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Abstract. Volatile organic compounds (VOCs) and particulate matter (PM) are major constituents of smog. Delhi 15 

experiences severe smog during post-monsoon season, but a quantitative understanding of VOCs and PM sources is still 

lacking. Here, we source-apportioned VOCs and PM, using a high-quality recent (2022) dataset of 111 VOCs, PM2.5, and 

PM10 using in a positive matrix factorization (PMF) model. Contrasts between clean-monsoon and polluted-post-monsoon 

air, VOC source fingerprints, and molecular-tracers, enabled differentiating paddy-residue burning from other biomass-

burning sources, which has hitherto been impossible. Fresh paddy-residue burning and residential heating & waste-burning 20 

contributed the highest to observed PM10 (25% & 23%), PM2.5 (23% & 24%), followed by heavy-duty CNG-vehicles 15% 

PM10 and 11% PM2.5. For ambient VOCs, ozone, and SOA formation potentials, top sources were petrol-4-wheelers (20%, 

25%, 30%), petrol-2-wheelers (14 %, 12 %, 20 %), mixed-industrial emissions (12%, 14%,15%), solid fuel-based cooking 

(10%, 10%, 8%) and road construction (8%, 6%, 9%). Emission inventories tended to overestimate residential-biofuel 

emissions at least by a factor of 2,(>2) relative to the PMF output. The major source of PM pollution was regional biomass 25 

burning, whereas traffic and industries governed VOC emissions and secondary pollutant formation. Our novel source-

apportionment method quantitatively resolved even similar biomass and fossil-fuel sources, offering insights into both VOC 

and PM sources affecting extreme-pollution events. It represents a notable advancement over current source apportionment 

approaches, and would be of great relevance for future studies in other polluted cities/regions of the world with complex 

source mixtures. 30 
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1 Introduction 

The Delhi National Capital Region (NCR) is located in the Indo-Gangetic plains and experiences some of the highest air 

pollution events worldwide, exposing its inhabitants to hazardous air quality. New Delhi had the world’s highest population-

weighted annual average PM2.5 exposures of 217.6µgmµg m-3and the sixth-highest PM2.5-attributable death (85 deaths per 

lakh) (Pandey et. al., 2021). India is currently among the world’s foremost developing countries and Delhi being its capital 35 

has witnessed rapid population growth and urbanization in the past decade, but a significant fraction of the population still 

lacks access to cleaner technologies for cooking and heating (Thakur M. 2023; Fadly et. al., 2023).  Delhi with a population 

of 31.7 million people (UN World Population Prospects 2022),  sees an addition of overcontinues to add morethan six 

hundred thousand vehicles per year (2022 VAHAN-Ministry of Road Transport and Highways (MoRTH), Government of 

India). The sources of air pollutants over the region have received much attention recently and a number of source 40 

apportionment methods have been applied. Several studies have relied on chemical mass balance models (CMB) that are 

unable to sniff out unknown fugitive sources since their application rests on prior knowledge of all relevant sources and their 

source profiles (Prakash et al., 2021; Srivastava et al., 2008). Clearly, in a dynamic developing world megacity like Delhi, 

where wide disparities exist in terms of access to clean energy and waste disposal practicesburning, and many other activities 

continue to be carried out by the informal sector, the CMB approach may misattribute emissions only to known sources, with 45 

no possibility of identifying other major sources that may be active. While much information has come to light through 

previous aerosol mass spectrometry-based source apportionment studies, a key limitation of the previous studies has been an 

inability to distinguish between different similar types of fossil fuel and biomass-burning sources (Kumar et al., 2022; 

Mishra et al., 2023). The VOCs source-fingerprints of many combustion sources are well constraint and understood, and 

have recently been used in PMF-based studies to source apportion co-emitted greenhouse gasses such as methane, CO2 and 50 

N2O (Guha, et al. 2015; Assan et al. 2018; Schulze et al. 2023). We now extend the use of this promising new technique 

towards source-apportionment of co-emitted PM2.5 and PM10. This helps us overcomee another major limitation of existing 

studies which has been the piece-meal approach where either VOCs (Jain et. al., 2022) or PM or a subset thereof have been 

investigated, that too only  and even these analyses are based on datasets that were acquired in 2019 or earlier, i.e. pre-

COVID19 period after which significant changes have been implemented. For example, the Bharat Stage VI which complies 55 

with the Euro VI norms was implemented in 2018 in Delhi and 2019 for Delhi NCR (Gajbhiye et. al., 2023). This significant 

decision was prompted by the severe air pollution challenges faced by Delhi, particularly worsening around 2019 (Gajbhiye 

et. al., 2023). Still air pollution continues to pose major health risks. Overall, a continued lack of strategic knowledge and 

inability to pinpoint the exact sources and their contribution, hampers efforts to propose evidence-based strategies for 

mitigation of major sources. In our previous studies from another site in the Indo-Gangetic Plain (Pallavi et al., 2019; Singh 60 

et al., 2023), we demonstrated that source apportionment carried out by PMF when combined with measured VOC chemical 

fingerprints of sources, can distinguish and quantify the contribution of even similar types of sources (e.g. within traffic 

source: to distinguish 4-wheelers from 2-wheelers and diesel vehicles; and within biomass burning sources to distinguish 
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paddy stubble burning from residential biofuel combustion). We improve upon those studies that were carried out on datasets 

acquired using a unity mass resolution VOC proton transfer reaction mass spectrometer by recent new data acquired using 65 

the latest state-of-the-art enhanced volatile range high mass resolution and high sensitivity PTR-TOF-10 K technology over 

Delhi (Mishra et al., 2024). 

The dataset used for source apportionment in this study using the positive matrix factorization modelling includes the high 

sensitivity (few ppt), high mass resolution (>10000) real-time acquisition of 111 speciated volatile organic compounds 

measured (15th August 2022–26th November 2022) using a Proton Transfer Reaction Time of Flight Mass Spectrometer 10 70 

K (PTR-TOF10K-MS) instrument in Delhi, along with hourly averaged PM2.5 and PM10 measurements. This dataset is novel 

in that it contains all major known gas phase molecular tracers for varied sources and VOC profiles of major agricultural and 

urban sources extant over Indo-Gangetic Plain.  The dataset covered the relatively cleaner monsoon season which provides a 

baseline air pollution over the city and the post-monsoon season when post-harvest agricultural paddy residue burning in the 

Indo-Gangetic Plain perturbs the atmospheric chemical composition by providing an additional source of VOC and PM 75 

emissions. This comprehensive approach ensured that the positive matrix factorization model, which provides the advantage 

of determining air pollution sources without any prior knowledge of the source fingerprints, was able to quantify the source 

contribution of different sources to the ambient VOC, PM2.5, and PM10 mass concentrations reliably as its solutions are 

sensitive to contrasts in ambient time series data. The statistical solution obtained using the model were verified against real-

world measured source profiles from the region and thus presents a significant advancement over previous PMF source 80 

apportionment studies reported from the Delhi-NCR region. Furthermore, by combining this molecular tracer-based 

methodology and analyses with additional air mass back trajectory and statistical analyses, we also constrain the location of 

the major pollution sources and regions and compare the results of our source apportionment study with two widely used 

gridded emission inventories in chemical transport models, namely the Emission Database for Global Atmospheric Research 

(EDGARv6.1) (Crippa et al., 2022), and the Regional Emission inventory in Asia (REAS v3.2.1 (Kurokawa & Ohara, 2020). 85 

2. Methodology 

2.1 Measurement site and meteorological conditions: 

The new PTR-TOF-MS 10 K enhanced volatility range mass spectrometer, as well as the primary VOC dataset and site, 

have already been described and analyzed in detail in the companion paper (Mishra et al., 2024). Hence only a brief 

description of these aspects and complementary aspects such as the air mass flow trajectories at the site during the study 90 

period from August 2022 to November 2022 are provided below.  

Ambient air was sampled into the instruments from the roof-top of a tall building (28.5896°N-77.2210°E) at ~35 m above 

ground, located within the premises of the Indian Meteorological Department (IMD) in at Lodhi Road, New Delhi situated in 

Central Delhi. The sampling site is a typical urban area surrounded by green spaces, government offices, and residential 

areas, but not in the direct vicinity of any major industries (Fig. S1) and representative of the airflow patterns observed in 95 
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Delhi seasonally. Figure 1 shows the location of the site and thealso 120 h back trajectories of air masses arriving at the site 

that were grouped according to the dominant synoptic regional scale transport into a) south-westerly (orange and yellow) 

flows carrying emissions from southern Punjab, Haryana, Uttar Pradesh, Madhya Pradesh, Rajasthan and Gujarat towards 

the receptor, b) north-westerly (light and dark blue) flows carrying emissions from Pakistan Punjab, Indian Punjab, Haryana, 

Western Uttar Pradesh, Himachal Pradesh, and Uttarakhand towards the receptor, and c) south-easterly flows (light and dark 100 

red) carrying emissions from Haryana, Southern Uttarakhand, Uttar Pradesh, Bihar and Nepal towards  the receptor. Figure 

1d shows a Google Earth image with and. d) spatial map of the daily fire counts in the region for the post-monsoon season 

alongside with the maximum 24-h fetch region for each of these synoptic flow situations marked by coloured square. Square 

boxes indicate the fetch region from which air masses typically reach the receptor site within 24 h for a given flow situation.  

Figure 1e-h The panels on the right side shows the de) photosynthetic active radiation, ef) daily fire counts in the fetch 105 

region (21-32°N, 72-88°E), fg) temperature and relative humidity, and gh) the ventilation coefficient and the sum of the 

daily rainfall during the study period (15th August 2022– 26th November 2022). Wind speed, wind direction, ambient 

temperature, relative humidity, and photosynthetic active radiation were measured using meteorological sensors (Campbell 

Scientific portable sensors equipped with CS215 RH and temperature sensor, PQS1 PAR sensor, TE525-L40 v rain gauge, 

Campbell Scientific Inc.). Boundary layer height was taken from the ERA5 dataset (Hersbach et al., 2023) and the 110 

ventilation coefficient was calculated as the product of the measured wind speed and boundary layer height. Fire counts were 

obtained using the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m thermal anomalies / active fire product data 

from the VIIRS sensor aboard the joint NASA/NOAA Suomi National Polar-orbiting Partnership (Suomi NPP) and NOAA-

20 satellites, for high and normal confidence intervals only. The back trajectories in Fig. 1 showing the 5-day runs were 

obtained using Hysplit Desktop, version 5.2.1 (Stein et al., 2015; Rolph et al., 2017) with GFSv1 0.25° resolution 115 

meteorological fields as input data. The model was initialized every 3 hours (0, 3, 6, 9, 12, 15, 18, and 21 UTC) at 50 m 

above ground level for the year 2022 and trajectories were subjected to back trajectory cluster analysis via k-means 

clustering (Bow, 1984) with Euclidean distance metrics using the openair open-air package (v2.11, Carslaw &. Ropkins, 

2012). Three basic air transport situations occur at this site, namely from the South West (Fig. 1a), North-West (Fig. 1b), and 

South-East (Fig. 1c). These regional transport situations in the shared air-shed have been described for another receptor site 120 

located 300 km north of Delhi previously in great detail (Pawar et al, 2015). At Delhi, each of these large-scale flow patterns 

can occur with three different transport speeds; fast (darkest colour), medium (intermediate colour) and slow (lighter colour), 

resulting in 9 clusters. 

