hot spots peaking at >0.3%. The most coherent spatial structures are

a filament of burned area values between 0.2 to 0.3% stretching along the Bolivian eastern border down into Paraguay in the S

of the region, and the cluster of western Brazilian burned area values at >0.1%, though peaking at 0.3-0.5%. This latter feature260

is generally consistent with the reported "arc of deforestation" in the Amazon (Reddington et al., 2015; Santos et al., 2021).

The hatching in Figure 4d represents at least a 2.5% decrease in broadleaf forest between 2001 and 2019, which coincides

with the burned area patterns reported here. Therefore, the fire activity may be related to regions undergoing deforestation and,

to a certain extent, the land cover classifications. For instance, the burned area filament in Figure 4d closely follows the high

(>90%)/low (<20%) savanna/grassland and broadleaf forest structure in Figure 4a & b. Thus, it is suggestive of transitional265

regions between biomes driven by predominately anthropogenic pyrogenic activity. Overall, the spatial distribution of burned

area exhibits more localised maxima than vegetation cover.

The spatial distributions of multi-annual mean values of total column isoprene are similar to those of broadleaf forest cover

and LAI for both the wet and dry season (c.f. Fig. 5a,b and Fig. 4b,c). Values decrease from the far NW (maximum of 2.7

× 1016 molecules cm-2 in the dry season) to <0.5 × 1016 molecules cm-2 in the south (S), following the NW-SE transition270

from forest to savanna/grassland as evident in the dry season total column isoprene values (c.f. Fig. 4b and Fig. 5b). Over the

broadleaf forest region, isoprene is elevated in the west (W), where the maximum forest cover occurs, compared to the east

(E). The spatial similarities between broadleaf forest cover and total column isoprene amounts suggest the broadleaf forest is

the dominant source of this BVOC for this region, especially in the dry season. This finding is also consistent with the short
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Figure 4. The annual mean distribution for 2001-2019 of (a) savanna and grassland and (b) broadleaf forest cover, represented as the % of

each grid cell covered by the respective land cover type, and (c) annual mean LAI for 2001-2019. Dry season (August-October) monthly

mean burned area (% grid cell area) for 2005-2016 is shown on panel (d) along with regions where at least 2.5% of the area has been

deforested marked by hatching. Areas over 1000 m a.s.l. based on the GMTED2010 digital elevation model (Danielson and Gesch, 2011)

have been masked on all panels.
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lifetime of isoprene confining the peak concentrations to the source region. The W-E gradient in mean total column isoprene275

over the forested region itself suggests variability in isoprene emissions within the broadleaf forest biome due to different

plant species or local environmental conditions, as found by Gu et al. (2017), who identify an elevation gradient in isoprene

emissions in the tropical forest N of the region studied here, probably driven by plant species distributions. In this study, the

highest total column isoprene values occur at elevations of around 200 m a.s.l., with lower isoprene column densities in the N

of the forest, where elevations decrease to below 100 m a.s.l.280

Two other atmospheric constituents have similar distributions in the wet season to that of broadleaf forest cover: CO and

AOD. CO is elevated in the NW (>16 × 1017 molecules cm-2, maximum of 18.2 × 1017 molecules cm-2), compared to the

SE (<14 × 1017 molecules cm-2). AOD is similarly elevated in the N (>0.2, maximum of 0.35) and reaches a minimum in the

SE of the study region (<0.1) (Fig. 6a,c). The spatial patterns of CO and AOD during the wet season are consistent with the

broadleaf forest acting as a source of biogenic precursors of CO and aerosols, as values increase over more densely forested285

areas (compare with Fig. 4b). This is consistent with biogenic sources having a greater relative impact on CO and aerosols in

the wet season, when pyrogenic emissions are minimal (Artaxo et al., 2022).

In contrast, wet season HCHO and NO2 increase from the NW (HCHO and NO2 column values of ∼0.8 × 1016 molecules

cm-2 and <0.6 × 1015 molecules cm-2, respectively) to the SE, where HCHO reaches a maximum of 3.2 × 1016 molecules

cm-2 and NO2: 1.36 × 1015 molecules cm-2. This spatial pattern is not consistent with biogenic emissions from the forest being290

the dominant controlling factor (Figures 5e and 6e, compare to Fig. 4b). Further, biomass burning is minimal in the wet season

(see section 3.2), suggesting another source or sink is driving total column HCHO and tropospheric column NO2 in this season.

