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Abstract. Continental shelf sediments contain some of the largest stocks of organic carbon (OC) on Earth and play a 

vital role in influencing the global carbon cycle. Quantifying how much OC is stored in shelf sediments and 

determining its residence time is key to assessing how the ocean carbon cycle will be altered by climate change and 

possibly human activities. Spatial variations in terrestrial carbon stocks are well studied and mapped at high 15 

resolutions, but our knowledge of the distribution of marine OC in different seafloor settings is still very limited, 

particularly in dynamic and spatially variable shelf environments. This lack of knowledge reduces our ability to 

understand and predict how much and for how long oceans sequester CO2. In this study, we use high-resolution 

multibeam echosounder (MBES) data from the Eastern Shore Islands offshore Nova Scotia (Canada), combined with 

OC measurements from discrete samples, to assess the distribution of OC content in seafloor sediments. We derive 20 

four different spatial estimates of organic carbon stock: i) OC density estimates scaled to the entire study region 

assuming a homogenous seafloor; ii) interpolation of OC density estimates using Empirical Bayesian Kriging; iii) OC 

density estimates scaled to areas of soft substrate estimated using a high-resolution classified substrate map; and 

finally, iv) Empirical Bayesian Regression Kriging of OC density within areas of estimated soft sediment only. These 

four distinct spatial models yielded dramatically different estimates of standing stock of OC in our study area of 223 25 

km2: 80,901, 58,406, 16,437 and 6,475 t of OC, respectively. Our study demonstrates that high-resolution mapping is 

critically important for improved estimates of OC stocks on continental shelves, and to the identification of carbon 

hotspots that need to be considered in seabed management and climate mitigation strategies. 

1 Introduction 

1.1 Blue Carbon  30 

Blue Carbon has received tremendous interest as a natural option for climate change mitigation due to the fact that 

some marine habitats can store disproportionate amounts of organic carbon (OC) on an area-by-area basis 

compared to terrestrial habitats (Hilmi et al., 2021). The Intergovernmental Panel on Climate Change (IPCC) 

defines Blue Carbon as: “All biologically driven carbon fluxes and storage in marine systems that are amenable 

to management” (2019). By this definition, Blue Carbon is therefore associated with vegetation in coastal zones, 35 
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such as tidal marshes, mangroves, and seagrasses (McLeod et al., 2011). OC in marine sediments are often not 

included in Blue Carbon calculations and definitions since these environments do not sequester carbon via 

photosynthesis (Lovelock et al., 2019). However, marine sediments are essential carbon reservoirs and regulate 

climate change by effectively burying OC over thousands to millions of years if left undisturbed (Berner, 2003; 

Burdige, 2007). Studies are therefore beginning to acknowledge marine sediments as an emerging Blue Carbon 40 

ecosystem (Howard et al., 2023).  

The fate and flux of organic carbon in benthic systems is influenced by a range of factors acting over different 

timescales (Middelburg, 2018), including natural and anthropogenic-induced processes (Bianchi et al., 2021, 

2023). Recent studies have concluded that, on a global scale, all bottom trawling and dredging disturbs the seafloor 

with an estimated 1.47 Pg of aqueous CO2 emissions (Sala et al., 2021). However, these estimates have substantial 45 

errors (Epstein et al., 2022) and often ignore that the mineralization of benthic carbon stores comes from natural 

cycles (Hilborn et al., 2023). Combined, these studies emphasize that further understanding of sediment ocean 

carbon processes are urgently required to determine if bottom trawling and dredging could cause the semi-

permanent OC stocks in surficial marine sediments to remineralize back to CO2 (Bianchi et al., 2023). Also, future 

studies into new approaches to determining the distribution of OC are essential to locate areas of carbon-rich 50 

seabed. Furthermore, this research could expand the definition of Marine Protected Areas (MPAs) to include areas 

of high OC stock (Oceans North, 2024). 

