Discovery of reactive chlorine, sulphur and nitrogen containing ambient volatile organic compounds in the megacity of Delhi during both clean and extremely polluted seasons

Sachin Mishra¹, Vinayak Sinha¹, Haseeb Hakkim¹, Arpit Awasthi¹, Sachin D. Ghude², Vijay Kumar Soni³, Narendra Nigam³, Baerbel Sinha¹, Madhavan N. Rajeevan⁴

¹ Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, S.A.S Nagar, Manauli PO, Punjab, 140306, India

²Indian Institute of Tropical Meteorology, Pashan, Pune 411 008, Ministry of Earth Sciences, India

³India Meteorological Department, New Delhi 110 003, Ministry of Earth Sciences, India

⁴Ministry of Earth Sciences, Government of India, New Delhi 110 003, India

* Correspondence to: Vinayak Sinha (vsinha@iisermohali.ac.in)

Parameters	Values
Overall drift voltage (U _{drift})	600 V
Temperature at drift tube (T _{drift})	120 °C
Pressure at drift tube (P _{drift})	3.0 mbar
Length of the drift tube (L _{drift})	9.2 cm
Extraction time (t)	26 µs
Field strength of the drift tube (E/N)	120 Td

Table S1: Operational settings for PTR-TOF-MS 10 K parameters used during this deployment

* *E* is the electric field strength (V cm⁻¹) and *N* is the gas number density (molecule cm⁻³). 1 Td = 10^{-17} V cm² molecule⁻¹

Table S2: The table lists 111 identified organic species, including the protonated m/z, molecular formula, names of probable compounds, the structure of a potential contributor (many others structural possibilities maybe feasible), along with the average mixing ratios (ppb) observed during the monsoon (July-Sep 2022) and post-monsoon (Oct-Nov 2022) seasons. Also provided are each compound's Interquartile Range (IQR), and diel emission profile indicative of whether its ambient levels are driven by primary emissions, photochemical formation/ biogenic/ evaporative or both.

Sr No.	Туре	Protonated m/z	Molecular formula	Major Potentia contributors	Structure of a potential contributo r	Average [Monsoon] (ppb) IQR	Average [post- monsoon] (ppb) IQR	Diurnal characteristics
1		41.035	C3H4	Propyne		3.043 (1.841)	9.997 (7.96)	Unimodal pattern with the evening peak
2		43.051	СзНо	Propene		1.88 (1.21)	4.965 (3.986)	Bimodal pattern with morning and evening peaks
3	on	53.035	C4H4	Vinylacetylene, 1-Buten-3-yne		0.081 (0.055)	0.722 (0.778)	Bimodal pattern with morning and evening peaks
4		55.051	C4H6	1,2-Butadiene, 1-Butyne, 2- Butyne 1,3 Butadiene		1.067 (0.555)	2.78 (1.913)	Bimodal pattern with morning and evening peaks
5		57.067	C4H8	Methyl tert- butyl ether (MTBE) fragment / 1- Butene	\sim	1.813 (1.089)	5.578 (4.581)	Bimodal pattern with morning and evening peaks
6	e Hydrocarboi	67.051	C5H6	Cyclopentadien e, monoterpene fragment, butanol fragment		0.172 (0.108)	0.497 (0.336)	Bimodal pattern with afternoon and evening peaks
7	Pur	69.067	C5H8	Isoprene + 2- methyl-3- butene-2-ol fragment		0.667 (0.582)	1.118 (0.949)	Unimodal pattern with afternoon peak in monsoon while bimodal pattern with afternoon and evening peak in post-monsoon
8		79.052	С6Н6	Benzene		0.802 (0.633)	3.724 (3.77)	Bimodal pattern with morning and evening peaks