The wet season methanol concentrations are also different to that of vegetation cover. The highest methanol concentrations of

≥0.4 ppbv are recorded in the far E of the domain between 10◦ and 16◦ S (Fig. 5c).

The dry season spatial patterns of HCHO, CO and AOD differ somewhat from their wet season distributions, suggesting a295

change in dominant sources/sinks e.g. from vegetation to fires, transport and/or atmospheric chemistry processes. CO appears

more well-mixed compared to the other trace gases as expected with its relatively longer lifetime compared to the other species

(average CO tropospheric lifetime of 1-3 months (Seinfeld and Pandis, 2016), compare with Table 1) (Fig. 6b). HCHO, CO

and AOD reach maximum values (up to 3.7 × 1016 molecules cm-2, 32.7 × 1017 molecules cm-2 and 0.88 respectively) over

the transition zone between forests and other land cover classes, although the exact locations of these peaks vary. This region300

is most strongly affected by deforestation and proximate to the highest average dry season burned areas (compare with Fig. 4).

Total column HCHO decreases beyond this zone, consistent with a significant pyrogenic source (Freitas and Fornaro, 2022;

Palmer et al., 2007), both further into the broadleaf forest (1.2 to 1.6 × 1016 molecules cm-2) and to the S, where values drop

to <0.6 × 1016 molecules cm-2 (Fig. 5f). Minima in the AOD and CO data are also found in the S in the foot of the Andes and

in the SE (<0.2 and <18 × 1017 molecules cm-2, respectively) (Fig. 6d). Peak total column CO is found slightly further S to the305

HCHO maximum (10-12◦S compared to 8-11◦S). AOD is characterised by two maxima (>0.8) within the same region as CO,

which occur in areas of mixed land cover (forest cover 10-100%) that have experienced substantial deforestation (>2.5% area

deforested) and some burning (dry season monthly mean burned area ∼0.01%) (compare Figures 6d and 4). However, this does

not correspond to the locations of maximum dry season burned areas. The co-location of these maximum values with regions
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Figure 5. Regional distributions of column mean isoprene (top row (a, b), molecules cm-2), methanol (middle row (c, d), ppbv), and

formaldehyde (bottom row (e, f), molecules cm-2, note colorbar starts at 0.5 × 1016 molecules cm-2) for the wet season (left column) and

dry season (right column). The wet season includes the months of February-April, while the dry season covers August-October. The time

period varies with constituent. Areas over 1000 m a.s.l. based on the GMTED2010 digital elevation model (Danielson and Gesch, 2011) have

been masked on all panels and are not included in further analysis.

of deforestation and biomass burning suggests a pyrogenic source, potentially emissions from deforestation fires, is important310

for these constituents. These constituents were also elevated to the N of this region where the forests are dominant, suggesting

the presence of a biogenic source for this region or transport of pyrogenic emissions. Particularly in the case of HCHO, the
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Figure 6. Regional distributions of CO (top row (a, b), molecules cm-2, note colorbar starts at 10 × 1017 molecules cm-2), AOD (middle

row (c, d)), and NO2 (bottom row (e, f), molecules cm-2) for the wet season (left column) and dry season (right column). The wet season

includes the months of February-April, while the dry season covers August-October. The time period varies with constituent. Areas over

1000 m a.s.l. based on the GMTED2010 digital elevation model (Danielson and Gesch, 2011) have been masked on all panels and are not

included in further analysis.

presence of NOx associated with biomass burning could affect the HCHO yield from BVOC emissions (Langford et al., 2022),

potentially increasing HCHO formation from isoprene oxidation over the broadleaf forest.

Methanol dry season concentration values are similarly elevated (>0.6 ppbv) in the N over the forest to savanna/grassland315

transition, but they are also consistently high further into the Amazon forest, as well as in the NE. Some of the maxima are
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located over areas of mixed vegetation, which experienced substantial deforestation over 2001-2019, as found for HCHO, CO

and AOD (compare Fig. 5d with Figures 1 and 4), but other regions do not reflect any of the studied land surface variables.