1.2 Seafloor Substrate 

Sediment characteristics, such as mud content, are known to influence the distribution of OC in marine ecosystem 

(Burdige, 2007; Serrano et al., 2016), with recent studies highlighting the importance of sediment properties as 55 

predictors of organic carbon storage in Blue Carbon ecosystems (Dahl et al., 2016; Krause et al., 2022). In shelf 

environments, where sediment heterogeneity can be high, sediment classification maps may therefore offer a 

mechanism to determine areas of low and high OC content (Bianchi et al., 2021). Multibeam-echosounder 

(MBES) systems provide information about the environmental characteristics of the seafloor, such as depth, 

substrate hardness, and sediment characteristics, by collecting bathymetry and backscatter information, which can 60 

be used to determine seafloor morphology and as a proxy for seafloor substrate type (Brown et al., 2011). 

Advancements in MBES have allowed us to create spatially continuous high-resolution maps of the ocean floor 

(Brown et al., 2011; Buhl-Mortensen et al., 2021; Misiuk and Brown, 2024), at horizontal resolutions down to 

sub-meter scales (depending on water depth and sonar specifications; Mayer et al., 2018). Seafloor sediment 

mapping describes the use of geophysical and physical sampling systems to determine the character of the surface 65 

sediments, and includes mapping quantities of clay/silt, sand, gravel, cobble, and boulder using the Wentworth 

scale (e.g., Misiuk et al., 2019). Recent methods for producing seabed sediment maps combine high-resolution 

MBES with ground-truth sampling data using machine learning algorithms (Misiuk et al., 2019). Statistical 

techniques include k-Nearest Neighbour (Lucieer et al., 2013; Stephens and Diesing, 2014), Artificial Neural 

Networks (Huang et al., 2012; Stephens and Diesing, 2014), and Bayesian Decision Rules (Simons and Snellen, 70 
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2009; Stephens and Diesing, 2014). The most widely used statistical model for substrate classification and 

regression maps is Random Forest, due to its ease of implementation and a robust capacity for handling complex, 

non-linear relationships between environmental variables and ground truthing while avoiding overfitting 

(Stephens and Diesing, 2015; Misiuk and Brown, 2024).  

1.3 Benthic Carbon Mapping 75 

Early marine carbon mapping studies have applied interpolation methods comprising semi-variogram analyses 

and kriging to spatially predict OC in surficial sediments (Mollenhauer et al., 2004; Acharya and Panigrahi, 2016). 

More recently, soil OC has been modeled using multiple methods in terrestrial ecosystems. Mallik et al. (2022) 

compared artificial neural networks (ANN), Empirical Bayesian Regression Kriging (EBRK), and hybrid 

approaches combining the two, including ANN-OK (ordinary kriging) and ANN-CK (cokriging). They found that 80 

the EBRK method outperformed all other models with highest values of R2 (0.936) (Mallik et al., 2022). The 

EBRK method has been widely used in terrestrial soil carbon models but has still not been explored for marine 

sediment carbon models. More recent studies have utilized machine learning algorithms to model and map OC at 

broad spatial scales at the seafloor (Atwood et al., 2020; Diesing et al., 2017; Smeaton et al., 2019). Diesing et al 

(2017) used Random Forest to model particulate OC (POC) at the seafloor using measurements from physical 85 

seafloor samples, and spatially continuous seafloor environmental variables (500 m grid resolution) covering the 

Northwest European continental shelf. Similarly, Smeaton et al. (2019) generated a map of seafloor substrate using 

the Folk classification and calculated the OC stock per substrate class (100 m grid resolution). This latter study 

was the only one amongst those listed to utilize MBES data to predict OC stock. Epstein et al. (2024) also applied 

Random Forest to model OC stocks and accumulation rates in surficial sediments of the Canadian continental 90 

margin at a coarse resolution (200 m grid resolution) and emphasize that ignoring the geographic extent of hard 

substrate (i.e., bedrock) at such broad spatial scales could inflate carbon stock estimates. These studies have been 

critical to understanding the carbon hotspots at broad spatial scales, as the traditional lower-resolution maps often 

lead to oversimplification and inconsistency in carbon averaging. However, understanding distributions of 

sedimentary OC at a higher spatial resolutions may be required for effective seabed management strategies (Legge 95 

et al., 2020). 