9	83.084	С6Н10	Cyclohexene, Hexyne isomers	0.319 (0.169)	0.624 (0.474)	Bimodal pattern with afternoon and evening peaks
10	85.099	C6H12	Cyclohexane, Hexene	, 0.058 (0.036)	0.16 (0.134)	Bimodal pattern with morning and evening peaks
11	91.053	C7H6	Monoterpene Fragment	0.102 (0.077)	0.714 (0.745)	Bimodal pattern with morning and evening peaks
12	93.069	C7H8	Toluene	2.148 (1.813)	9.372 (10.377)	Bimodal pattern with morning and evening peaks
13	95.084	C7H10	Monoterpene Fragment	0.103 (0.057)	0.404 (0.293)	Bimodal pattern with morning and evening peaks
14	97.1	C7H12	Cycloheptene, Alkyl fragment	0.1 (0.058)	0.272 (0.217)	Bimodal pattern with afternoon and evening peaks
15	99.116	C7H14	Methylcyclohe xane, Heptene & other hydrocarbons	0.005 (0.003)	0.014 (0.01)	Bimodal pattern with afternoon and evening peaks
16	105.069	СвНв	Styrene	€0.167 (0.104)	0.699 (0.684)	Bimodal pattern with morning and evening peaks
17	107.085	C8H10	Sum of C8- Aromatics	1.123 (1.025)	5.017 (5.247)	Bimodal pattern with morning and evening peaks
18	109.1	C8H12	Terpene fragment/Cyclo octadiene	0.064 (0.032)	0.205 (0.174)	Bimodal pattern with afternoon and evening peaks
19	111.116	C8H14	Ethenyl cyclohexane	0.062 (0.035)	0.159 (0.137)	Bimodal pattern with afternoon and evening peaks
20	119.085	C9H10	Terpene fragment	0.063 (0.04)	0.233 (0.214)	Bimodal pattern with afternoon and evening peaks

21	121.101	C9H12	Sum of C-9 aromatics		0.483 (0.449)	2.267 (2.323)	Bimodal pattern with morning and evening peaks
22	123.116	C9H14	Santene, 1,3- Cyclopentadien e & other hydrocarbons	\sum	0.039 (0.019)	0.123 (0.11)	Bimodal pattern with afternoon and evening peaks
23	125.133	C9H16	Nonyne, non- 1,8-diene		0.021 (0.011)	0.049 (0.043)	Bimodal pattern with afternoon and evening peaks
24	129.07	С10Н8	Naphthalene		0.09 (0.052)	0.381 (0.343)	Bimodal pattern with morning and evening peaks
25	133.102	C10H12	Ethyl styrene, tetrahydronaph thalene		0.044 (0.028)	0.154 (0.134)	Bimodal pattern with morning and evening peaks
26	135.118	C10H14	P-cymene, C4- substituted benzene, C2- substituted xylene		0.182 (0.153)	0.912 (0.87)	Bimodal pattern with morning and evening peaks
27	137.133	C10H16	Sum of Monoterpenes (MT)		0.172 (0.108)	0.497 (0.336)	Bimodal pattern with morning and evening peaks
28	143.086	C11H10	Methyl naphthalene		0.014 (0.009)	0.063 (0.059)	Bimodal pattern with morning and evening peaks
29	145.102	C11H12	C2 substituted indene		0.007 _(0.004)	0.017 (0.016)	Trimodal pattern
30	147.118	C11H14	Cyclopentylbe nzene & other hydrocarbons		0.035 (0.022)	0.086 (0.079)	Trimodal pattern
31	157.099	C12H12	C2-substituted naphthalene		0.014 (0.006)	0.039 (0.032)	Bimodal pattern with afternoon and evening peaks
32	161.134	C12H16	Cyclohexylben zene, butyl styrene, cyclopentylmet hylbenzene		0.015 (0.009)	0.042 (0.038)	Trimodal pattern