During the monsoon season (15.08-30.09.2022), the air masses from the south-west direction (western arm of the monsoon) 

were more prevalent than air masses reaching the site form the south-east (Bay of Bengal arm of the monsoon). During the 125 

post-monsoon season (01.10-26.11.2022) air masses remain confined over the NW-IGP for prolonged periods and primarily 

reach the site from the north-west (Fig. 1b), except during the passage of western disturbances (05.10-10.1110.2022 and 

04.11-10.11.2022), which result in brief periods with south westerly and south-easterly flow and rain (Fig. 1g1h). Figure 1e 

1f shows that paddy residue burning of short-duration varieties commences even before the monsoon withdrawal on 29th 
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September 2022, however, the burning peaks during the harvest of late varieties in late October and early November. During 130 

this period a drop in temperature (Fig. 1f1g) and increased fire activity (Fig. 1e1f) results in the build-up of a persistent haze 

layer leading to suppressed photosynthetically active radiationsolar radiation (Fig. 1d1e). This is associated with prolonged 

periods of poor ventilation (Fig. 1g1h). 
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 135 

Figure 1: 120 h back trajectory air mass in blue reaching receptor site at Mausam Bhawan building (28.5896°N-77.2210°E, 50 m 

above ground level) grouped according to the dominant synoptic scale transport into a) South-Westerly, b) North North-

westerlyWesterly, and c) South-Easterly flow. Square boxes indicate the fetch region from which air masses typically reach the 

receptor site within 24 hrs for a given flow situation d) spatial map of the daily fire counts in the region for the post-monsoon 

season with square boxes indicating the fetch region from which air masses typically reach the receptor site within 24 hrs for a 140 
given flow situation. On the right, panels show the. The bottom panels show the de) photosynthetically active radiation (PAR)solar 

radiation, ef) daily fire counts in the fetch region, fg) temperature and relative humidity, and gh) the ventilation coefficient and the 

sum of the daily rainfall for the study period. . 
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2.2 Measurement of Volatile Organic Compounds, trace gases, and PM2.5 and PM10 mass concentrations 145 

Measurements of volatile organic compounds were performed using a high mass resolution and high sensitivity proton 

transfer reaction time of flight mass spectrometer (PTR-TOF10k; model PT10-004 manufactured by Ionicon Analytik 

GmbH, Austria). Details pertaining to the characterization, calibration, and QA/QC of the acquired dataset have been 

provided in Mishra et al., 2024. It is worth mentioning again that as a significant improvement over other previous PTR-

TOF-MS deployments in Delhi, the inlet system of the instrument used in this work was designed for sampling and detection 150 

of low volatilitylow-volatility compounds with the extended volatility range technology (Piel et al., 2021). The inlet system 

of the instrument as well as the ionization chamber is fully built into a heated chamber and the inlet capillary is further fed 

through a heated hose to ensure there are no “cold” spots for condensation. The entire inlet system is made of inert material 

(e.g. PEEK or siliconert treated steel capillaries to keep surface effects minimal. Further, the overall inlet residence time was 

less than 3 seconds, throughout the campaign. Compared to previous PTR-TOF-MS instruments deployed in Delhi, this 155 

instrument also had unprecedented higher mass resolution (greater than 10000 m/∆m(FWHM) for m/z ≥ 79 Th even reaching 

as high as 15000 at m/z 330) coupled with high detection sensitivity (~ 1 ppt or better for 60 s averaged data), providing 

unprecedented ability for identification and quantification of new ambient compounds. Mass spectra were acquired over the 

m/z 15 to 450 amu range at a frequency of 1 Hz. Table S1 lists information pertaining to m/z, compound names, and sources 

supported by references to previous studies where available, averaged ambient mass concentrations and classification of the 160 

species as weak or strong for the PMF model runs. The accuracy error was minimized by conducting a total of 8 span 

calibrations throughout the study period. The details of these calibrations can be found in Mishra et al., 2024. The precision 

error for each m/z listed in table S1, which needs to be included into the PMF model runs, was calculated  from the average 

observed count rate in counts per second (cps) of each m/z with the help of Poisson statistics. The detection limit was 

determined as 2σ of the noise observed in clean zero air.  165 

Thermofisher Scientific 48i (IR filter correlation-based spectroscopy), 43i (pulsed UV fluorescence), 49i (UV absorption 

photometry), and 42i trace level air quality analyzers (chemiluminescence) were used to quantify carbon monoxide (CO), 

ozone (O3), and NO and NO2, respectively. The overall uncertainty of the measurements was less than 6 %. Measurements of 

PM2.5 and PM10 were made using Thermofisher Scientific Model 5014i series which is based on the beta-attenuation 

technique.   Technical details pertaining to QA/QC of these instruments have been comprehensively described in our 170 

previous works (Chandra and Sinha, 2016; Kumar et al., 2016; Sinha et al., 2014). Carbon dioxide and methane were 

measured using a cavity ring down spectrometer (Model G2508, Picarro, Santa Clara, USA). The overall uncertainty of these 

measurements was below 4 % and technical details pertaining to the instrument are available in Chandra et al., 2018.   



8 

 

2.3 Positive matrix factorization (PMF) model analysis 

The US EPA PMF 5.0 (Paatero et al., 2002, 2014; Paatero & Hopke, 2009; Noris et al., 2014) was applied to a sample matrix 175 

of 2496 hourly observations and 111 VOC species. The species, with S/N greater than 2.0 were all designated as strong 

species (94) and while others were designated as weak species (17). The total VOC mass was included as a weak species and 

was calculated as the sum of the mass of the individual 111 VOC species included in the PMF. Overall, the 111 VOC species 

included in our analysis and their isotopic peaks explained 86% of the VOC mass detected during our study period. The 

remaining 119 m/z that accounted for 14% of the detected VOC mass could not be included in our PMF analysis mostly 180 

because signals were below the detection limit for close to 50% of the observation period, or because compound identity 

could not be confirmed via isotopic peaks. PM2.5 and PM10 were included as additional weak species in the model. This 

inclusion allows us to source apportion PM with the help of co-emitted gaseous chemical tracers. The specified uncertainty 

for weak species is tripled by the PMF model, to limit the influence of such species on the PMF solution. Several authors 

have recently pioneered the use of VOC tracers in a PMF to source apportion co-emitted greenhouse gasses such as methane, 185 

CO2 and N2O (Guha, et al. 2015; Assan et al. 2018; Schulze et al. 2023). Since the VOCs source-fingerprints of many 

combustion sources are well constrained and understood, we now extend the use of this promising new technique towards 

source-apportionment of co-emitted PM2.5 and PM10. The PMF is a matrix decomposition factor analysis model that 

decomposes a time series of measured species into a set of factors with fixed source fingerprints whose contributions to the 

input data set varies with time. This makes the model well suited to accommodate all chemical species co-emitted from the 190 

same source. 

The EPA PMF 5.0 is a multivariate factor analysis tool and a receptor model that divides the data matrix X ij (time series of 

measured concentrations of VOCs with i distinct observations and j measured species) into two matrices, Fkj (source 

fingerprint) and Gik (source contribution), along with a residual matrix, Eij, using the simultaneous application of the linear 

least square method in multiple dimensions. 195 

Xij= ∑ 𝐆
𝒑
𝒌=𝟏 ik×Fkj + Eij         (1) 

The user must provide the number of variables or sources (k). To determine the number of VOC sources the model can 

resolve in this atmospheric environment, the model was run with 3 to 12 factors. The model was initiated for 20 base runs 

with the recommended block size of 379, and the run with the lowest Qrobust and Qtrue was chosen for further analysis and 

display in Figure 2. Figure 2 shows how the percentage of total VOC, PM2.5, and PM10, attributable to various sources 200 

changes when the number of factors increases from 3 to 12, while Fig. S12-S4a-c illustrates the evolution in the factor 

contribution time series, source profile, and percentage of species explained by different sources when the number of factors 

in the PMF increases. Figure S5 shows how the Qtrue/Qtheoretical ratio and Qrobust/Qtheoretical, and scaled residuals beyond 3 

standard deviations drop exponentially when the number of factors increases. It can be seen that initially the Qtrue/Qtheoretical 

ratio drops faster than Qrobust/Qtheoretical ratio on account of additional major plumes being better explained with each 205 
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additional factor. However, with the increase from 11 to 12 factors both drop in a parallel fashion indicating that the point of 

diminishing returns has been reached. 

 

 

Figure 2: Percentage of the total VOC, PM10 and PM2.5 mass explained by each factor in the PMF model output results when the 210 
number of PMF factors in the model is increased from 3 to 12. The balance to 100 % shown in black indicates the percentage 

share of the total mass in the PMF residuals. 

While the three major traffic factors namely; CNG, petrol 4-wheeler, and petrol 2-wheeler are completely resolved with the 8 

factors solution, three major biomass-burning related sources namely paddy residue burning, heating, and waste burning, and 

solid fuel-based cooking are separated with a 9-factors solution. Until the PMF opens distinct factors for the industrial 215 

OVOC emissions in the 7-factor solution, the partitioning between paddy residue burning and heating and waste burning 

PM2.5 and PM10 emissions in the model remains unstable, because these sources with their strong OVOC emissions are most 

agreeable to accommodating additional OVOC sources in their fingerprint at the expense of explaining the PM2.5 and PM10 

emissions. Once the industrial OVOC emissions have their own factor, this split becomes stable. The amount of PM 

attributed to residential heating and waste burning stabilizes after a separate factor for cooking emissions opens up in the 9-220 

factor solution. Mixed Iindustrial emissions are separated from solvent usage and other evaporative emissions with a 10-

factor solution, and road construction activity emerges as a separate source with an 11-factor solution. While attempting to 

resolve 12-factors, the model splits transport sector emissions into four separate factors. However, this new transport sector 

factor shows a time series correlation (R=0.8) with the petrol 4-wheeler factor, and the 12-factor solution was found to be 

rotationally unstable during bootstrap runs, indicating that the model cannot resolve more than 11 factors with the available 225 

VOC tracers. The 12-factor solution also hardly improves the Qrobust/Qtheoretical and Qtrue/Qtheoretical ratio (Fig. S2S5). Therefore, 

the 11-factor solution was analyzed further. The model was run in the constrained model, elaborately described in Sarkar et. 

al., (2017) and Singh et al., (2023). The rotational ambiguity can be reduced using this option with the aid of prior 

knowledge by encouraging the model to minimize (pull down) or maximize (pull up) the total mass assigned to specific 

hourly observations or compounds in source profiles as much as possible within a pre-defined permissible penalty on Q. The 230 

primary problem of the base run solutions is that night-time biomass burning plumes contaminate both the biogenic and the 

photochemical factor. To minimize this iIn our constrained run, we have pulled down primary emissions (acetonitrile, 
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toluene, C8 aromatics, and C9 aromatics) in the biogenic and photochemical factors. We also pulled down the top-7 

strongest nighttime plumes contaminating the biogenic and photochemical factors. In addition, we pulled up the highest 

plume event for all the anthropogenic emission-related factors as detailed in Table S2. The overall penalty to Q (the object 235 

function) was 4.9 %, which is within the recommended limit of 5 % (Norris et al., 2014; Rizzo & Scheff, 2007). The model 

uncertainty was assessed using bootstrap runs. The constrained model was found to be rotationally stable and robust with 

100 % of all bootstrap runs for each individual factor mapped onto the base factor with R>0.6 and no unmapped bootstraps. 

2.4 Calculation of the ozone formation potential, Secondary secondary organic aerosol formation and volatility 

TThe contribution of VOCs to ozone production was derived using with the maximum incremental reactivity (MIR) (Carter, 240 

2010) method using the following equation   

𝑂𝐹𝑃 =  ∑(𝑐𝑖𝑀𝐼𝑅𝑖)           (2) 

where ciis the measured concentration of VOC species i and MIRi is the maximum incremental reactivity of VOC species i. 