High-resolution maps of OC have been produced at a local scale using 48 m resolution backscatter from MBES 

surveys as a predictor (Hunt et al., 2020, 2021). Backscatter can be predictive of seabed sediment properties and 

was hypothesized to be a proxy for OC based on observed empirical relationships between grain size and OC, and 

also potentially other additional sedimentary properties that influence backscatter reflectance (Hunt et al., 2020). 100 

Backscatter data may thus be valuable where sediment data are scarce. Hunt et al. (2020) indicated that backscatter 

reliably captured information regarding the spatial heterogeneity of the seabed, and that OC correlated strongly 

with the MBES backscatter signal as a function of sediment composition. However, a more recent study suggested 

that backscatter distinguishes between coarse and fine sediments (low and high OC) but struggled to differentiate 

fine-scale variability within finer-grained sediments (Hunt et al., 2021). Differences in results between these 105 
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studies could be due to the different geographical setting of the studies, limited and asynchronous data, sediment 

mobility over time, or complex environmental processing of OC in shelf sediments (Hunt et al., 2021).  

The studies in the North-West European continental margin (Diesing et al., 2017, 2021; Hunt et al., 2020; Hunt 

et al., 2021; Legge et al., 2020; Smeaton et al., 2021) have shown promising early results. Other studies of carbon 

stocks have been conducted in the North American coastal region but without spatially explicit estimates (Fennel 110 

et al., 2019; Najjar et al., 2018). Overall, spatially mapping OC at the seabed has only been attempted at a few 

locations globally, and there is an urgent need to establish robust approaches to obtaining spatial estimates of OC 

at the seafloor. High resolution OC mapping may additionally help to improve current estimates of seafloor OC 

stocks and provide insight on marine sediments as an emerging Blue Carbon ecosystem. As a conservation Area 

of Interest (AOI) for the Canadian government, the Eastern Shore Islands (ESI) is an ideal location to test emergent 115 

OC mapping methods; it comprises a heterogenous seabed that may provide insight on the effectiveness of various 

baseline sediment OC estimation and mapping methodologies. 

This study addresses three key questions:  

1. What is the spatial distribution of seafloor sediment types in the ESI area? 

2. Are seafloor sediments a good high-resolution proxy that enable accurate estimation of OC stock? 120 

3. Does the spatial heterogeneity of substrate type and carbon content influence estimates of OC stock?  

2 Study Area 

The study region is located within the ESI, approximately 60 km northeast of Halifax (Nova Scotia, Canada, 

Figure 1). The site stretches from Lower West Jeddore to Fern Hill and extends approximately 25 km from the 

mainland with an area of approximately 223 km2 (Fisheries and Oceans Canada, 2019) (Figure 1). The ESI is a 125 

conservation AOI for the Canadian government due to its unique coastal habitat and significant quantities of kelp 

beds and eelgrass. The estuaries and rivers that drain into the site are considered important habitats for endangered 

species like Atlantic salmon and juvenile Atlantic cod. Furthermore, the hundreds of islands have been identified 

as an Ecologically and Biologically Significant Area (EBSA), which provides essential nesting and foraging 

ground for many colonial seabirds and shorebirds, including purple sandpiper, and roseate tern which are 130 

endangered according to the Species at Risk Act (Fisheries and Oceans Canada, 2019). 
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Figure 1. Seafloor MBES bathymetry and sample locations for the survey area at the Eastern Shore Islands, 

Nova Scotia, Canada (inset).   

The study area has a water depth between 31 and 63 m. The surficial geology of the ESI is spatially heterogeneous, 135 

with bedrock overlaid by mud, sand, gravel, cobble, and boulder substrates (King, 2018). The bedrock topography 

is an extension of the terrestrial geomorphology and heavily influences the type and distribution of the surficial 

deposits. The glacial imprint is substantial in the area, having deposited a sequence of till and glaciomarine mud, 

which lie directly on the bedrock (King, 2018). There is also a thin layer of wave-modified sand and gravel, and 

more recent deposits of estuarine mud derived from coastal erosion (Fisheries and Oceans Canada, 2019). Ocean 140 

surface temperatures in the ESI are around 1° C in winter for the 0–100 m depth range and increase in the summer 

with some stratification leading to surface temperatures exceeding 15° C (Fisheries and Oceans Canada, 2019). 