The dry season NO2 column densities had several distinct maxima >2.7 × 1015 molecules cm-2, the highest being 3.5 × 1015

molecules cm-2, all located 9-16◦ S. Some of these overlap with the two AOD maxima. Unlike AOD, NO2 is clearly elevated320

over the maximum burned areas recorded at 15◦S, 65◦W and in the E of the study region (Fig. 6d,f, Fig. 4d). In regions of

minimal fire activity, such as deeper into the Amazon forest and the edge of the Andes, tropospheric column NO2 is <0.9

× 1015 molecules cm-2. The spatial pattern of tropospheric column NO2 closely resembles that of burned area, highlighting

the close relationship between the trace gas and fire activity, owing to its much shorter lifetime (around 1 day for NOx at the

surface; Jacob (1999)) compared to CO and aerosols.325

3.4 Influence of vegetation and fire on atmospheric composition

3.4.1 Variations in atmospheric composition with broadleaf forest cover

In this section, the variation in atmospheric composition as a function of broadleaf forest cover (i.e. percentage cover in 10%

bins) is considered for the dry and wet seasons over the whole region and the time period of co-existing data. Within the

dry season, the impact of pyrogenic activity is assessed by splitting the atmospheric constituent data into "low fire" (≤0.04%330

burned area) and "high fire" (>0.04% burned area) regimes. Our results are relatively insensitive to the burned area threshold,

as well as the bin width choice (see Supplement).

Isoprene consistently increases with higher broadleaf forest cover in all four regimes (Fig. 7a). The spatial distributions

rather than temporal variations drive this signal. Values are lower in the wet season (approximately 0.5-0.7 × 1015 molecules

cm-2) than the dry season for broadleaf forest cover values >20%. In densely forested areas (broadleaf forest cover >90%)335

the dry season isoprene column density is 50% greater than in the wet season at approximately 1.0-1.5 × 1015 molecules

cm-2. The greater change between seasons in isoprene column amounts at higher forest cover suggests that isoprene emissions

from broadleaf forest have a stronger seasonality than those from other vegetation types. The differences in mean isoprene

column densities between areas of high and low fire activity remain within 0.3 × 1015 molecules cm-2. Consequently, isoprene

responds to the change in forest cover more than the change in burned area, highlighting the importance of its biogenic source,340

as suggested in section 3.3.

For NO2, a similar pattern occurs with larger column values in the dry season (approximately 1.5-2.0 × 1015 molecules

cm-2) than in the wet season (≤0.86 × 1015 molecules cm-2) (Fig. 7f). However, the relationship with forest cover is non-

linear with peak dry season column NO2 in the 40-50% forest cover bin. When split into the two fire regimes, there is a large

column NO2 difference independent of forest cover bin. When fires are low, tropospheric column NO2 ranges between 1.2 and345

1.3 × 1015 molecules cm-2, while in the high fire regime all column NO2 values are >2.5 × 1015 molecules cm-2 (i.e. at least

60% larger). Overall, as noted in section 3.3, this result is suggestive of the largest NO2 emissions from pyrogenic sources in

forested regions and/or transition zones between vegetation types.
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Figure 7. Mean monthly atmospheric constituent values depending on percentage broadleaf forest cover in a given grid cell for 4 categories:

High burned area dry season (H), Low burned area dry season (L), dry season (D) and wet season (W). Each subplot shows data for one

atmospheric constituent: (a) isoprene (1 × 1016 molecules cm-2), (b) methanol (ppbv), (c) HCHO (1 × 1016 molecules cm-2), (d) CO (1 ×

1017 molecules cm-2), (e) AOD, and (f) NO2 (1 × 1015 molecules cm-2). Each subplot includes data for years when the given atmospheric

constituent, land cover and burned area datasets overlap.