33		175.15	C13H18	1,1,6- Trimethyltetrali n/ ionene		0.006 (0.004)	0.022 (0.021)	Trimodal pattern
34		177.165	C13H20	C7-substituted benzene,	$+ \bigcirc + \langle$	0.011 (0.006)	0.03 (0.028)	Trimodal pattern
35		179.181	C13H22	C3-substituted adamantane		0.004 (0.003)	0.015 (0.014)	Trimodal pattern
36		183.121	C14H14	Bibenzyl		0.003 (0.002)	0.006 (0.004)	Unimodal pattern with afternoon peak
37		187.148	C14H18	C4-substituted dihydroazulene , benzyl cycloheptene		0.004 (0.002)	0.008 (0.006)	Unimodal pattern with afternoon peak
38		189.165	C14H20	C4-substituted dihydronaphtha lene, cyclopentylpro pylbenzene		0.004 (0.003)	0.012 (0.011)	Trimodal pattern
39		191.181	C14H22	C8-substituted benzene	+	0.005 (0.004)	0.015 (0.014)	Trimodal pattern
40		217.195	C16H24	C6-substituted dihydronaphtha lene		0.002 (0.001)	0.005 (0.004)	Trimodal pattern
41		233.228	C17H28	C11-substituted benzene		0.002 (0.001)	0.004 (0.003)	Bimodal pattern with afternoon and evening peaks
42		247.243	C18H30	C12- substituted benzene		0.002 (0.002)	0.003 (0.002)	Unimodal pattern with afternoon peak
43	GENATED VOCS	31.014	CH ₂ O	Formaldehyde	H H	0.359 (0.233)	1.706 (1.247)	Bimodal pattern with afternoon and evening peaks
44	oXY	33.03	CH4O	Methanol	—он	9.854 (4.928)	19.919 (13.845)	Bimodal pattern with monsoon

							and evening neaks
45	45.03	C2H4O	Acetaldehyde	ОН	3.339 (1.866)	7.755 (5.799)	Bimodal pattern with afternoon and evening peaks
46	47.009	CH ₂ O ₂	Formic acid	ОН	0.716 (0.568)	1.32 (1.095)	Unimodal pattern with afternoon peak
47	47.046	C2H6O	Ethanol	ОН	0.212 (0.16)	0.55 (0.505)	Bimodal pattern with morning and evening peaks
48	57.03	C3H4O	Acrolein		0.157 (0.096)	0.674 (0.598)	Bimodal pattern with morning and evening peaks
49	59.046	C3H6O	Acetone + Propanal	0	3.647 (2.162)	10.593 (8.481)	Bimodal pattern with afternoon and evening peaks
50	61.025	C2H4O2	Acetic acid+ Glycolaldehyd e	ОН	4.103 (3.342)	10.975 (8.781)	Trimodal pattern
51	69.031	C4H4O	Furan		0.032 (0.019)	0.168 (0.135)	Bimodal pattern with morning and evening peaks
52	71.047	C₄H₀O	Methyl Vinyl Ketone, Methacrolein, 2-Butenal		0.291 (0.189)	0.498 (0.419)	Bimodal pattern with morning and evening peaks
53	73.026	C3H4O2	Methyl glyoxal	O H	0.161 (0.109)	0.261 (0.259)	Unimodal pattern with afternoon peak
54	73.062	C4H8O	Butanal, 2- Butanone, MEK		0.555 (0.388)	1.418 (1.195)	Bimodal pattern with morning and evening peaks
55	75.042	СзН6О2	Hydroxyaceton e	он	0.278 (0.143)	1.012 (0.848)	Bimodal pattern with morning and evening peaks
56	81.031	C₅H₄O	2,4- Cyclopentadien e-1-one		0.014 (0.007)	0.06 (0.055)	Bimodal pattern with morning and evening peaks
57	83.047	C5H6O	2-Methyl furan		0.05 (0.026)	0.205 (0.157)	Bimodal pattern with morning and evening peaks
58	85.027	C4H4O2	2-Furanone / butenedial		0.05 (0.034)	0.275 (0.213)	Bimodal pattern with afternoon