The Secondary secondary Organic organic Aerosol aerosol Production production (SOAP) was determined using the 

following equation 245 

𝑆𝑂𝐴𝑃 =  ∑(𝑐𝑖𝑆𝑂𝐴𝑃𝑖)            (3) 

SOAPi values were calculated with the SOA yields for high nOx NOx
 emission environments reported in Table S3 according 

to the equation of Derwent et al., (1998;, 2010), as Delhi being a megacity is a high NOxnOx emission environment. When 

introduced to the ambient environment,This equation evaluates  each VOC species' ability to make SOA is evaluated in 

relation to the amount of SOA the same mass of toluene would make when introduced to the ambient environment. This 250 

which is represented by the SOAPi. 

The saturation vapour pressure of VOCs was calculated using EPA EPI Suite v4.1 (MPBPWINv.1.43; KOAWIN v.1.00) 

provided by the US Environmental Protection Agency (US EPA, 2015) according to the method described in Li et al., 

(2016). The vapour pressure of liquids and gases is estimated using the average of the Antoine method (Lyman et al., 1990) 

and the modified Grain method (Lyman 1985). The vapour pressure is then converted to saturation mass concentration C0 in 255 

µgmµg m-3using the following equation: 

𝐶0 =  
𝑀 106 𝑝0

760 𝑅 𝑇
            (34) 

wherein M is the molar mass [g mol-1], R is the ideal gas constant [8.205 x 10-5 atm K-1 mol-1 m3], p0 is the saturation vapor 

pressure [mm Hg], and T is the temperature (K). Organic compounds with C0> 3 x 106µgmµg m-3are classified as VOCs 

while compounds with 300<C0<3 x 106µgmµg m-3as Intermediate VOCs (IVOCs).  260 
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2.5 Comparison of existing emission inventories with PMF derived output 

The observational data was grouped according to the predominant airflow into a south-westerly, north-westerly, and south-

easterly group, and the fetch region from which air masses would reach the receptor site within 24 h was determined for each 

group separately spanning latitude 21–31 N̊ and longitude 72–82 E̊, latitude 28–32 ̊N and longitude 72–80 E̊ and latitude 25–265 

30 ̊N and longitude 75–88 E̊, respectively, for the three flow regimes. Two gridded emission inventories namely the 

Emission Database for Global Atmospheric Research (EDGARv6.1) for the year 2018 (Crippa et al., 2022), and the 

Regional Emission inventory in Asia (REAS v3.2.1) for the year 2015 (Kurokawa & Ohara, 2020) were filtered for these 

three fetch regions to compare PMF results with the emission inventory. We compare the relative percentage contribution of 

sources to the total atmospheric pollution burden in the PMF with the relative percentage contribution of sources to the total 270 

emissions for the emission inventories. This approach has been routinely used to evaluate emission inventories with the help 

of PMF results at different sites around the world (Buzcu-Guven and Fraser, 2008; Morino et al. 2011; Sarkar et al., 2017; Li 

et. al., 2019; Qin et al., 2022). For the purpose of emission inventory comparison of anthropogenic sources, natural sources 

such as biogenic emissions and the photochemistry factor were removed from the PMF output, while the solid fuel-based 

cooking and residential heating and waste burning emissions were summed up in residential & waste managementwhile . In 275 

addition, CNG and Petrol 2 & 4-wheeler factors are were combined into the consolidated transport sector emissions. 

3 Results and Discussions: 

3.1 Validation of the PMF output with source fingerprints.and contribution of individual sources to the totalVOC, 

PM2.5 and PM10 mass and secondary pollutantformation. 

Figure 3 shows the source profile of the eleven factors that our PMF analyses resolved. Out of the 111 VOCs only those 280 

whose normalized source contribution exceeded 0.1 when divided by the most abundant compound in the same source 

profile in at least one of the sources, were included in the figure. The source identity of the PMF factors was confirmed by 

matching the normalized PMF factor profiles with the unit µg m-3 with normalized source fingerprints of grab samples 

collected from the potential sources. To facilitate the comparison of emission factors and grab samples from different studies 

with the unit g/kg with the PMF output, the with the unit µgmµg m-3bothsource samples were also normalized by dividing 285 

each species’ mass/emission factor by the mass/emission factor of the most abundant species in a given fingerprint. The 

PMF factor profile matched best against source samples collected from burning paddy fields (R=0.6,) (Kumar et al., 2020) 

for the paddy residue burning factor. The cooking factor matched emissions from a cow-dung-fired traditional stove called 

angithi (R=0.7,) (Fleming et al., 2018). The residential heating & waste burning factor had a source fingerprint matching 

emission from leaf litter burning, wood(R=0.7, Chaudhary et. al., 2022), waste burning (R=0.7,) Sharma et al., 290 

(2022)(Chaudhary et. al., 2021), and cooking on a chulha fired with a mixture of firewood and cow dung (R=0.9,) (Fleming 

et al., 2018). The factors identified as CNG (R=1.0), petrol 4-wheelers (R=0.9), and petrol 2-wheelers (R=0.6) matched 

tailpipe emissions of the respective vehicle types and fuels (Hakkim et al., 2021). The petrol 4-wheelers (R=0.9), and petrol 
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2-wheelers (R=0.7) also matched traffic junction grab samples from Delhi (Chandra et al., 2018). The OVOC source 

fingerprint of the road construction factor matched the source fingerprint of asphalt mixture plants and, asphalt paving 295 

(R=0.97,) (Li et. al., 2020), while the hydrocarbon source fingerprint matched diesel-fuelled and road construction vehicles 

(R=0.6, Che et. al., 2023). The factors identified as solvent usage and evaporative emissions matched ambient air grab 

samples collected from Munirka furniture market and an industrial area at Jahangirp Puri (R=0.7), and Dhobighat at Akshar 

Dham (R=0.5) in this study. The factor identified as industrial emissions showed the greatest similarity to ambient air grab 

samples from the vicinity of the Okhla waste-to the -energy plant (R=0.8), Gurugram (R=0.7) and industrial area at 300 

Faridabad (R=0.8) industrial area(R=0.8). The biogenic factor showed the greatest similarity to plant chamber source profiles 

of Mangifera indica (Datta et al., 2021), leaf wounding compounds released from Populus tremula (R=0.8,) (Portillo-Estrada 

et al., 2015) as well as ambient BVOC measurements in an orange orchard (Park et al., 2013)BVOC fluxes from and 

Mangifera indica (R=0.4, ) (Datta et al., 2021).Figure 3 shows the source profile of the eleven factors that our PMF analysis 

resolved, which in descending ranking of their contribution to the total VOC mass concentration and ozone formation 305 

potential (Fig. 4 a & d), were petrol 4-wheeler vehicles (20 %& 25 %), petrol 2-wheeler vehicles (14 %& 12 %), industries 

(12 %& 14 %), cooking (10 %& 10 %), CNG vehicles (9 %& 7 %), road construction (8 %& 6 %), heating & waste disposal 

(7 %& 6 %), solvents usage (6 %& 3 %), biogenic emissions (4 %& 6 %), paddy residue burning (6 %& 6 %), and 

photochemistry (4 %& 3 %) respectively.  
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 310 

Figure 3: PMF factor profile of the 11 factors identified. The source profile in µg m-3 (left in red) normalized source fingerprints of 

the PMF factors (red) and the normalized source fingerprint of grab samples collected at the source (right in various colours). The 

Error bars indicate the 2σ uncertainty range from the bootstrap runs for PMF factor profiles and the 1σ fire-to-fire or vehicle-to-

vehicle variability error of the mean of the emission factors for source samples. . 

 315 
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Figure 4 shows the relative contribution of different sources to the total pollution burden of VOCs, PM2.5 and PM10 at the 

receptor site. In the megacity of Delhi, all transport sector sources combined contributed most (4342±4 %) to the total VOC 

burden, while they it contributed much less (only 24 %) to the total VOC burden in Mohaliat a suburban site in the NW-

IGP250 km north of Delhi during the same season (Singh et al., 2023). On the other hand, the contribution of both, paddy 320 

residue burning (6±2 %) and total the summed residential sector solid fuel usage and waste disposal emissions (17±3 % in 

Delhi and 18 % in Mohali) to the total VOC burden during post-monsoon season wereas similar at both sites. The 

contribution of the different factors to the SOA formation potential (Fig. 4 e), stands in stark contrast to their contribution to 

primary particulate matter emissions. Secondary organic aerosolSOA formation potential was dominated by the transport 

sector which contributed( 54 %) to the SOA formation potential (petrol 4-wheeler vehicles 30 %, petrol 2-wheeler vehicles 325 

20 %, CNG vehicles 4 %).Minor contributors to SOA formation were industries (15 %), road construction (9 %), and solid 

fuel-based cooking (8 %). All other sources contributed <5 % of each of the SOA formation potential.while dDirect PM10 

(52±8%) and PM2.5 (48±12%) emissions were dominated by different biomass burning sources  (Fig. 4 b & c). Paddy residue 

burning was one of the largest contributors to the total observed PM10 (25 %) and PM2.5 (23 %) mass concentrations in Delhi. 

An earlier WRF-Chem-based study with the FINNv1.5 inventory had attributed 20 % of the PM2.5 burden to this source for 330 

the year 2018 (Kulkarni et al., 2020). Residential heating & waste burning contributed 23 %& 24 % to the PM10 and PM2.5 

burden, respectively. . CNG-fuelled vehicles also contribute significantly to the PM10 (15±3 %) and PM2.5 (11±3 %) burden. 

A significant share of the PM10 (18 %) and PM2.5 (28 %) burden is associated with the residual and not directly linked to 

combustion tracers. This share can likely be attributed to windblown dust arriving at the site through long-range transport 

(Pawar et al., 2015) and to secondary organic, and secondary inorganic aerosols such as ammonium sulfatesulphate and 335 

ammonium nitrate. Due to the complex relationship of secondary aerosol with gas-phase precursors and emission tracers, 

VOC tracers are not a suitable tool to source-apportion this aerosol component. Meteorological conditions, homogeneous, 

heterogeneous, and multiphase chemistry control how fast primary emissions are converted to secondary aerosol. To explain 

the source of those species, one also needs to invoke the physicochemical and thermodynamical properties of the aerosol. 

(Acharja et al., 2022). 340 
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Figure 4: Source contribution of the 11 sources to the (a) total ambient VOC mass loading, (b) PM10 mass loading and (c) PM2.5 

mass loading (d) ozone formation potential and (e) SOA formation potential. . 