By the fall, mixing deepens this warm layer. Ocean currents run predominantly southwestwards, with some 

fluctuation around the coast (Feng et al., 2022). The combination of upwelling, currents, and wind allows for the 

mixing of nutrients, acting as an essential component of the marine food web in the region (Fisheries and Oceans 145 

Canada, 2019). Nutrients are derived from river, coastal runoff and mixing. They are depleted in the spring due to 

phytoplankton blooms and replenished in the fall when upwelling is predominant (Fisheries and Oceans Canada, 

2019). Major human activities in this area include lobster fishing, recreational fishing, and boating, but the human 

impact is low due to low population density and reduced coastal development compared to nearby Halifax and St. 

Margarets Bay (Fisheries and Oceans Canada, 2019).   150 
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3 Materials and Methods 

To quantify OC stock in the ESI, sediment samples were collected, and OC content and sediment grain size were 

measured. OC density was calculated for each sample, and four OC stock estimations were generated. The first 

assumed a homogenous seafloor by scaling up the average OC density to the entire study area. The second also 

assumed a homogeneous seafloor but used Empirical Bayesian Kriging (EBK) to derive the spatial variability of 155 

OC density for the study area. Both scenario 1 and 2 were conducted to evaluate OC estimates when no high-

resolution mapping data is available. To further refine the OC stock estimates, a substrate classification map was 

developed by combining high-resolution seafloor predictor variables (derived from multibeam sonar data – see 

below) and subsea camera imagery of the seabed. The substrate classification map partitioned the study area into 

hard and soft substrates. The third OC stock estimate utilized the sediment classification and scaled the average 160 

OC density to the area of the soft substrate. The final OC stock estimate also utilized the sediment classification 

map but used Empirical Bayesian Regression Kriging (EBRK) prediction to incorporate the spatial variability of 

the OC density within the soft substrate only. Scenarios 3 and 4 determine OC estimates when sediment 

information and high-resolution mapping data is available. An overview of the analysis workflow is shown in 

Figure 2.  165 

 

Figure 2. General analysis steps used to estimate organic carbon for four scenarios. 

3.1 Hydrographic Datasets 

MBES data were collected by the Canadian Hydrographic Service over two separate surveys (20 June – 29 July 

2019; 17 August – 05 September 2020) (Bondt, 2019, 2020). Three launches were used to complete this survey – 170 
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the CSL Kestrel, CSL Tern and CSL Pelican. The survey launch CSL Kestrel was equipped with an R2Sonic 2022 

multibeam echosounder. The survey launches CLS Tern and CSL Pelican were outfitted with Kongsberg 

EM2040C and EM2040C Dual Head echo sounders, respectively. All surveys were conducted at MBES operating 

frequencies of 200-400kHz. Vessel position and orientation were corrected in real time by Trimble/Applanix 

POSMV V5 motion compensation systems. Echosounder data was corrected for sound velocity in real time using 175 

Applied Microsystems Limited sound velocity sensors. The vessel position was recorded in real-time using the 

CANNET RTK NTRIP connected directly through the POSMV. Raw position and orientation data from the 

POSMV were logged throughout the survey for further post-processing where required. Bathymetry and 

backscatter data were processed using the QPS software suite. Bathymetry data were processed in Qimera 2.5.3 

to generate a bathymetric digital elevation model (DEM) for the survey area. Backscatter data were processed in 180 

FMGT 7.10.2 to generate backscatter mosaics for each of the data sets. Backscatter data were not calibrated; the 

different survey data sets were harmonised using bulk shift methods (Misiuk et al., 2020, 2021; Haar et al, 2023) 

from areas of overlap between the survey data sets to generate a corrected backscatter mosaic for the entire study 

area. 