							and evening peaks
59	85.063	C5H8O	Cyclopentanon e		0.06 (0.03)	0.167 (0.132)	Bimodal pattern with afternoon and evening peaks
60	87.043	C4H6O2	2,3 butanedione/ biacetyl		0.175 (0.094)	0.566 (0.465)	Bimodal pattern with afternoon and evening peaks
61	87.079	C5H10O	2-Pentanone, 2-methyl-3- butene-2-ol, Pentanal		0.052 (0.031)	0.141 (0.132)	Bimodal pattern with afternoon and evening peaks
62	89.058	C4H8O2	Butanoic acid, Ethyl acetate	Он	0.281 (0.234)	0.533 (0.449)	Bimodal pattern with morning and afternoon peaks
63	95.048	C6H6O	Phenol	ОН	0.097 (0.057)	0.418 (0.352)	Trimodal pattern in monsoon while bimodal pattern with morning and evening peaks in post-monsoon
64	97.027	C5H4O2	Furfural		0.048 (0.036)	0.355 (0.294)	Bimodal pattern with morning and evening peaks
65	97.063	С₀Н₀О	C2 substituted furan, 2- methyl-2- Cyclopenten-1- one		0.034 (0.016)	0.132 (0.098)	Bimodal pattern with morning and evening peaks
66	99.043	C5H6O2	Furfuryl alcohol, 3- Methyl-2- furanone 4- Methyl-5H- furan-2-one	ОН	0.081 (0.059)	0.267 (0.251)	Unimodal pattern with afternoon peak
67	99.079	C6H10O	Cyclohexanone		0.167 (0.109)	0.424 (0.346)	Bimodal pattern with afternoon and evening peaks
68	101.059	C5H8O2	2,3- Pentanedione, methyl methacrylate &		0.129 (0.074)	0.304 (0.268)	Bimodal pattern with afternoon and evening peaks

			other hydrocarbons				
69	107.049	С7Н6О	Benzaldehyde	O H	0.06 (0.046)	0.202 (0.19)	Bimodal pattern with afternoon and evening peaks
70	109.064	C7H8O	Methylphenol isomers, Anisole	ОН СН3	0.027 (0.016)	0.1 (0.078)	Bimodal pattern with morning and evening peaks
71	111.042	C6H6O2	5- Methylfurfural, Hydroxyphenol	Соб со н	0.015 (0.01)	0.097 (0.083)	Trimodal pattern in monsoon while Bimodal pattern with morning and evening peak in post-monsoon
72	111.08	C7H10O	C3-substituted furans, C2- substituted cyclopentene, methyl cyclohexene		0.021 (0.011)	0.081 (0.068)	Bimodal pattern with morning and evening peaks
73	113.059	C6H8O2	Dimethylbuten edial / C4- sustituted aldehyde	н	0.047 (0.027)	0.159 (0.143)	Bimodal pattern with morning and evening peaks
74	115.039	C5H6O3	5- Hydroxymethy l-2-furanone/ methylepoxybu tanedial	0 0 0Н	0.014 (0.01)	0.046 (0.046)	Unimodal pattern with afternoon peak
75	115.075	C6H10O2	C6 diketone isomers/ C6 esters		0.051 (0.028)	0.124 (0.121)	Unimodal pattern with afternoon peak
76	121.064	C8H8O	Tolualdehyde		0.065 (0.046)	0.209 (0.195)	Bimodal pattern with afternoon and evening peaks
77	123.044	C7H6O2	2- Hydroxybenzal dehyde	ОН	0.027 (0.017)	0.119 (0.104)	Unimodal pattern with afternoon peak
78	123.08	C8H10O	C2-substituted phenol, methyl anisole	OH	0.015 (0.008)	0.054 (0.046)	Bimodal pattern with morning and evening peaks
79	125.06	C7H8O2	Guaiacol	ОСН3	0.016 (0.009)	0.06 (0.049)	Bimodal pattern with afternoon and evening peaks