 

 345 

3.2 Detailed discussion of individual emission sources 

3.2.1 Factor 1: Paddy residue burning 

Paddy residue burning was one of the largest contributors to the total observed PM10 (25 %) and PM2.5 (23 %) (Fig.4b,4c) 

mass concentrations in Delhi. An earlier WRF-Chem-based study with the FINNv1.5 inventory had attributed 20 % of the 

PM2.5 burden to this source for the year 2018 (Kulkarni et al., 2020). Its importance as a PM source stands in stark contrast to 350 

its minor contribution to the overall VOC mass loading in Delhi (6 %). In Mohali, Punjab, this source was also found to only 

contribute 6 % to the VOC burden in October and November (Singh et al., 2023). It also contributed to 6% and 4% to the 

ozone and SOA formation potential respectively (Fig.4d, 4e). The VOC profile of this factor (Fig. 3) matches source samples 

collected from burning paddy fields (Kumar et al., 2021). In descending rank of mass contribution, acetaldehyde m/z45.030 

(CH₃CHO 1.6 µgm-3), acetic acidm/z61.025 (C₂H₄O₂ 1.6 µgm-3), acetone + propanalm/z59.046 (C₃H₆O 1.0 µgm-3), 355 

hydroxyacetone m/z75.042 (C₃H₆O₂ 0.8 µgm-3), acroleinm/z57.030 (C₃H₄O 0.5 µgm-3), diketone m/z 87.043(C₄H₆O₂0.5 

µgm-3) and furfuralm/z97.027 (C₅H₄O₂0.3 µgm-3) contributed most to the total VOC mass of this factor. Figure 5 shows that 
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the 24-h averaged factor contribution time series has the highest cross correlation with same day fire counts (R=0.8), while 

hourly average source contributions correlate most with PM2.5 (0.7) and, PM10 (0.7) and CO (R=0.5) (Table S4). The high 

correlation with same daysame-day fire counts points towards nearby fire activity as the dominant source of paddy burning 360 

relatedburning-related pollution in the Delhi NCR. A recent study from Punjab indicated, that the largest PM enhancements 

at a receptor are caused by fire occurring within 50 km radius around the receptor site (Pawar & Sinha, 2022). Figure S4 S6 

shows that the PM2.5 and PM10 mass loadings at the receptor site increased by 0.027±0.006 and 0.047±0.01 µgmµg m-3, 

respectively for each additional fire count within the 24-hour fetch region whenever the trajectories are arriving through 

north-west and south-west region. It is very interesting to note that the incremental increase in PM2.5 and PM10 mass loadings 365 

for each additional fire count were almost four times higher than the former regions when the trajectory fetch region was 

south-east with 0.10911±0.01 and 0.192±0.02 µgmµg m-3, respectively, likely because . the  

Figure 6 10 demonstrates that paddy residue burning (labeled agriculture to compare with EIs) is an equally important source 

of particulate matter in air masses reaching the receptor from the North-Western IGP (24 % and 27 % of PM2.5 and PM10, 

respectively) and the South-Eastern IGP (24 % and 27 % of PM2.5 and PM10, respectively), despite the much lower fire 370 

counts over the South-Eastern IGP (17,810), when compared to the North Western IGP (61,334). This indicates that either 

fires to the SE are burning closer to the receptor site or the fire detection efficiency in this fetch region is lower due to factors 

such as the prevailing burning practices (Liu et al., 2019) and landholding sizes.The complete burns of entire open fields  

(Figure S7) fires that are prominent in Punjab,which can be more easily identified as a fire activity with satellite-based 

detection, while partial/fractional burns are usually omitted (Liu et al., 2019; 2020), while the partial burns (Figure S8) that 375 

are more prevalent in the eastern IGP and in Haryana have larger omission errors (Liu et al., 2019; 2020). Regional gradients 

in fire detection efficiency can complicate attempts to model air quality with the help of fire-count-based emission 

inventories (Kulkarni et al., 2020). Paddy residue burning contributed less to the PM burden in air masses reaching from 

Central and South-West India (19 % and 17 % of PM2.5 and PM10, respectively). Its importance as a PM source stands in 

stark contrast to its minor contribution to the overall VOC mass loading in Delhi (6 %). In Mohali, Punjab, this source was 380 

also found to only contribute 6 % to the VOC burden in October and November (Singh et al., 2023).  
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Figure 5: Time series of each factor in μg m−-3 (left column) with respective normalized diurnal profiles (centre column). The 

shaded region in the diurnal profiles depicts the area between the 25th and 75thand percentile while the median of the dataset is 385 
marked as the line. and The polar plots (right column) depicting the conditional probability of a factor having a mass contribution 

above the 75th percentile of the dataset during a certain hour of the day between midnight (centre of rose) and 23:00 local time 

(outside of rose) from a certain wind direction. This probability is determined by dividing the number of observations above the 

75th percentile by the total number of measurements in each bin. 
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Figure S3(a)6 shows that this factor explained the largest percentage share of O-heteroarene compounds such as furfural 390 

m/z97.027 (C₅H₄O₂46 %), methyl furfural m/z111.042 (C₆H₆O₂52 %), hydroxy methyl furfural m/z127.039 (C₆H₆O₃44 %), 

furanone m/z85.027 (C₄H₄O₂48 %), hydroxymethyl furanone m/z115.039 (C₅H₆O₃38 %), furfuryl alcohol m/z 99.043 

(C₅H₆O₂39 %), furan  m/z69.031 (C₄H₄O38 %), methyl furans m/z83.047 (C₅H₆O35 %), C2-substituted furans m/z97.063 

(C₆H₈O29 %), and C3-substituted furans  m/z111.080 (C₇H₁₀O27 %), which are produced by the pyrolysis of cellulose and 

hemicellulose, and have previously been detected in biomass burning samples (Coggon et al., 2019; Hatch et al., 2015; 2017; 395 

Koss et al., 2018; Stockwell et al., 2015). Figure S3(a)6 also shows that this factor explains the largest share of the most 

abundant oxidation products that result from the nitrate radical-initiated oxidation of toluene  as well as from OH-inmitiated 

oxidation of aromatic compounds under high NOx conditions, namely nitrotoluene m/z138.056(C₇H₇NO₂30 %) and 

nitrocresolsc m/z154.052 (C₇H₇NO₃ 45 %) (Ramasamy et al., 2019), which indicates a certain degree of aging of the plumes. 

These nitroaromatic compounds are significant contributors to SOA and BrC, (Palm et al., 2020, Harrison et al., 2005). It 400 

also explains several other nitrogen containing VOCs such as nitroethanem/z76.045 (C₂H₆NO₂ 38 %), the biomass burning 

tracer acetonitrile m/z42/030 (CH₃CN 21 %) and pentanenitrile m/z84.080(C₅H₉N 44 %). The presence of pentanenitrile 

isomers in biomass burning smoke has previously been confirmed using gas chromatography-based studies (Hatch et al., 

2015, Hatch et al., 2017). In addition the factor explains the largest percentage share of acrolein m/z57.030(C₃H₄O 49 %), 

hydroxyacetone (C₃H₆O₂41 %), cyclopentadienone m/z81.031(C₅H₄O 31 %), cyclopentanone m/z85.063(C₅H₈O 26 %), 405 

diketone m/z87.043(C₄H₆O₂35 %), pentanedione m/z101.059(C₅H₈O₂26 %), hydroxybenzaldehyde m/z123.043(C₇H₆O₂ 34 

%), guaiacol m/z125.06(C₇H₈O₂ 32 %), and the levoglucosan fragment m/z145.0505(C₆H₈O₄ 43 %), many of these 

compounds are known to form during lignin pyrolysis (Hatch et al., 2015, Koss et al., 2018; Nowakowska et al., 2018), 

while dimethylbutenedial m/z113.059(C₆H₈O₂33 %), trimethylbutenedial m/z127.075(C₇H₁₀O₂26 %) are ring opening 

oxidation products of aromatic compounds (Zaytsev et al., 2019). Figure S9 shows the volatility oxidation state plot for all 410 

111 VOCs in which the marker size represents the percentage share of each compound explained by the paddy residue 

burning factor and markers are colour coded by the number of carbon atoms. The plot shows evidence of the first- and 

second-generation oxidation products of C5 and C6 hydrocarbon transitioning from the VOC to the IVOC range along 

trajectories expected for the addition of =O functionality to the molecule (Jimenez, et al. 2009), while C7 hydrocarbons 

progress along trajectories expected for both the addition of -OH and =O functionality. This indicates that paddy residue 415 

burning contributes significantly to the SOA burden. However, the fact that the PM10 mass associated with this factor (36.5 

µg m-3) is 1.8 times larger than the PM2.5 mass (20.7 µg m-3) and 3 times larger than the VOC mass (11.6 µg m-3) released 

during the same combustion process, points towards the relatively coarse ash formed from the phytolith skeleton of rice 

straw (Figure S10) as the dominant aerosol source.  

 420 
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Figure 6: VOC species to which different forms of biomass burning contribute the highest percentage share of the 

atmospheric burden in Delhi 

 

3.2.2 Factor 2: Residential heating and waste disposalburning 425 

The residential heating and waste disposalburning factor is the second largest particulate matter source at the receptor site 

and contributes 23 % and 24 % to the total PM10 and PM2.5 mass loadings, respectively (Fig. 4), while it contributed to only 

7% to the total VOC mass loading, 6% and 4% to the ozone and SOA formation potential respectively (Fig.4). Emissions 

peak at nighttime (Fig. 5) and the factor contribution time series displays the largest cross-correlation with the 24 h averaged 

heating demand (R=0.8) (Fig. S5S6), PM10 (R=0.7), PM2.5 (R=0.6) and, NO2 (R=0.7) and CO (R=0.5) (Table S4). The lower 430 

correlation with NO (R=0.4) (Table S4), indicated that emissions are combustion-related but not always fresh. Occasionally, 

fresh plumes reach the receptor within minutes, however the majority of plumes have a higher atmospheric age, as NO is a 

short-lived species and oxidized to NO2 on the timescale of minutes in the presence of ozone (Sinha et al., 2014). The source 

fingerprints (Fig. 3) show the greatest similarity of this with leaf litter burning, waste burning (Chaudhary et. al., 2021), and 

cooking on a chulha fired with a mixture of firewood and cow dung (Fleming et al., 2018) and the The factor contribution 435 

time series is anti-correlated with temperature (R=-0.6) and has its strong correlation with the 24 h averaged heating demand 

(R=0.8) indicating that this combustion activity is primarily triggered by the need to keep warm. Figure S5 S11 shows that 
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the PM2.5 and PM10 mass loadings at the receptor site increase by 13.9 µgmµg m-3 and 22.3 µgmµg m-3, respectively for each 

degree increase in the 24-h average heating demand. Earlier studies have documented the strong seasonality of open waste 

burning emissions over Delhi, as well as the diversity of fuel used in wintertime heating-related fires (Nagpure et al., 2015). 440 

This factor explains 7 % of the total VOC mass loading. The top contributors to the VOC mass of this factor are in 

descending rank of contribution: methanol m/z33.030(CH₃OH2.4 µgm-3), propyne m/z41.035(C₃H₄1.4 µgm-3), acetone + 

propanal m/z59.046(C₃H₆O1.1 µgm-3), acetaldehyde m/z45.03(CH₃CHO1.1 µgm-3), acetic acid m/z61.025(C₂H₄O₂1.0 µgm-3) 

and benzene m/z79.052(C₆H₆0.8 µgm-3). Figure S3(a)6 shows thas that this factor explains the largest percentage share of the 

total mass for formaldehyde (HCHO46 %)m/z31.014 and vinylacetylene + 1-buten-3-yne m/z53.035(C₄H₄36 %), and the 445 

second largest percentage share of furfural (C₅H₄O₂23 %), methylfurfural (C₆H₆O₂15 %), furan (C₄H₄O19 %), methyl furan 

(C₅H₆O15 %), furanone (C₄H₄O₂16 %) and acrolein (C₃H₄O14 %). All these compounds are characteristic of biomass 

burning smoke (Hatch et al., 2015;, Stockwell et al., 2015;, Koss et al., 2018). 

3.2.3 Factor 3: Solid fuel-based cooking 

The cooking factor is a daytime factor and explains 10 % of the total VOC mass loading, 10% and 8 % of the ozone and 450 

SOA formation potential (Fig. 4), but only a negligible share of the total PM10 (≤4 %) burden. The volatility oxidation space 

plot (Figure S9) also shows very little evidence of IVOC oxidation products that could partition into the aerosol phase. The 

source profile (Fig. 3) matched emissions from a cow-dung-fired traditional stove called angithi (Fleming et al., 2018). The 

activity peaks from 8 am to noon time, with a secondary peak in the early evening hours and persists throughout monsoon 

and post-monsoon season. Emissions reaching the receptor site show no correlation with NO (R=0.1) indicating plumes are 455 

not fresh. In descending rank of mass contribution acetone + propanal(C₃H₆O4.5 µgm-3), acetaldehyde (CH₃CHO2.9 µgm-3), 

methanol (CH₃OH2.4 µgm-3), toluene m/z93.069(C₇H₈2.1 µgm-3), the sum of C8 aromatics m/z107.085(C₈H₁₀)1.1 µgm-3), 

propyne (C₃H₄1.1 µgm-3) and benzene (C₆H₆0.9 µgm-3) contribute most to this factor. These aromatic compounds have been 

reported to originate from cooking emissions (Crippa et al., 2013). Figure S3(a)6 shows that factor explains the largest 

percentage share of butanone m/z73.062(C₄H₈O 28 %), pentanone m/z87.079(C₅H₁₀O28 %), acetaldehyde (CH₃CHO28 %), 460 

acetone (C₃H₆O26 %), and benzaldehyde m/z107.0486(C₇H₆O29 %). All these compounds are characteristic of biomass 

burning smoke (Hatch et al., 2015; Stockwell et al., 2015; Koss et al., 2018).  