Consistent with the other constituents, column methanol values are larger (0.5-0.7 ppbv) in the dry season than wet (<0.3

ppbv). While the low fire regime is very similar to the dry season average, the high fire regime column methanol values are350

larger (≥0.6 ppbv) for all forest cover bins. Similarly to NO2, though, the peak values are in the 40-50% and 70-80% forest

cover bins (Fig. 6b). Therefore, unlike for isoprene, the methanol columns are not linearly linked to forest cover, but typically

a larger forest cover percentage bin will have larger methanol values.
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The other atmospheric constituents (Fig. 7c,d,e) also have some similarities with both isoprene and NO2. The wet season

values are much lower than those in the dry season regardless of forest cover, consistent with the seasonal cycle of the regional355

averages discussed in section 3.2. In the dry season, HCHO, CO and AOD increase as forest cover increases from 0 to 50%

and values remain elevated at higher forest covers (≥1.5 × 1016 molecules cm-2, >25.7 × 1017 molecules cm-2 and >0.55,

respectively, for forest cover >50%). The high fire regime is associated with higher values of the atmospheric constituents

compared to the low fire regime across all forest cover values. HCHO is elevated by at least 13%, AOD by 27%, and CO by

7-17%. The overall maxima are associated with both high burned area and high forest cover of 80-90%. In the dry season360

average a secondary maximum occurs for the 40-50% (40-60% for HCHO) forest cover bin, resembling that of the peak in

NO2 and methanol values. This result suggests both vegetation and fire are important in driving the concentration of HCHO,

CO and aerosols in the region in the dry season through a combination of biogenic emissions, particularly from the forest, and

pyrogenic emissions in the transition zone and in forested regions, strengthening conclusions drawn from the analysis of spatial

maps in section 3.3.365

3.4.2 Variations in atmospheric composition with burned area

In this section, the change in the atmospheric constituents with burned area is analysed, depending on season (W - wet season,

D - dry season) and, for the dry season, dominant land cover (F - ≥50% forest cover, S - <50% forest cover, i.e. ≥50%

savanna/grassland).

Although isoprene total column amounts are increased during the dry season, when fire activity is at its highest in the370

southern Amazon (see section 3.2), there is no clear relationship between the burned area extent and the isoprene column

amount (Fig. 8a), as the highest dry season total column isoprene values occur at 0-0.01% (0.9 ± 0.01 × 1015 molecules cm-2)

and 0.08-0.09% (0.9 ± 0.1 × 1015 molecules cm-2) burned area. The data does further highlight the relevance of land cover

type for this trace gas. Regardless of the amount of burning, for each respective burned area bin, total column isoprene is at

least 140% higher in regions of dominant forest cover than in regions dominated by savannas and grasslands. Therefore, forest375

cover is closely connected to isoprene emissions, supporting conclusions reached in section 3.4.1, suggesting the broadleaf

forest is the dominant source of this BVOC in the region in the dry season, while the pyrogenic source, limited in its spatial

extent, has a more minimal influence, despite the dry season maximum (see section 3.2).

The other constituents are also elevated over the forested area, compared to the savanna/grassland region, although the

relative difference in atmospheric constituent between the savanna/grassland and forest categories varies. This difference is380

particularly pronounced for HCHO and AOD (Fig. 8c,e). HCHO and AOD total column amounts over forests (1.5-2 × 1016

molecules cm-2 and 0.6-1.1) are, respectively, ≥24% and ≥35% higher than those over savannas/grasslands. NO2 has the

smallest difference in values between the land cover categories (1.4-3.1 × 1015 molecules cm-2 for savanna/grassland, 1.3-4.2

× 1015 molecules cm-2 for forest) (Fig. 8f). For NO2, AOD, CO and HCHO the differences between land cover types increase

at higher burned area values.385

The increase in atmospheric constituents over the forest compared to other land cover types may be driven by the emission of

biogenic precursors and/or higher pyrogenic emissions when forest, as opposed to savanna/grassland, vegetation is burned. The
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Figure 8. Mean monthly atmospheric composition depending on percentage burned area in a given grid cell for 4 categories: Savanna/grass-

land dominated dry season (S), Forest dominated dry season (L), Dry season (D) and Wet season (W). Each subplot shows data for one

atmospheric constituent: (a) isoprene (1 × 1016 molecules cm-2), (b) methanol (ppbv), (c) HCHO (1 × 1016 molecules cm-2), (d) CO (1 ×

1017 molecules cm-2), (e) AOD, and (f) NO2 (1 × 1015 molecules cm-2). Each subplot includes data for years when the given atmospheric

constituent, land cover and burned area datasets overlap.