Seafloor morphology features were derived from the primary bathymetric datasets to provide additional predictor 185 

variables for sediment classification modelling. These were selected based on literature review, expert suggestions, 

and access to data, and were calculated using ArcGIS Pro 3.1.2 using the Benthic Terrain Modeler (BTM) 3.0 

Toolbox. The terrain features included slope, bathymetric position index (BPI) and vector ruggedness measure 

(VRM), which are considered useful predictors for seabed substrate classification (Stephens and Diesing, 2015; 

Misiuk et al, 2019) (Table 1) (Figure 3). The Focal Statistics tool was used to obtain the mean value for each 190 

predictor variable over a 20 by 20 pixel neighbourhood to reduce noise. The variables were then used in both the 

substrate map and the OC model.  

Table 1. Description of predictor variables used to model sediment type.  

Environmental Variables Description Resolution Units 

Bathymetry Depth of the seafloor 2 m meters 

Backscatter Measure of intensity of 

acoustic signal from MBES 

and indicator of bottom 

hardness 

2 m relative dB 

Slope Measures maximum change 

in elevation (steepness) 

2 m degrees 

Vector Ruggedness Measure (VRM) Measures terrain ruggedness 

of grid cells within a 

neighbourhood 

2 m meters 

Bathymetric Position Index (BPI) Differences in values of 

centre cell to mean of 

surrounding cells. 

2 m meters 
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 195 
Figure 3. Backscatter, Slope, VRM and BPI data mapped in the Eastern Shore Islands study area. 

3.2 Seabed Sediment Sampling  

Sampling surveys for OC and grain size were conducted between 9 - 27 May 2022 from the MV Island Venture. 

Sampling locations were randomly placed in regions of low MBES backscatter, which indicate softer, 

unconsolidated sediments where grab sampling should be successful (Figure 3). Acoustic backscatter was used to 200 

select sampling locations as a proxy for sediment grain size (Goff et al., 2000; Sutherland et al., 2007; Collier et 

al., 2014; Hunt et al., 2020). A 0.1 m2 Van Veen grab fitted with a GoPro camera was operated to collect sediment 

samples and drop camera imagery at each sample location, with the grab penetrating up to ~10 cm depth into the 

substrate. The GPS position of the research vessel was recorded at the point of contact at the seabed at each grab 

station. A total of 17 grabs were successful in areas of soft substrate. Generally, it is difficult to sample a coarser 205 

sediment matrix successfully, and these sediment types are often under-represented in sedimentary carbon studies 

(Hunt et al., 2020). After thoroughly mixing the sediment in the Van Veen grab, 0.907 kg (32 oz) subsamples of 

sediment were taken from the grabs, and each placed in a plastic container for OC analysis. Following collection, 

these samples were stored in a cooler during the day and put into a freezer in the evening. 

3.3 Processing of Sediment Grab Samples 210 

Prior to sediment grain size and OC analysis, the samples were dried from frozen in the oven at 60°C overnight 

and kept in a dark dry cabinet. Sedimentary OC from the grab samples was quantified using an elemental analyzer 

(EA, Elementar Microcube) with a detection limit of 0.03 mg. Based on the method of Verardo et al. (1990), a 

section of the grab samples (5 g) was ground using a mortar and pestle to form a homogenous powder. Two 

samples (ES-31, ES-35) contained significant concentrations of sediment grains coarser than 2 mm (around 30% 215 
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of sample). These sand grains were removed using mesh sieves prior to grinding and EA analysis, but final 

sedimentary OC concentrations were adjusted to total sample weight following EA analysis. Silver capsules were 

used to weigh the initial mass (0.5-0.7 mg), and acid fumigation was performed by exposing the samples to 37% 

hydrochloric acid (HCl) to remove any inorganic carbon. These capsules were then placed in an oven overnight 

at 60°C before analysis.  220 

The remaining section of the grab samples was used for sediment grain size analysis, following the protocol of 

Mason (2011). The sediment was first split into pebble/cobble (>4000 µm), gravel (>2000 µm) and fine sediment 

(<2000 µm) material using mesh sieves. The fraction <2000 µm was evaluated using a Beckman Coulter LS 13 

320 particle size analyzer at the Bedford Institute of Oceanography. Following the guidance of Mason (2011), the 

samples were not treated with acid or hydrogen peroxide because the samples had relatively low organic content. 225 

The results from the coarse and fine-scale fractions were combined into a full particle size distribution to determine 

the percentage of mass of the total for each sample (supplementary material). It should be noted that dry bulk 

density was not measured directly in this study but was instead calculated (see section 3.6). 