3.2.4 Factor 4: CNG 

CNG-fuelled vehicles are identified as the third largest identified source of PM10 (15 %) and PM2.5 (11 %) and contribute 9 

% to the total VOC burden (Fig. 4). The much higher contribution of this source to the coarse mode particulate matter 465 

burden (22.5 µgm-3 PM10) when compared to the fine mode particular matter burden (10.4 µgm-3 PM2.5), confirms earlier 

emission-inventory-based estimates which flagged that non-tailpipe emissions such as brake and tire wear and road dust 

resuspension have become the dominant transport sector related particulate matter sources in the Delhi-NCR region 

(Nagpure et al., 2016). Non-tailpipe emissions such as brake and tire wear and road dust resuspension contribute most to the 
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PM10 burden, although they have also become the largest source of transport sector fine mode aerosol and VOC emissions in 470 

some countries that have transitioned to Euro-6 norms (Harrison et al., 2021). Thise study attributesd a large share of these 

non-tailpipe emissions to trucks, buses and other commercial vehicles that are typically fuelled by CNG, because 

commercial diesel vehicles of <10 years age face severe entry restrictions, that limit their use within the Delhi NCR while 

older diesel vehicles have been completely banned from plying within City limits. Policy interventions in favour of CNG use 

(Krelling & Badami, 2022) have resulted in a halving of diesel sales, a rapid conversion of Delhi’s HDV fleet to CNG 475 

(Figure S12), and a significant reduction in tailpipe exhaust emissions. This is consistent with our results. In descending 

order methanol (CH₃OH8.1 µgm-3), acetone + propanal (C₃H₆O1.7 µgm-3), toluene (C₇H₈0.9 µgm-3), C-8 aromatic 

compounds (C₈H₁₀0.9 µgm-3), butane m/z57.067(C₄H₈ 0.8 µgm-3), propene m/z43.051(C₃H₆0.7 µgm-3), and acetaldehyde 

(CH₃CHO 0.5 µgm-3) contribute most to the VOC mass in this source. Figure S3(b)7 shows that the factor explains the 

largest percentage share of methanol m/z33.030(CH₃OH41 %) and the second largest percentage share of ethanol 480 

m/z47.0456(C₂H₆O22 %). These compounds are formed by the incomplete combustion of CNG that is catalytically 

converted to methanol and ethanol (Singh et al., 2016). 

3.2.5 Factor 5:  Petrol 4-wheeler factor 

Figure 4 shows Ppetrol 4-wheeler contributed 20 %,& 25 %, and & 30 % to the VOC mass loading, OFP, and SOAP, 

respectively. The source fingerprint of this source matched tailpipe emissions of petrol-fuelled 4-wheelers (Hakkim et al., 485 

2021) and is characterized, in descending rank of contribution, by C8-aromatics (7.6 µgm-3), toluene(5.1 µgm-3), C9-

aromatics (C9H₁23.7 µgm-3), benzene(2.6 µgm-3), butene + methyl tert-butyl ether (MTBE) fragment(2.6 µgm-3), propyne(2.3 

µgm-3), propene(1.6 µgm-3), methanol(1.6 µgm-3) and C2-substituted xylenes + C4-substituted benzenes 

m/z135.118(C₁₀H₁₄1.4 µgm-3). Figure 5 shows that emissions peak in the evening between 7 pm and midnight with average 

VOC mass loadings >70 µgmµg m-3 and reach the receptor site from most wind directions. Emissions are strongly correlated 490 

with NO (R=0.8), CO (R=0.7), and CO2 (R=0.7) indicating the receptor site is impacted by fresh combustion emissions from 

this source and the atmospheric age of most plumes is on the timescale of minutes. Figure S3(b)7 shows that the factor 

explains the largest percentage share of most aromatic compounds, namely C8-aromatics (54 %), toluene(52 %), C9-

aromatics (C8H1252 %), C4-substituted benzene + C2-substituted xylenem/z135.118(51 %), benzene(35 %), styrene 

m/z105.069(C₈H₈27 %), methylstyrenes + indane m/z119.085(C₉H₁₀29 %), and C2-substituted styrenes 495 

m/z133.102(C₁₀H₁₂38 %) and a few oxygenated aromatic hydrocarbons such as methyl phenol isomers m/z109.064(C₇H₈O24 

%) and methyl chavicol m/z149.096(C₁₀H₁₂O23 %). The fact that the factor explains the largest percentage share of ethanol 

m/z47.046(29 %) and the Methyl tert-butyl ether MTBE) fragment (C₄H₈30 %) can likely be attributed to ethanol blending 

and the use of MTBE in petrol (Achten et .al., 2001). This factor also explains the largest percentage share of several other 

hydrocarbons such as propynepropyne (C₃H₄21 %), propene propene (C₃H₆26 %), cyclopentadienem/z67.051(C₅H₆24 %), 500 

hexane m/z85.099(C₆H₁₃31 %), C7H6m/z91.053(29 %), C7H10m/z95.084(26 %), and cycloheptene m/z97.100(C₇H₁₂26 %). 
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Figure S9 shows that this factor contributes significantly to the burden of C6- to C10 hydrocarbons, and hence SOA 

formation potential. However, due to freshly emitted plumes, it hardly contributes to the burden of the first- and second-

generation oxidation products of these hydrocarbons at the receptor site. Instead, this factor is likely to contribute to 

secondary pollution formation downwind of the Delhi NCR. 505 

 

Figure 7: VOC species to which the transport sector contributes the highest percentage share of the atmospheric burden in Delhi. 

 

3.2.6 Factor 6:  Petrol 2-wheeler factor 

Figure 4 shows pPetrol 2-wheeler contributed 14 %, 12 %, and & 20 % to the VOC mass loading, OFP, and SOAP 510 

respectively. The source fingerprint of this source matched tailpipe emissions of petrol-based 2-wheelers (Hakkim et al., 

2021) and isare characterized, in descending rank of contribution, by toluene(9.4 µgm-3), acetone + propanal (3.9 µgm-3), C-

8 aromatic compounds(1.7 µgm-3), acetic acid (C₂H₄O₂1.7 µgm-3), propyne (C₃H₄1.5 µgm-3), methanol (CH₃OH1.4 µgm-3), 

benzene (C₆H₆1.3 µgm-3), methyl tert-butyl ether the (MTBE) fragment(0.9 µgm-3) and C-9 aromatics m/z121.101(C₉H₁₂0.7 

µgm-3). A key difference of the petrol 2-wheeler source profile in comparison to the petrol & 4- wheeler source profile is the 515 
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lower benzene to toluene ratio, which is supported by the GC-FID analysis of tailpipe exhaust (Kumar et al., 2020). Figure 5 

shows that emissions peak in the evening between 8 pm and 10 pm with average VOC mass loadings >50 µgmµg m-3and 

reach the receptor site from most wind directions. Emissions are strongly correlated with NOx (R=0.6), CO (R=0.6) and CO2 

(R=0.7), but have a lower correlation with NO (R=0.5) (Table S4), and a larger contribution of oxygenated compounds to the 

source profile, indicating that the emissions have been photochemically aged. This suggests that contrary to 4-wheeler 520 

plumes which originate from the immediate vicinity of the receptor site in central Delhi (Figure S1), 2-wheeler plumes reach 

the receptor after prolonged transport from more distant rural and suburban areas on the outskirts of the city which typically 

comprise rural and suburban areas located at a distance from the city centre. In such areas, people often favour two-wheelers 

over four-wheelers. Figure S3(b)7 shows that this factor explains the largest percentage share of toluene(41 %), and a 

number of oxygenated aromatic compounds such as benzaldehyde m/z107.049(C₇H₆O30 %), tolualdehyde 525 

m/z121.064(C₈H₈O25 %), and phenol m/z95.045(C₆H₆O20 %). It also explains the largest percentage share of nitrobenzene 

m/z124.039(C₆H₅NO₂31 %), cyclohexanone m/z99.079(C₆H₁₁O36 %), and vinyl chloride m/z62.997(C₂H₃Cl26 %). It also 

explains the second largest percentage share of benzene(17 %), vinylacetylene m/z53.035(C₄H₄35 %), (24 %), acetone + 

propanal(22 %), methoxyamine m/z48.048(CH₅NO 20 %) and butanoic acid/ethyl acetate m/z89.058(C₄H₉O₂16 %). 

3.2.7 Factor 7: Mixed Industrial 530 

This factor contributes 12 %, 14 %, 15%, 8% and 3% to the VOC mass loading, OFP, SOAP, PM2. 5 and PM10 mass loading. 

Oon average contributes >30more than 30µgmµg m-3to the VOC burden throughout the night from 9 pm to 7 am (Fig. 5) is 

from this factor.and due to This factor is becauseidentified as an of industrial point sources located in the wind sector S to 

SW of the receptor site. Emissions are most strongly correlated with CO (R=0.7), NO (R=0.7), CH4 (R=0.8), and CO2 

(R=0.8) indicating that the emissions are fresh and originate from combustion processes. This factor explains 12 %, 3 %, and 535 

8 % of the total VOC, PM10, and PM2.5 mass loading at the receptor site, respectively. The main contributors towards the 

VOC mass in the mixed industrial factor, are in descending order of contribution propyne (C₃H₄2.3 µgm-3), butene + MTBE 

fragment methyl tert-butyl ether (C₄H₈2.2 µgm-3),  toluene (C₇H₈1.8 µgm-3), C-8 aromatic compounds (C₈H₁₀1.6 µgm-3), 

propene (C₃H₆1.5 µgm-3), acetaldehyde (CH₃CHO 1.2 µgm-3), methanol (CH₃OH 1.2 µgm-3), C-9 aromaticsm/z121.1013(1.2 

µgm-3) and the sum of monoterpenes (C₁₀H₁₆MT) m/z137.133(1.0 µgm-3). The source fingerprint is most similar to ambient 540 

air grab samples collected near the Okhla waste to energy plant and industrial area in Faridabad. 