latter is particularly relevant for NO2, as the difference in column densities between the land cover categories is only significant

at high burned area values. At >0.09% burned area, NO2 reaches 4.2 ± 0.1 × 1015 molecules cm-2 over forest compared to 3.1

± 0.1 × 1015 molecules cm-2 over savanna/grassland.390

On average, most of the same atmospheric constituents (NO2, AOD, CO and HCHO) increase with burned area in the

dry season, reaching peak values at 0.08-0.09% burned area (AOD and CO) or >0.09% burned area (NO2 and HCHO). For

19



Table 2. Spearman rank correlation coefficients r (with the Spearman rank correlation coefficient squared: r2, for comparison with Table 3 in

brackets). For each correlation, data for the three dry season months for years when the atmospheric constituent and surface variable datasets

overlap is used. In the case of annual vegetation data, all months of a given year are assumed to have the same vegetation cover. All r values

are significant at the p = 0.05 level.

Isoprene Methanol HCHO CO AOD NO2

Broadleaf forest cover 0.77 (0.59) 0.19 (0.04) 0.44 (0.19) 0.41 (0.17) 0.39 (0.15) -0.14 (0.02)

LAI 0.77 (0.59) 0.22 (0.05) 0.49 (0.24) 0.43 (0.18) 0.38 (0.14) -0.03 (0.00)

Burned area -0.09 (0.01) 0.15 (0.02) 0.23 (0.05) 0.17 (0.03) 0.18 (0.03) 0.46 (0.21)

methanol the increase with burned area is limited to values of burned area under 0.05%. The greater column amounts of these

constituents associated with both forest cover and burned area are consistent with the dry season maxima observed in (or

proximate to) forested regions and over burned areas on the spatial maps in section 3.3.395

Consequently, all studied atmospheric constituents are influenced by land cover type, as their abundances increase over more

densely forested areas. Additionally, maximum values are reached in the presence of burning, especially at ≥0.07% burned

area for HCHO, CO, AOD and CO in forested regions, showcasing the pyrogenic source. At low burned area values there is

little difference between forests and savannas/grasslands for NO2, highlighting that burning is the major source of the trace gas

in the region during the dry season and the role of land cover is to modify the emissions where burning occurs.400

3.5 Statistical relationships between atmospheric composition and land cover, LAI and fire

In this section, statistical relationships between land cover, LAI, and burned area, and the atmospheric constituents for the

dry season are explored, to quantify the extent to which land cover variables drive atmospheric composition over the southern

Amazon for the time period both datasets are available. Spearman rank correlation (Table 2) and OLS regression (Table 3; see

section 2) are utilised. The results from both methods are very similar, with the squared Spearman rank correlation coefficients405

slightly higher than the equivalent OLS R2 values.

There is a strong significant positive relationship between the two vegetation variables of broadleaf forest cover and LAI,

and total column isoprene over the region (Spearman’s r = 0.77 for both, OLS R2 = 0.59 and 0.54 for broadleaf forest cover and

LAI, respectively), as expected based on sections 3.3-3.4.2. However, there is a weak negative relationship between isoprene

and burned area. In contrast, tropospheric column densities of NO2 exhibit a moderate positive relationship with burned area410

(Spearman’s r = 0.46, OLS R2 = 0.25), but weak relationships with land cover variables over the region.

The relationships for the other atmospheric constituents are mixed and much weaker. HCHO, CO and AOD all show positive

weak to moderate relationships with both broadleaf forest cover and LAI (r-values around 0.4; OLS R2 = 0.08 to 0.18),

suggesting some influence of vegetation on these atmospheric constituents, particularly for HCHO. The relationships between

these atmospheric constituents and burned area are considerably weaker, but also positive (r values from 0.17 for CO to 0.23415

for HCHO; OLS R2 between 0.01 and 0.03). Methanol showed a similarly weak positive relationship with both land cover and

fire (r values from 0.15 with burned area to 0.22 with LAI; OLS R2 between 0.01 and 0.04). These weak results, as compared
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Table 3. OLS regression coefficients of determination (R2) for the dry season for single and multiple linear regression calculations. For each

regression, data for the three dry season months for years when the atmospheric constituent and surface variable datasets overlap is used. In

the case of annual vegetation data, all months of a given year are assumed to have the same vegetation cover. All R2 values are significant at

the p = 0.05 level. The equivalent scatter plots for the data used to derive the linear OLS coefficients for broadleaf forest cover vs. isoprene

and burned area vs. NO2 are shown in figures 9a and 10, respectively.