80	127.039	С6Н6О3	Hydroxymethy l furfural	но	0.009 (0.006)	0.044 (0.039)	Unimodal pattern with afternoon peak
81	127.075	C7H10O2	Trimethylbuten edial / Methyl sorbate	но	0.025 (0.013)	0.077 (0.07)	Unimodal pattern with afternoon peak
82	129.092	C7H12O2	C7- diketone/hepta ne-2,6-dione	°	0.025 (0.016)	0.051 (0.049)	Unimodal pattern with afternoon peak
83	133.065	C9H8O	Methyl benzofuran		0.007 (0.003)	0.027 (0.023)	Bimodal pattern with morning and evening peaks
84	135.08	C9H10O	3- Methylacetoph enone		0.016 (0.01)	0.058 (0.054)	Bimodal pattern with morning and evening peaks
85	143.108	C8H14O2	2,3- Octanedione		0.02 (0.011)	0.04 (0.035)	Unimodal pattern with afternoon peak
86	145.051	C6H8O4	Organic acids/ levoglucosan fragment	ОН	0.006 (0.003)	0.022 (0.018)	Unimodal pattern with afternoon peak
87	145.123	C8H16O2	n-Octanoic acid	0 UH	0.009 (0.006)	0.019 (0.014)	Unimodal pattern with afternoon peak in monsoon while bimodal pattern with afternoon and evening peak in post-monsoon
88	149.024	C8H4O3	Phthalic anhydride/ 2,3- Benzeofurandi one		0.014 (0.011)	0.062 (0.059)	Unimodal pattern with afternoon peak
89	149.096	C10H12O	Methyl chavicol (estragole)	н,со	0.007 (0.004)	0.03 (0.027)	Bimodal pattern with morning and evening peaks
90	153.092	C9H12O2	Oxonopinone	ОН	0.009 (0.004)	0.029 (0.026)	Bimodal pattern with afternoon and evening peaks
91	153.128	C10H16O	Camphor pinene oxide		0.022 (0.015)	0.096 (0.086)	Bimodal pattern with afternoon and evening peaks
92	155.108	C9H14O2	Norpinonaldeh yde		0.012 (0.006)	0.026 (0.022)	Unimodal pattern with afternoon peak

93	155.144	C10H18O	Cineole, Linalool, 4- tert-butyl cyclohexanone	o	0.01 (0.007)	0.023 (0.019)	Unimodal pattern with afternoon peak in monsoon while bimodal pattern with afternoon and evening peak in post-monsoon
94	157.122	C9H16O2	C9- ester		0.013 (0.007)	0.026 (0.023)	Unimodal pattern with afternoon peak
95	159.14	C9H18O2	C9-organic acid	О	0.007 (0.005)	0.013 (0.01)	Unimodal pattern with afternoon peak
96	177.056	C10H8O3	2- Formylcinnami c acid / hydroxy- methyl- coumarin		0.008 (0.005)	0.026 (0.022)	Bimodal pattern with afternoon and evening peaks
97	185.121	C10H16O3	cis-Pinonic acid		0.006 (0.004)	0.01 (0.008)	Unimodal pattern with afternoon peak
98	195.138	C12H18O2	Myrtenyl acetate	0-0-0-	0.002 (0.001)	0.006 (0.006)	Unimodal pattern with afternoon peak
99	42.03	C2H3N	Acetonitrile	N	0.291 (0.126)	0.942 (0.714)	Bimodal pattern with morning and evening peaks
100	44.018	HNCO	Isocyanic acid	HN=C=0	0.051 (0.038)	0.139 (0.095)	Bimodal pattern with morning and afternoon peaks
101	46.025	CH₄NO	Formamide	H NH ₂	0.232 (0.206)	0.296 (0.236)	Unimodal pattern with afternoon peak
102	48.048	CH₅NO	methoxyamine	→ ^O → _{NH₂}	0.003 (0.002)	0.01 (0.009)	Bimodal pattern with morning and evening peaks
103	76.037	C2H5NO2	Nitroethane	NO ₂	0.009 (0.005)	0.213 (0.206)	Unimodal pattern with afternoon peak
104	84.08	C₅H∍N	Pentanenitrile/ Methylbutanen itrile isomers/ C5-amines		0.005 (0.003)	0.021 (0.022)	Bimodal pattern with morning and evening peaks