Figure S3(c)8 shows that the factor explains the largest percentage share of methanethiol m/z49.007(CH₅S 72 %), a chemical 

used in the manufacture of the essential amino acid methionine, in the plastic industry and the manufacturing of pesticides, 

dichlorobenzenesm/z146.977(C₆H₄Cl₂48 %), a chemical used in the synthesis of dyes, pesticides, and other industrial 

products and methoxyamine m/z48.048(CH₅NO 27 %). Analyses of the primary dataset by Mishra et al. (2024) also 545 

qualitatively inferred an industrial source for methanethiol and dichlorobenzene.  It also explains the largest percentage share 

of the sum of monoterpenes (MT)(44 %), camphor/pinene oxide m/z153.128(C₁₀H₁₆O43 %), santenem/z123.116 (C₉H₁₄26.0 

%) the terpene fragment C8H12m/z109.100(C8H1226 %), C8H14m/z111.116(30 %), C9H16m/z 125.133 (24 %), cyclohexene 
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m/z83.084(C₆H₁₀24 %) and cyclopentylbenzene m/z147.118(C₁₁H₁₄30 %). Terpenes are used in the food and &beverages, 

cosmetics, pharmaceutical, and rubber industry. In addition, this factor also explains the largest percentage share of a large 550 

suite of volatile and IVOC aromatic hydrocarbons including naphthalenem/z129.070 (42 %,C₁₀H₈log10C0 5.4), methyl 

naphthalene m/z143.086 (38 %,C₁₁H₁₀log10C0 5.3), C12H16m/z161.134 (38 %,log10C0 5.4 to 6.3), C13H18m/z175.150 (41 

%,log10C0 4.9 to 5.6), C13H20m/z177.165 (36 %,log10C0 5.4 to 5.8), C13H22m/z179.181 (36 %,log10C0 5.2 to 6.4), 

C14H20m/z189.165 (37.0 %, log10C0 4.8 to 5.1), and C14H22m/z191.181 (34 %,log10C0 4.9 to 5.3). Ambient observations for 

most of these IVOCs have not been reported in the literature so far. Only, C9H14, C12H12, and C12H16 have been reported from 555 

aircraft engine emissions (Kılıç et al., 2018) while terpenes, C9H16, cyclopentylbenzene, naphthalene and methyl naphthalene 

have been reported from a wide range of combustion sources (Hatch et al., 2015, Bruns et al., 2017). Most other compounds 

have so far only been reported to degas from heated asphalt (Khare et al., 2020). Due to the high abundance of IVOCs in this 

factor, it contributes 15 % to the total SOA formation potential.  Figure S9 shows the volatility oxidation state plot for all 

111 VOCs in which the marker size represents the percentage share of each compound explained by the industrial factor and 560 

markers are colour coded by the number of carbon atoms. The plot shows evidence of the first- and second-generation 

oxidation products of C6 to C10 hydrocarbon transitioning from the VOC to the IVOC range along trajectories expected for 

the addition of =O functionality to the molecule (Jimenez, et al. 2009). This and the fact that the entire aerosol associated 

with this factor is PM2.5, indicates that most of the aerosol associated with this factor is likely SOA. 

 565 
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Figure 8: VOC species to which the industries, solvent usage, photochemistry or biogenic sources contribute the largest percentage 

share of the atmospheric burden in Delhi.  

3.2.8 Factor 8: Solvents and Evaporative Emissions 

Solvent usage and evaporative emissions reach the site from several point sources and wind directions often in the form of 570 

short and intense plumes that show no correlation with combustion tracers. This source contributes most to the VOC burden 

at night and explains 6 % of the total VOC but ≤1 % of the total PM2.5 & and PM10 mass (Fig. 4). The source fingerprint of 

the solvents factor (Fig. 3) is characterized in descending rank of mass contribution by acetic acid + glycolaldehyde 

(C₂H₄O₂4.7 µgm-3), toluene (C₇H₈1.4 µgm-3), methanol (CH₃OH0.8 µgm-3), butanoic acid/ethyl acetate 

m/z89.058(C₄H₉O₂0.7 µgm-3), acetone + propanal (C₃H₆O0.5 µgm-3) and butanal + butanone + MEK m/z73.062(C₄H₈O0.4 575 

µgm-3) and shows the greatest similarity to ambient air grab samples from Munirka furniture market and the dry cleaning 

shops at Dhobighat near Akshar Dham. Figure S3(c)8 shows that the factor explains the largest share of organic acids 

namely butanoic acid(52 %), acetic acid(41 %) and isocyanic acid m/z44.018(HNCO 25 %) and the second largest share of 

butanal + butanone + MEK (C₄H₈O16 %). These compounds point towards stack venting of VOCs from chemical-, food-, or 

and pharmaceutical industries or polymer manufacturing as likely sources of these emissions. (Hodgson et al., 2000, Villberg 580 
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et al., 2001, Jankowski et al., 2017, Gao et al., 2019). This assessment is broadly confirmed by the fact that the best match 

(R=0.7) for this source was collected from a plot situated opposite a polymer manufacturing unit and next to a pet food 

manufacturer in an industrial area at Jahangirpuri N of the receptor site. 

3.2.9 Factor 9: Road construction 

The road construction factor contributed 8% to the total VOC mass loading and 2% to the total PM10.This factor is almost 585 

absent during monsoon season, as road repair work is mostly avoided during this period due to water logging risks, and 

emissions from this source generally peak during the day as degassing of compounds from asphalt is temperature-driven and 

continues for days after the initial paving (Khare et al., 2020). The source fingerprint of the road construction factor is 

characterized in descending order of the mass concentrations by acetone + propionaldehyde(4.7 µgm-3), toluene(1.7 µgm-3), 

methanol(1.2 µgm-3), benzene(0.7 µgm-3) and C8-aromatics(0.7 µgm-3). Acetone and propionaldehyde were found to be the 590 

most abundant oxygenated volatile compounds emitted during asphalt paving (Li et al., 2020). The source profile had the 

greatest similarity with the mix of emissions that would originate from asphalt paving (Li et. al., 2020) and the tailpipe of 

road construction vehicles (Che et. al., 2023). As represented by Fig. S3(d)9, this factor explains the largest percentage share 

of a large suite of volatile and IVOC hydrocarbons namely, heptene m/z99.116(C₇H₁₄24 %), C11H12m/z145.102 (27 %, 

log10C0 5.8 to 6.2), C12H12m/z157.099 (32 %,log10C0 4.0 to 5.8), C14H14m/z183.121 (42 %,log10C0 3.2 to 5.8), 595 

C14H18m/z187.148 (38 %,log10C0 4.5 to 4.8), C16H24m/z217.195 (37 %,log10C0 3.7 to 5.2), C17H28m/z233.228 (43 %,log10C0 

3.7 to 4.4), and C18H30m/z247.243 (44 %,log10C0 2.3 to 5.0). In addition, it explains the second largest percentage share of 

many other IVOC hydrocarbons namely C9H14 (25 %,log10C0 7.2 to 7.6), C9H16 (24 %,log10C0 5.8 to 7.9), C11H14 (22 

%,log10C0 5.9 to 6.2), C12H16 (23 %,log10C0 5.4-6.3), C13H18 (22 %,log10C0 4.9 to 5.6), C13H20 (28 %,log10C0 5.4 to 5.8), 

C13H22 (27 %,log10C0 5.2 to 6.4), C14H20 (31 %,log10C0 4.8 to 5.1), C14H22 (31 %,log10C0 4.9 to 5.3). Except for the four 600 

hydrocarbons C7H14, C9H14, C9H16, and C11H12, all of these IVOCs have been reported to degas at 60°C from asphalt 

pavement (Khare et al., 2020). So far only C14H18 has been reported as fresh gas phase emissions (transport time <2.5 min) 

from a farm (Loubet et al., 2022) in ambient air, while C17H28 has been reported in the aerosol phase (Xu et al., 2022). The 

road construction factor also explains the largest percentage share of a long list of OVOCs namely, C6 diketone isomers 

m/z115.075(C₆H₁₀O₂25 %), C2-substituted phenolm/z123.080 (C₈H₁₀O22 %), C7H12O2m/z129.092(29 %), 605 

C8H14O2m/z143.108(31 %), C8H16O2m/z145.123(26 %), phthalic anhydride (C8H4O3) m/z149.024(33 %), which is a 

naphthalene oxidation product (Bruns et al., 2017), C9H10Om/z135.080(22 %), C9H12O2m/z153.0916(30 %), 

C9H14O2m/z155.108(33 %), C9H16O2m/z157.122(32 %), C9H18O2m/z159.140(27 %), C10H12Om/z149.096(23 %), 

C10H18Om/z155.144(33 %), C10H8O3m/z177.056(44 %), C10H16O3m/z185.121(33 %), and C12H18O2m/z195.138(41 %). 

However, out of these only C10H12O and C10H18O have been detected as direct emissions from heated asphalt pavement 610 

(Khare et al., 2020) indicating that most OVOCs in this factor are possibly oxidation products of short-lived IVOCs 

hydrocarbons emitted by this source. This assessment is supported by the volatility oxidation state plot for the road 
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construction factor (Figure S9) which demonstrates that both precursors and oxidation products are present in this factor and 

that C6 to C10 hydrocarbons appear to be progressing from the VOC to the IVOC range along trajectories expected for the 

addition of =O functionality to the molecule (Jimenez, et al. 2009). 615 

 

 

Figure 9: VOC species to which road construction contributes the largest percentage share of the atmospheric burden 

in Delhi. 

 620 

3.2.10 Factor 10: Photochemistry 

 

The photochemical factor has a diurnal profile that follows the diurnal profile of ozone (R=0.4). The factor profile is 

dominated by OVOCs such as acetic acid (C₂H₄O₂1.9 µgm-3), formic acid (CH₃O₂1.2 µgm-3), acetaldehyde (CH₃CHO1.0 
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µgm-3), formamide (CH₄NO0.3 µgm-3), and methanol (CH₃OH0.3 µgm-3). Figure S3(c)8 shows that the factor explains the 625 

largest percentage share of formic acidm/z47.009 (74.4 %), formamidem/z46.025 (73.3 %), and methyl glyoxal m/z73.026 

(C₃H₅O₂33.9 %). It also explains the second largest percentage share of isocyanic acid (HNCO 19 %) and hexanamide 

(C₆H₁₃NO 23 %), which are formed by the photooxidation of amines (Yao et al., 2016; Wang et al., 2022). Some compounds 

point towards a significant contribution of photochemically aged biomass burning emissions to this factor for example 

furfuryl alcohol (C₅H₆O₂ 23 %), hydroxymethyl furanone (C₅H₆O₃27 %), and hydroxybenzaldehyde m/z123.044(C₇H₆O₂22 630 

%). While this factor explained ≤4 % of the total VOC share and negligible share of PM2.5 and PM10 mass in Delhi, 

photochemically aged biomass burning emissions were a significant source of VOCs at a suburban site in Punjab during the 

post-monsoon season of 2017 (Singh et al., 2023). The difference is likely due to the fact that great smog episode of 2017 

was primarily driven by low wind speeds a shallow boundary layer and regional-scale build-up of emissions over a 

prolonged period (Dekker et al., 2019, Roozitalab, et al., 2021), while the post-monsoon season of 2022 experienced western 635 

disturbances and higher ventilation coefficients. The factor also explains the largest percentage share of the total mass for 

organic acids such as nonanoic acid m/z159.14(C₉H₁₈O₂27 %), n-octanoic acid m/z145.123(C₈H₁₆O₂ 24 %) which have been 

detected in biomass-burning impacted environments in China (Mochizuki et al., 2019), C12H18O2(13 %) which has been 

found in aged wildfire plumes in the US (Haeri, 2023), and the terpene ozonolysis products norpinonaldehyde 

m/z155.108(C₉H₁₄O₂17 %) and cis-Pinonic acid m/z185.121(C₁₀H₁₆O₃ 23 %) (Camredon et al., 2010) and 640 

C7H12O2m/z129.092(17 %). Pinonic acid was found to be an important aerosol phase tracer of biogenic SOA formation in 

India (Mahilang et al., 2021) and C7H12O2 has been reported as a pinonic acid aqueous-phase photolysis product (Lignell et 

al., 2013) Fig. S3(c)8. 