3.4 Subsea Video Surveys  

A total of 174 drop camera videos were collected by Fisheries and Oceans Canada (DFO) over 13 days during 230 

September and October 2017 aboard the vessel RV Sigma-T (Fisheries and Oceans Canada et al., 2019).  (Figure 

1). A HD subsea video camera (SV-HD SDI) was used with camera time and position recorded using a video 

overlay streamed from the chart plotter (Vandermeulen, 2018). The video feed with overlay outputted to a direct-

to-disk HD recorder and a standard low-power LED TV. The GPS antenna for the navigation system was mounted 

on the roof of the wheelhouse approximately 10 m from the drop camera when deployed off the stern gallows. In 235 

this manner, all positional information in the video overlay was offset by ~10 m and was adjusted during post-

processing. Approximately three minutes of moving video was recorded at each drop camera location. The centre 

of each video drift was recorded as the station location. All the drop camera sites occurred at depths > 10 m. The 

GoPro camera imagery collected with the grab sampler during OC sampling in 2022 (see sediment sampling 

section above) was additionally incorporated with the drop camera imagery for subsequent analysis (Figure 1). 240 

From each video station, a presence (1) and absence (0) of different sediment types were recorded in post 

processing. The data was classified into two sediment types: hard substrate (rock, boulder, cobbles, pebbles, and 

gravel), and soft substrate (mud and sand) (Figure 4) (supplementary material). 

 

 245 

 

 



10 
 
 

 

Figure 4. Example of seafloor imagery from each of the two substrate classes: hard Substrate (left); soft substrate 

(right). Photos from a GoPro camera mounted on the Van Veen grab. Width of images are approximately 0.5 m, with 250 

the frame of the grab providing scale for classification of substrata. 

3.5 Sediment Classification Model 

Random Forest has been used in previous carbon mapping studies due to its high predictive accuracy, capacity to 

manage many predictor variables, and unbiased internal validation (Diesing et al., 2017). In our study, Random 

Forest was used to model the sediment grain size class to inform OC content estimation using R version 4.3.1 with 255 

the randomForest package (Liaw and Wiener, 2002). The model was initially trained with default hyperparameters 

(𝑛𝑡𝑟𝑒𝑒 = 500, 𝑚𝑡𝑟𝑦 = 2, 𝑛𝑜𝑑𝑒𝑠𝑖𝑧𝑒 = 1) using the substrate classification observations and all predictor 

variables (bathymetry, backscatter, BPI, VRM and slope). Random Forest is an ensemble modelling approach 

comprising many individual classification trees, each grown on a bootstrapped version of the dataset. The 

observations not selected for a given tree are termed the “out-of-bag” (OOB) observations. Given enough trees, 260 

each response observation will be represented in the OOB sample multiple times. By predicting the OOB values 

for each individual tree during model training, the results can be aggregated over all trees to provide a useful set 

of validation predictions that were not used to inform training. The OOB observations were used here to estimate 

predictor variable importance by permuting the predictor values and measuring the resulting increase in OOB 

error (Liaw and Wiener, 2002). Random Forest is generally considered robust to the use of correlated predictors 265 

and estimates of importance additionally suggested contribution to the model by all variables, which were thus 

retained. Informal trials suggested that a model of 100 trees (i.e., 𝑛𝑡𝑟𝑒𝑒 = 100) provided sufficient predictive 

capacity but improved computational speed. After training the final model with these parameters, a confusion 

matrix was generated using the OOB observations and predictions to evaluate the map accuracy, and the model 

was then predicted across the full map extent using the predictor variable rasters. The kappa statistic was used to 270 

evaluate the model predictions, indicating how well predictions agree with observations beyond the level of 

agreement that could be expected by chance:  