105		116.108	C6H13NO	C6-amide	H ₃ C NH ₂	0.006 (0.004)	0.01 (0.007)	Unimodal pattern with afternoon peak
106		124.039	C6H5NO2	Nitrobenzene	NO ₂	0.006 (0.004)	0.019 (0.018)	Trimodal pattern
107		138.056	C7H7NO2	Nitrotoluene/ salicylamide	NO ₂	0.003 (0.001)	0.013 (0.01)	Trimodal pattern
108		154.052	C7H7NO3	Nitrobenzyl alcohol/Nitrocr esols, methyl- nitrophenol	OH CH ₃	0.005 (0.004)	0.024 (0.025)	Trimodal pattern
109	CIVO	62.997	C2H3Cl	Vinyl chloride	CI	0.004 (0.003)	0.015 (0.011)	Bimodal pattern with afternoon and evening peaks
110	CS	146.977	C6H4Cl2	Dichlorobenze ne	CI	0.025 (0.021)	0.115 (0.121)	Bimodal pattern with morning and evening peaks
111	SVOC S	49.007	CH4S	Methanethiol	∕ ^s ∕ _H	0.048 (0.047)	0.128 (0.129)	Bimodal pattern with morning and evening peaks

• Bold ones in structure column are those compounds whose isotopic peaks were observed

Figure S1 Example of mass spectra and peak assignment using IDA software which also illustrate the high mass resolving power of the PTR-ToF-MS 10K enabling separation of ion signals that land at the same nominal masses.

Figure S2: Transmission values as a function of m/z for the PTR-TOF-MS 10K obtained during a calibration experiment performed on 26th September 2022 using the VOC calibration gas mixture (Societa Italiana Acetilene E Derviati; S.I.A.D. S.p.A., Italy) containing 11 hydrocarbons at ~100 ppb, namely methanol, acetonitrile, acetone, isoprene, benzene, toluene, xylene, trimethylbenzene, and dichlorobenzene and trichlorobenzene

$$[R]_{ppb} = 10^9 \times \frac{\mu_0 U_{drift}}{L^2 k_{\text{vOC+H}_30^+}} \times \frac{P_0^2}{P_{drift}^2} \times \frac{T_{drift}^2}{T_0^2} \times \frac{22400}{N_A} \times \frac{I_{(RH^+)}}{I_{(H_30^+)}} \times \frac{T_{H30^+}}{T_{vOCH^+}}$$
 Equation S1

Where $k_{VOC+H_3O^+}$ = Rate constant of proton transfer from hydronium ion to a VOC

L = Length of drift tube (9.2 cm)

 μ_0 = Reduced mobility of H₃O⁺ ions (2.8 cm² V⁻¹ s⁻¹)

N = Number density of gases in the drift tube

E= Electric field across the drift tube

 $U_{drift} = Voltage across the drift tube$

 P_{drift} & T_{drift} = Drift tube pressure and temperature

 P_0 & T_0 = Standard pressure and temperature

 $N_A = Avogadro Number$

 $\frac{T_{VOCH^+}}{T_{H_3O^+}}$ = Ratio of transmission efficiency of protonated VOC ions and hydronium ions

Figure S3 Sensitivity (ncps/ppb) and linearity of selected VOCs in the calibration experiment (PTR-MS) performed on 26/09/2022. The horizontal error bars represent the root mean square propagation of errors due to 10% uncertainty in the VOC standard and 2% error for each of the two mass flow

controllers used for calibration. The vertical error bars represent the standard deviation (σ) instrumental precision error while sampling the standard gas at each dilution mixing ratio.