3.2.11 Factor 11: Biogenic 

Biogenic VOC emissions at the receptor site show the highest cross-correlation with photosynthetic active radiation (PAR, 645 

R=0.7) and temperature (R=0.7) (Table S4) and explain 4 % of the total VOC burden and 2 % of the PM10 burden in the 

PMF. The BVOC emission in this factor is relatively fresh as the ratio of isoprene to its first-generation oxidation products 

MEK (C₄H₈O) and MVK+MACR (C₄H₆O) is 5.9 and 3.0 respectively.  At the site, the top of the tree canopy of roadside 

trees is located approximately 20 m below the inlet height. Figure 3 shows that in descending rank of mass contribution, 

acetaldehyde m/z45.03(CH₃CHO1.2 µgm-3), C3H4m/z41.035(1.1 µgm-3), isoprene m/z69.067(C5H80.8 µgm-3), acetic acid + 650 

glycolaldehyde m/z61.025(C₂H₄O₂ 0.6 µgm-3), and acetone + propanal m/z59.046(C₃H₆O0.6 µgm-3) are the major 

contributors for biogenic factor and that the source fingerprint showed the greatest similarity to a mix of BVOC 

emissionsindicating that leaf wounding compounds contribute significantly to the BVOC burden in Delhi (Portillo-Estrada et 

al., 2015) and BVOC emissions (Park et al., 2013). The signal at m/z41.035 can potentially be attributed to aC3H4 the 2-

methyl-3-butene-2-ol fragment (Kim et al., 2010; Park et al., 2013). Figure S3(c)8 shows that this factor explains the largest 655 

percentage share of two BVOCs namely Isoprene + 2-methyl-3-butene-2-ol fragmentm/z69.067(34 %), and its oxidation 

product, methyl vinyl ketone, methacrolein and 2-butenalm/z71.047(25 %). It also explains the largest percentage share of 
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C-6 amides m/z116.108(C₆H₁₃NO30 %) which are produced by the photo-oxidation of amines (Yao et al., 2016). The 

potential precursor, C6-amines have has previously been detected in forested environments (You et al., 2014). However, it is 

also possible that C-6 amides are only attributed to the biogenic factor because their diurnal concentration profile matches 660 

that of first-generation oxidation products, and the source strength is high during both monsoon and post-monsoon season. 

This type of time series would also be expected if the precursors of this oxidation product are emitted from agricultural 

activities. 

 

3.3. Comparison with emission inventories 665 

 

The Figure 6 10 shows a comparison of different anthropogenic emission inventories with the PMF output data from this 

study for three overlapping fetch regions corresponding to the fetch region from which air masses will reach the receptor site 

within 24 hours for different airflow patterns (Figure 1). We contrast emissions for the north-westerly flow with a fetch that 

includes Pakistan Punjab, Indian Punjab, Haryana, Western Uttar Pradesh, Himachal Pradesh, and Uttarakhand with air 670 

masses that arrive at the receptor from a south-westerly direction which carry emissions from southern Punjab, Haryana, 

Uttar Pradesh, Madhya Pradesh, Rajasthan and Gujarat, and air masses that reach the site from the south easterly direction 

which primarily carry emissions from Haryana, Southern Uttarakhand, Uttar Pradesh, Bihar and Nepalas shown in Fig. 1 (a-

d).  

 675 

One feature that stands out in this comparison is that all inventories appear to significantly overestimate the relative 

contribution of residential fuel usage to the VOC and particulate matter emissions for all fetch regions. In absolute terms, the 

Regional Emission Inventory in Asia (REAS v3.2.1) for the year 2015 (Kurokawa & Ohara, 2020) and the Emission 

Database for Global Atmospheric Research (EDGARv6.1) for the year 2018 (Crippa et al., 2022), agree on the residential 

sector PM2.5 emissions of 379 Gg y-1 and 382 Gg y-1, respectively, for the NW fetch region (Table S5). According to the 680 

latest estimates (Pandey et al., 2021), the NW-IGP region has the lowest prevalence of solid fuel usage in the entire IGP and 

the inventories appear to overestimate the PM2.5 emissions from this fetch region only by a factor of 1.5-1.9. For the SW and 

SE fetch region, respectively, REAS v3.2.1 estimates much larger residential sector PM2.5 emissions of 934 Gg y-1, and 830 

Gg y-1than EDGARv6.1 (713 Gg y-1, and 597 Gg y-1) and overestimates the PMF estimates by a factor of 3.7 and 4.6. In 

contrast, EDGARv6.1 only overestimates PMF estimates by a factor of 1.8 and 3.2, for the SW and SE fetch region 685 

respectively. Solid fuel-based cooking is more prevalent in both Central and Western India and the Eastern IGP than in the 

NW-IGP (Pandey et al., 2021). The overestimation in both inventories may be caused by a gradual adoption of cleaner 

technology. Sharma et al., (2022) calculated a 13 % drop in residential sector PM2.5 emissions between 2015 and 2020 due to 
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higher LPG sales and a continuation of that trend to 2022 could explain the overestimation of residential fuel usage in the 

present emission inventory data. For PM10, the EDGARv6.1 emission estimates of 750 Gg y-1, 1391 Gg y-1, and 1157 Gg y-690 

1for the NW, SW and SE fetch region, respectively, are greater than the REASv3.2.1 emission inventory estimates of 401 Gg 

y-1, 994 Gg y-1, and 882 Gg y-1, for the NW, SW, and SE fetch region, respectively.  The EDGARv6.1 and REASv3.2.1 

inventory both overestimate our PMF PM10 results by a factor of 1.5 to 3.0. However, while the REASv3.2.1 inventory 

appears to assume that most of the residential sector aerosol emissions occur in the fine mode, our PMF results (Fig. 610) 

clearly agree with the EDGARv6.1 inventory on the fact that there are significant coarse aerosol emissions associated with 695 

solid-fuel based cooking and heating. Table S5 shows that For for residential sector VOCs the emissions, the absolute 

emissions in the EDGARv6.1 inventory emission estimates of 764 Gg y-1, 1421 Gg y-1, and 1196 Gg y-1, for the NW, SW, 

and SE fetch region, respectively, are almost twice as large as the thoseat in theof REASv3.2.1 inventory estimates of 353 

Gg y-1, 947 Gg y-1, and 862 Gg y-1, even though the percentage contribution of this sector to the VOC emissions in the 

inventoryburden in Figure 10 appears to be similar for both, because of . The cause of this are is the larger VOC emissions 700 

from solvent use and industries in the EDGARv6.1 inventory. Both inventories overestimate the relative importance of 

residential sector emissions in relation to VOC emissions from other sectors our PMF-based estimate by more than a factor 

of two when compared to our PMF estimate, most likely because they have not been updated with recent fuel shifts towards 

LPG in the relatively prosperous Delhi NCR region (Sharma et al., 2022). 

 705 

 

Figure 610: Comparison of different anthropogenic emission inventories with the PMF output from this study for three 

overlapping fetch regions corresponding to different airflow patterns. 

. 

 710 
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With respect to industrial emissions of VOCs for the NW fetch region, our PMF results indicate that the actual emissions are 

slightly smaller than those in the REASv3.2.1 inventory (113 Gg y-1), while the EDGARv6.1 inventory (302 Gg y-1) 

overestimates emissions. For the SW and SE fetch region, our PMF estimates fall in between those of the EDGARv6.1 

inventory (867 Gg y-1, and 635 Gg y-1) and the REASv3.2.1 inventory (55 Gg y-1, and 133 Gg y-1). For industrial PM2.5 

emissions, both EDGARv6.1 & REASv3.2.1 are close and agree on the magnitude of emissions of 158 & 173 Gg y-1, 524 & 715 

541 Gg y-1, and 342 & 307 Gg y-1for the NW, SW and SE fetch region, respectively, and both inventories appear to 

overestimate emissions when compared to our PMF results. Our findings seem to suggest that the pollution boards have been 

somewhat successful in clamping down on industrial emissions and the technology employed is better than what is currently 

reflected in emission inventories. Industrial fly ash (PM10) emissions are larger in the REASv3.2.1 inventory (308 Gg y-1, 

1015 Gg y-1, and 539 Gg y-1for the NW, SW and SEall the fetch regions, respectively) compared to EDGARv6.1 inventory. 720 

(211 Gg y-1, 684 Gg y-1, and 458 Gg y-1 for the NW, SW and SE fetch region, respectively). Yet both inventories appear to 

significantly overestimate industrial emissions when compared to our PMF results. These findings also indicate the pollution 

boards have been somewhat successful in clamping down on large and visible fly ash sources and that the EDGARv6.1 

inventory has captured this clean-technology transition better. 

The REASv3.2.1 inventory completely misses direct VOC and PM emissions from the agricultural sector. In contrast, 725 

theThe EDGARv6.1 inventory significantly underestimates PM2.5& PM10 emissions from agricultural activities, which 

include, but are not limited to crop residue burning, in comparison to our PMF results, particularly . The EDGARv6.1 

inventory over NW-India (Table S65). Over this fetch region EDGARv6.1 attributes as much 97 & 103 Gg y-1, 206 & 217 

Gg y-1, and 168 & 177 Gg y-1 of PM2.5& PM10 emissions, for the NW, SW, and SE fetch region respectively, to all 

agricultural activities combined for the full year as . This stands in stark contrast to the FINNv2.5 inventory (Wiedinmyer et 730 

al., 2023), which attributes 192 & 95 Gg y-1, 203 & 100 Gg y-1, and 52 & 26 Gg y-1for the NW, SW, and SE fetch region, 

respectively,just to agricultural residue burning activities taking place between 15th and August and 26th November 2021 

alone(a time period comparable to the period in our model run), without including the emissions from rabi crop residue 

burning in summer (Kumar et al., 2016) and other agricultural activities such as harvest and ploughing. For PM10 the fire 

count based FINNv2.5 estimate is twice as high as the emission estimate of EDGARv6.1 for this fetch region, and more 735 

likely to be correct, because the phytoliths present in rice straw form coarse mode ash during the combustion process (Figure 

S10). The fact that EDGAR appears to underestimate residue-burning emissions over this fetch region has been flagged 

earlier (Pallavi et al., 2019; Kumar et al., 2021; Singh et al., 2023). Our PMF analyses also reveals that the relative 

contribution of to agricultural residue burning emissions to the PM burden over the NW North-Western IGP (24 % and 27 % 

of PM2.5 and PM10, respectively) and South-Eastern IGP (24 % and 27 % of PM2.5 and PM10, respectively) SE fetch regionsis 740 

are comparable yet , despite the much lower fire counts over the South-Eastern IGP (17,810), when compared to the North 

Western IGP (61,334). This indicates that either fires to the SE are burning closer to the receptor site or the fire detection 

efficiency in this fetch region is lower. Table S65 reveals that the order of magnitude ofrelative importance of agricultural 

emissions over the SE fetch region is even more severely underestimated in the FINNv2.5 inventory than in the EDGARv6.1 
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inventory due to poorer fire detection (close to 100% omission error) for the partial burns prevalent over this region (Lui et 745 

al. 2019; 2020, Figure S8) when compared to the complete burns prevalent over the NW IGP (Lui et al. 2019; 2020, Figure 

S7). 