Isoprene Methanol HCHO CO AOD NO2

Broadleaf forest cover 0.59 0.02 0.14 0.12 0.08 0.00

LAI 0.54 0.04 0.18 0.14 0.09 0.00

Burned area 0.02 0.01 0.03 0.01 0.02 0.25

Forest + Burned Area 0.59 0.04 0.19 0.14 0.11 0.25

LAI + Burned Area 0.54 0.05 0.23 0.15 0.12 0.26

to the isoprene relationship with vegetation, highlight that with the longer lifetimes of these trace gases and aerosols, especially

CO and methanol (average lifetimes of 1-3 months and 5 days, respectively, Seinfeld and Pandis (2016); Bates et al. (2021)),

there is more transport and mixing.420

Multiple OLS regression was also performed to test whether the combination of biogenic and pyrogenic sources improved

their explanatory power for the variation in atmospheric constituents. The R2 value is unchanged for isoprene, while for NO2

the R2 values are minimally affected, suggesting one main emission source of vegetation and fire, respectively, for these two

atmospheric species. For the other atmospheric constituents, the combination of broadleaf forest cover or LAI and burned area

increased the R2 values (as compared to the OLS linear regression results) modestly. The change is most notable for HCHO (R2425

value of 0.23 compared to 0.18) and then for AOD (R2 value of 0.12 compared to 0.09). While the overall R2 values are still

much lower than the R2 value for the linear relationship between isoprene and broadleaf forest cover, for HCHO the multiple

regression R2 values are only slightly lower than for the NO2-burned area relationship. This illustrates the relevance of both a

biogenic and pyrogenic source to HCHO column densities, as previously observed elsewhere in Brazil (Freitas and Fornaro,

2022).430

The more robust relationships between broadleaf forest cover vs. isoprene and burned area vs. NO2 were studied in more

detail (Fig. 9a, Fig. 10). The dry season composition data were binned based on broadleaf forest cover (for isoprene) or burned

area (for NO2). We used a bootstrapping approach to test the significance of the isoprene (NO2) increase with broadleaf

forest cover (burned area) and found the results are significant at the 95% confidence level (not shown). Over the region,

both binned (at 10% broadleaf forest cover intervals) and non binned data suggest that isoprene increases by 1.1 × 1015435

molecules cm-2 for every 10% increase in broadleaf forest cover in the dry season (OLS R2 = 0.59, WLS R2 = 0.97) (Fig. 9).

Consequently, the values for total isoprene column densities over completely (100%) forested regions are on average 4 times

greater than over non-forested regions (0%). In non-forested regions, isoprene concentrations reflect the local background

arising from emissions from non-forest species as well as mixing and transport of forest-related emissions on short time-
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Figure 9. The relationship between dry season monthly isoprene data and broadleaf forest cover (BFC) for 2012-2016 with the best fit

ordinary least square (OLS) regression line (a). Dry season isoprene data for the same time period binned based on 10% broadleaf forest

cover intervals with weighted least squares (WLS) regression results. The errorbars show the standard error for each land cover bin (b). On

panel (a) and (b) the text gives the best fit linear regression equations.

scales. Tree species composition, in addition to forest dynamics and environmental conditions affecting the plant’s emission440

efficiency, could explain the variability of isoprene column amounts within each forest cover bin.

The linear burned area/NO2 relationship was found to exhibit different sensitivities depending on vegetation cover (Fig. 10).

Over regions of high forest cover and high LAI values, tropospheric NO2 increases with burned area more than over locations

with low forest cover and lower LAI (i.e. those dominated by savannas and grasslands, see section 3.4.2). These different

sensitivities are particularly clear up to around 0.5% burned area (Fig. 10, see Fig. 8f for average conditions for burned areas445

of 0 to >0.1%). Extremely high burned areas tend to occur in less forested regions, though the spatial distributions (Fig. 4)

suggest these are savanna/grassland fires proximate to the broadleaf forest in the central part of the region. The dominance

of savanna/grassland at extremely high burned areas could decrease the variation in NO2 explainable by forest cover over the

whole dataset (Tables 2 and 3).

Hence, to represent this more complex burned area/NO2 relationship we also explored the log-log relationship for NO2450

(loge(NO2)) and burned area (loge(BA)) (R2 = 0.32 for non binned data; WLS R2 = 0.90 for binned data (at 0.25 loge(BA)
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Figure 10. The distribution of monthly dry season tropospheric NO2 columns against monthly dry season burned area % coloured by

broadleaf forest cover (a) and LAI (b) for 2005-2019. The panels display the OLS regression line and associated R2 value, as included in

Table 3.

intervals); Fig. 11). This log-log relationship, approximately a fifth root power law, indicates that the change in tropospheric

column NO2 is slightly greater at low burned area percentages compared to at high burned areas. This is consistent with the

findings for the different vegetation types outlined above. The relationship was found to remain relatively consistent through

time by testing the relationship between the natural logarithm of burned area from GFED5 (Chen et al., 2023) and natural455

logarithm of the NO2 tropospheric column for the later time period 2017-2020 (not shown). For both NO2 and isoprene, the

WLS linear regression results were largely unaltered when the bin sizes were halved or doubled (not shown).
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Figure 11. Natural logarithm of the monthly dry season NO2 data (loge(NO2)) against the natural logarithm of the monthly dry season burned

area (loge(BA)) for 2005-2016 with the results of OLS regression (a). The WLS regression analysis on the natural logarithm of monthly dry

season NO2 data binned based on the natural logarithm of monthly burned area percentage cover for the same time period (b). The errorbars

show the standard error for each burned area bin. On panel (a) and (b) the text shows the best fit equation found by the regressions and the

respective R2 value.

4 Discussion and conclusions

This study used new and complementary satellite observations to investigate the relationships between land cover, LAI, and

burned area, and five trace gases (isoprene, methanol, HCHO, CO, NO2) and AOD in the southern Amazon, with the aim to460

understand the influence of vegetation and fire on atmospheric composition in a region of land cover change.

Biomass burning is identified as a potential driver of year-to-year variability in several trace gases: CO, HCHO and NO2, as

well as aerosols, as suggested by the AOD record. Previous studies have identified drought years in 2005, 2007, 2010, 2012 and

2015 for this region (Pope et al., 2020; Panisset et al., 2018; Reddington et al., 2015), which may increase burning and modify

the relationship between burned area and emitted trace gases and aerosols. Although 2007 and 2010 are clearly elevated for465

burned area, AOD, CO, NO2 and HCHO, not all of the listed drought years show maxima for a given variable in this study.

Pyrogenic sources in the dry season may further drive the seasonal cycle maxima of most of the atmospheric constituents

over the region. The observed mean monthly isoprene seasonal cycle differs from the other constituents with a likely vegetation-
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driven secondary peak in the wet season. The isoprene seasonality is consistent with greater photosynthetically active radiation

(PAR) in the dry season, as well as potentially greater isoprene emissions in response to water stress (Yáñez-Serrano et al.,470

2020). The isoprene minimum observed here in June has been previously linked to new leaf growth in the tropical forest in the

transition between the wet and dry seasons, as young leaves start producing isoprene only after a few weeks (Barkley et al.,

2009). The dry season peak for HCHO in September is also consistent with a previous satellite study; however, a secondary wet

season peak was found in that work (Barkley et al., 2009). A weaker relationship between isoprene and HCHO is suggested

for this region, since HCHO does not appear to respond to the variations in isoprene at the end of the wet season.475

The spatial distributions across the southern Amazon further highlight the co-location of isoprene with broadleaf forest cover

and high LAI, and NO2 with burned area. Most of the other atmospheric constituents show characteristics of both distributions.

Methanol is unusual, due to a greater region of elevated column values in the N and NE of the region.

Broadleaf forest cover (LAI) explains 59% (54%) of the variation in total column isoprene across the study region for the

dry season over 2012-2019, which increases to 97% when the isoprene data is binned based on 10% forest cover bins. In the480

dry season, isoprene column amounts increase linearly with tree cover. For every 10% increase in broadleaf forest cover the

isoprene total column amount increases by 11 × 1015 molecules cm-2, or around 40% of the average background (0% broadleaf

forest cover) total column isoprene. This result is consistent for both the binned and original data.