Transport sector VOC emissions appear to be severely underestimated in the EDGARv6.1 inventory which attributes 84 Gg 

y-1, 154 Gg y-1, and 96 Gg y-1for the NW, SW, and SE fetch region, which has been previously flagged for earlier versions of 

the same inventory (Sarkar et al., 2017; Pallavi et al., 2019; Singh et al., 2023).respectively, to this activity. This 750 

underestimation of transport sector emissions in the EDGAR inventory has been previously flagged for earlier versions of 

the same inventory (Sarkar et al., 2017; Pallavi et al., 2019; Singh et al., 2023).  The REASv3.2.1 inventory also 

underestimates our PMF results. attributes 212 Gg y-1, 378 Gg y-1, and 266 Gg y-1 VOC emission to the transport sector for 

the NW, SW, and SE fetch region, respectively. Both inventories underestimate our PMF results. This indicates that the 

contribution of the transport sector to ambient VOC pollution levels in a megacity like Delhi may not be adequately reflected 755 

in both the emission inventories. Our PMF suggests that the overall contribution of the transport sector to the total PM2.5 and 

PM10 pollution levels occurs primarily due to non-exhaust emissions from the CNG-fuelled public transport fleet. These non-

exhaust emissions are much larger than what is accounted for both in the EDGARv6.1and REASv3.2.1 inventories estimate 

of 8 & 10 Gg y-1, 18 & 22 Gg y-1, and 12 & 14 Gg y-1 and the REASv3.2.1estimate of 65 & 67 Gg y-1, 137 & 140 Gg y-1, and 

80 & 83 Gg y-1for PM2.5& PM10 emissions from the NW, SW and SE fetch region. , respectively. The transport sector-related 760 

findings of this PMF source apportionment study are in agreement with earlier source apportionment studies that often 

attributed a quarter or more of the total PM emissions to the transport sector. Some prior studies used metals, Pb and/or 

OC/EC as transport sector activity tracers (Jain et al., 2017, 2020; Sharma et al., 2016, Jaiprakash et al., 2016; Sharma & 

Mandal, 2017), while others attributed almost the entire HOA component of organic aerosol to transport sector emissions 

(Reyes-Villega et al., 2021; Cash et al., 2021; Kumar et al., 2022, Shukla et al., 2023) or used a Chemical Mass Balance 765 

(CMB) model with source fingerprints from the EPA database (Nagar et al., 2017). Our PMF results differ to emission-

inventory-based assessments, which only attribute a minor share of the total PM burden to this activity (Guo et al., 2017). 

Our findings also add dimension insights to the reasons why the transport sector targeted air quality interventions yielded 

such poor results (Chandra et al., 2018). Public transport availability was ramped up during the periods when road-rationing 

schemes restricted the use of private 4-wheelers. Our results suggest that moving forward only only investments into the 770 

road infrastructure, that reduce resuspension, modal shifts from buses towards metro-based public transport and electric 

vehicles with >50 % regenerative braking (Liu et al., 2021) that limit brake wear can yield meaningful reductions in the 

transport sector-related PM emissions. 

Our PMF results indicate that solvent usage results in VOC emissions that are more in line with the REASv3.2.1 inventory 

which estimates emissions of 78 Gg y-1, 222 Gg y-1, and 204 Gg y-1 from the NW, SW and SE fetch region, respectively. 775 

Thewhile the EDGARv6.1 inventory attributes 403 Gg y-1, 939 Gg y-1, and 896 Gg y-1, to solvent usage emissions from the 

NW, SW and SE fetch region, respectively and overestimates emissions by a factor of 4 for all the fetch regions.  
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Power generation is not considered to be a significant VOC source in both emission inventories ((<27 Gg y-1 and <1 % of the 

total VOC mass), and fails to show up as a separate sector in our PMF results, as our model runs rely on VOC tracers to 

track pollution sources. The contribution of energy generation towards the PM burden particularly in the EDGARv6.1 780 

emission inventory, however, is significant. The sector contributes 144 & 212 Gg y-1, 453 & 679 Gg y-1, and 215 & 321 Gg 

y-1 of PM2.5 and PM10 emissions, for the NW, SW, and SE fetch regions, respectively. It is, however, striking to note that the 

PMF features a residual that is of similar magnitude as the PM2.5 and PM10 emissions attributed to power generation in the 

EDGARv6.1 inventory. Power generation is believed to primarily contribute secondary sulfate and nitrate aerosol 

(Atabakhsh et. al., 2023), which is unlikely to be directly associated with a fresh combustion signature. It is hence likely, that 785 

much of our PMF residual can be attributed primarily to this source. The amount of emissions attributed to power generation 

in the REASv3.2.1 inventory is much smaller than those reflected in EDGARv6.1, likely because the inventoryies misses 

several coal generation units that were commissioned between 2015-2018. 

Our PMF results identify road construction and asphalt pavements as an additional VOC source that is at present not 

reflected in emission inventories. 790 

 

4 Conclusions 

This study presents source-apportionment results derived from application of the positive matrix factorization model to a 

recently acquired high-quality dataset of PM2.5& PM10, and 111 VOCs measured using the new PTR-TOF-MS10K enhanced 

volatility instrument, during monsoon and post-monsoon seasons of 2022, from one world’s most polluted megacities: Delhi. 795 

We found that the top ranked major emission source of gas phase and aerosol phase differed from each other, highlighting 

the complexity of air pollution sources in such atmospheric environments. While fresh paddy burning was a negligible 

source of VOCs (6 %), it was the largest source of PM2.5 & PM10 (23 % & 25 %) in the Delhi NCR regions during our study 

period, likely because combustion of phytolith containing rice straw triggers the formation of coarse mode ash (Figure S10) 

that contributes significantly to the PM burden., PM2.5 & PM10 are the two main criteria air pollutants regulated under the 800 

national ambient air quality standard that are thought to be the leading cause of the air pollution emergency in November in 

Delhi annually (Khan et. al., 2023). The strong correlation of PM2.5& PM10 with same-day fire counts, and VOC emission 

signatures of fresh paddy burning plumes showed that fires burning in and within the vicinity of Delhi-NCR and plumes that 

reached the receptor on the same day were the stronger contributory source of the high pollution levels, compared to plumes 

from more distant states such as Punjab and Pakistan Punjab. Both are located north-west of Delhi-NCR and were thought to 805 

be the stronger contributors to the pollution levels because the detected fire activity is more prevalent there. Furthermore, 

PM2.5& PM10 emissions from residential heating and waste disposalburning (24 %& 23 %) rival those from crop 

residuesresidue burning and unlike paddy residue burning emissions, which are episodic, this activity persists into winter. 

While popular perception generally blames burning in Punjab for the high particulate matter burden due to paddy stubble 
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burning, our PMF reveals that despite the much lower fire counts over the Eastern IGP (17,810) when compared to the North 810 

Western IGP (61,334) both are a significant source of paddy stubble burning PM in the NCR region. Also, sources that are 

generally targeted by most clean air action plans such as tailpipe exhaust emissions of private vehicles and industries are 

responsible for less than one-quarter of the particulate matter mass loading that can be traced with the help of gas-phase 

organic molecular tracers. Instead, the transport sector's PM emissions are dominated by the non-exhaust emissions such as 

road dust suspension, break wear and tire wear of the CNG-fueled commercial vehicle fleet, which according to a recent 815 

emission inventory for Delhi are one order of magnitude larger than the transport sector tailpipe exhaust emissions (Nagpure 

et al., 2016).  

The PMF results based on primary in-situ data indicate that the EDGARv6.1 inventory provides a better representation of 

emissions than the REASv3.2.1 inventory for most sectors, with the exception of agricultural residue burning emissions, the 

transport sector emissions and VOC emissions from solvent use. Agricultural burning emissions over the NW-IGP are best 820 

represented in FINNv2.5 (Wiedinmyer et al., 2023) while agricultural emissions over the SE-IGP are better captured by 

EDGARv6.1. At present none of the residential sector inventories appears to have incorporated the change in the magnitude 

and spatial patterns due to the recent adoption of cleaner cooking technology interventions since 2018. Transport sector non-

exhaust emissions are still absent (REASv3.2) or underestimated (EDGARv6.1) in all inventories, whereas agricultural 

residue burning emissions over the Delhi-NCR region are best represented by the FINNv2.5 inventory (Wiedinmyer et al., 825 

2023). For VOC emissions from solvent usage, REASv3.2 provides better emissions than EDGARv6.1. There is also a road 

construction sector in our PMF results which has a significant (9-10 %) contribution to the VOC burden but hasn’t been 

addressed in any of the emission inventories so far, and our study by including measurements of specific molecular markers 

of this activity has been able to shed new strategic insights concerning this missing source. 

A considerable portion of the PM10 (18 %) and PM2.5 (28 %) load is connected to residual sources, not directly related to 830 

combustion tracers. This contribution is likely due to windblown dust transported over long distances (Pawar et al., 2015) as 

well as secondary inorganic aerosols like ammonium sulfate and ammonium nitrate whose precursors are primarily emitted 

from power plants. Despite including the most, comprehensive set of organic species measured in Delhi to date, our study 

does not include similar information about these other species.  

Residential heating and waste disposalburning werewas identified as one of the largest contributors to PM pollution, and this 835 

source is are active year-round with strengths varying depending on seasonality. The total contribution of residential sector 

solid fuel usage and waste burning (17 % in Delhi and 18 % in Mohali) to the VOC burden during post-monsoon season was 

similar at both sites. So, targeting these through improved access to cleaner energy sources for heating and cooking would 

likely improve air quality significantly in other seasons. Future similarly designed quantitative studies would be needed to 

confirm this hypothesis. 840 

The findings and insights from this study emphasize the necessity for a comprehensive, multi-sectoral approach to reduce 

primary emissions. While several recent efforts in some sectors (e.g. residential biofuel and cooking) appear to have yielded 

emission reduction benefits, the narrative to blame the post-monsoon pollution at this time of the year exclusively on the 



35 

 

more visible sources (e.g. paddy residue burning), needs to be corrected so other sources are also mitigated. Our findings 

support the assertions of (Ganguly et al., 2020), who have pointed out previously that, rather than solely focusing on specific 845 

sources like agricultural residue burning or transport emissions, it's crucial to address the disparity between the primary 

targets of clean air action plans and the actual dominant sources of particulate matter. Future action plans need to account for 

more targeted and impactful pollution control measures and also a more comprehensive approach to address the diverse 

urban mixed sources highlighted in this study, such as industries and residential solid fuel/waste burning, non-exhaust road 

emissions, and emissions from road construction.  850 

This new approach of combining VOC tracers with PM measurements provides great potential for improved source 

apportionment in complex emission environments, at a level of detail that is more meaningful than just attributing emissions 

to biomass burning or fossil-fuel burning, which has been the case in all previous studies from the region till to date. 

Previously in Delhi-MCR region, Kumar et al. 2022 identified “cooking-related OA using EESI-TOF analysis but due to 

analytical limitations, the paper only reported quantitative data for three primary factors, namely HOA, BBOA-1 and 855 

BBOA-2, without naming the activities responsible for the formation of BBOA-1 and BBOA-2. One of the more 

comprehensive AMS based studies (Cash et al., 2021) spanning pre-monsoon, monsoon and post monsoon season of the year 

2018 only identified three different primary biomass burning factors, namely cooking organic aerosol (6% of PM1), solid 

fuel organic aerosol (≤11% of PM1), and semi-volatility biomass burning organic aerosol (≤13% of PM1), that broadly 

appear to correspond to our solid fuel-based cooking (4% of PM10), residential heating and waste burning (23% of PM10), 860 

and paddy residue burning (25% of PM10) factors. However, the study failed to name and attribute two of these three factors 

in policy relevant ways, could not identify the significant contribution of coarse mode fly ash to the total aerosol burden, and 

also was unable to distinguish between different fossil-fuel related sources. The Our study design which captured contrasts 

between clean-monsoon and polluted-post-monsoon air, and included measured VOC source fingerprints and molecular 

tracers enabled us to distinguish paddy-residue burning from other biomass burning sources, and resolve similar traffic 865 

emission sources (e.g. 2-wheelers from 4-wheelers and CNG vehicles). This provides a significant advance over existing 

source-apportionment studies and its application would be of great relevance in other complex emission environments 

suffering from high air pollution where quantitative knowledge of sources can lead to evidence-based emission reduction 

prioritization efforts and a better understanding of the atmospheric chemistry of polluted environments around the world. 

Data availability 870 

PMF model simulations and input data can be obtained by contacting Baerbel Sinha. 
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