In contrast, burned area explains 25% of the variability in tropospheric column NO2 for the dry season. 32% of the NO2

variability can be explained when the natural logarithms of each variable are used, and the relationship is well-captured when485

this data is binned at 0.25 loge(BA) intervals (R2 = 0.90). There is a stronger increase in the trace gas at lower burned area

values, which is captured by the fifth root power law. Additionally, the NO2 amount varies depending on burning location,

with greater values of NO2 for an equivalent burned area in regions with at least 50% broadleaf forest cover. These results are

in agreement with the FINNv2.5 emissions inventory, which has larger biomass burning emission factors for tropical forest

compared to savanna/grassland (Wiedinmyer et al., 2023). However, the burned areas can be greater where tree cover is more490

sparse, highlighting the potential for substantial pyrogenic emissions from both forest and savanna/grassland regimes.

In the wet season low tropospheric column NO2 values over the forested region and higher values in the SE could be driven

by the forest canopy acting as an NO2 sink through biological uptake, as suggested by Kang et al. (2023). Alternatively, a

further NOx emission source e.g. from soils associated with agricultural activities (Wong and Geddes, 2021) or long-range

transport of anthropogenic emissions in the region of São Paulo (van der A et al., 2008), may influence NO2 concentrations.495

The clear dry season relationships of isoprene with broadleaf forest cover and NO2 with burned area contrast with the

mixed signals for the other atmospheric constituents. However, the combination of broadleaf forest cover and burned area

can explain 23% of the variation in dry season total column HCHO, suggesting interactions between pyrogenic and biogenic

emissions of HCHO and its precursors. The moderate correlation values of AOD and CO with the land cover variables suggest

some influence of vegetation through a biogenic source that yields CO and SOA formation in August-October, although forest500

emissions are most relevant in the wet season (Yáñez-Serrano et al., 2020; Artaxo et al., 2022). Methanol does not exhibit a

strong relationship with any land surface variable despite some observed similarities.
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A key difference between methanol, AOD, CO, and isoprene, HCHO and NO2 is their lifetime. While isoprene, HCHO

and NO2 have lifetimes of up to a day (Pacifico et al., 2009; Wells et al., 2020; Pommier, 2023; Jacob, 1999), aerosols,

methanol and CO atmospheric lifetimes range from several days to months (Bates et al., 2021; Hodzic et al., 2016; Holloway505

et al., 2000). The extended time period the aerosols, methanol and CO are present in the atmosphere will increase the role of

transport in the observed distribution, resulting in a less clear local source signal. These longer lived species, particularly CO

and aerosols, can therefore be transported from more distant anthropogenic sources (e.g. Park et al. (2015); Wang et al. (2015)).

However, anthropogenic emissions are thought to be minor compared to pyrogenic and biogenic sources in the study region.

Anthropogenic sources are in the SE of the study area and beyond the region of interest, e.g. the large agglomerations of São510

Paulo and Rio de Janeiro located further to the SE (see e.g. the European Commission EDGAR v6.1 Global Air Pollution

Emissions database, last access: December 2023).

The findings confirm the tropical broadleaf forest, as opposed to other vegetation types, as the dominant source of isoprene

in the region, consistent with tropical trees being the dominant source of isoprene globally (Guenther et al., 2012). NO2 is

predominantly driven by pyrogenic emissions in the dry season, although the land cover type modulates the emission amount.515

HCHO, and to a lesser extent CO and aerosols, is linked to both biogenic and pyrogenic drivers. More specific land cover

categories, and/or a consideration of other factors are necessary to identify the potential biogenic sources of methanol. The

study finds both land cover and fire have significant impacts on regional atmospheric composition in the southern Amazon,

including modifying amounts of trace gases and aerosols that have implications for regional air quality. Therefore, having

established the importance of vegetation and fire activity on South American atmospheric composition, future work could520

exploit these relationships for Earth System Model (ESM) evaluation, and by using ESMs to explore the underpinning processes

and potential feedbacks between the biosphere and atmosphere.
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