𝑘 =
𝜌𝑜−𝜌𝑒

1−𝜌𝑒
  (1)  

 

where 𝜅 is the value of kappa between −1 and 1, 𝑝𝑜 is the proportion correctly classified and 𝑝𝑒 is the proportion 275 

correctly classified due to chance, based on the frequency of observations and predictions of each class. A kappa 

score of 0 is considered “poor” agreement, while values in the range 0 to 0.20 are often considered “slight” 

agreement, 0.21 to 0.40 as “fair”, 0.41 to 0.60 as “moderate”, 0.61 to 0.80 as “substantial” agreement, and 0.81 to 

0.99 as “almost perfect” agreement. 
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3.6 Estimation of  Standing Stock of Organic Carbon 280 

The elemental analyser reports OC value as a proportion (weight %). Dry bulk density was not measured directly 

in this study but calculated from estimated porosity and density. Porosity (𝛷) was calculated from predicted mud 

content (dimensionless fraction), which is a combination of clay and silt from the grain size distribution 

measurements using the equation (2) derived from Jenkins (2005).  

  𝛷 = 0.3805 ∗ 𝐶𝑚𝑢𝑑 + 0.42071,            (2)  285 

where 𝛷 and 𝐶𝑚𝑢𝑑 (mud content) are dimensionless fractions. The equation was derived based on data from the 

Mississippi-Alabama-Florida shelf, and it is assumed that the equation is not site-specific (Diesing et al., 2017).  

Dry bulk density (𝑝𝑑) of the sediment was estimated using the porosity and sand grain density (𝑝𝑠= 2650 kg m-3) 

(Diesing et al., 2017; Hunt et al., 2020):  

  𝑝𝑑 = (1 − 𝛷) 𝑝𝑠  (3)  290 

The organic carbon density (kg m-3) was calculated by multiplying the %OC (𝑌) (expressed as a decimal 

proportion) by the sediment dry bulk density (𝑝𝑑). Following prior studies that quantified marine sedimentary OC 

(e.g., Diesing 2017, Hunt 2021), the standing stock of organic carbon per grid cell (𝑚𝑂𝐶) was estimated by 

multiplying the average OC density by the sampling depth of the Van Veen grab (𝑑 = 0.1 m), area of mapped grid 

cell (𝐴 =  4 m2) and converted to metric tonnes (divided by 1000) using the equation (4) below:  295 

  𝑚𝑂𝐶 = (𝑌 ∗ 𝑝𝑑 ∗ 𝑑 ∗ 𝐴)/1000 (4)  

Finally, the total standing stock was the 𝑚𝑂𝐶 multiplied by the total pixels in the study site (scenarios 1 and 2) or 

the total pixels in the soft substrate (scenarios 3 and 4).  

3.7 Spatial Interpolation of Organic Carbon – No Substrate 

After the 𝑚𝑂𝐶 was calculated for each sample, EBK was used to spatially interpolate 𝑚𝑂𝐶 within the entire study 300 

site. EBK is a geostatistical interpolation method that builds a kriging model by subsetting the study area, coupled 

with multiple simulations to obtain the best fit (Krivoruchko and Gribov, 2019). This process finally creates several 

simulated semi-variograms, each of which is an estimate of the true semi-variogram for the subset (Pellicone et 

al., 2018). EBK differs from other kriging methods since it considers the uncertainty in the semi-variogram 

estimation step, providing an estimate of the prediction standard errors. An exponential semi-variogram and an 305 

empirical transformation were selected and EBK was executed in the geostatistical wizard in ESRI ArcGIS Pro 

3.1. 

3.8 Spatial Interpolation of Organic Carbon Density – Soft Substrate 

EBRK was used for the spatial interpolation of  OC density and estimation of values at unknown locations within 

the extent of the soft substrate. EBRK is a geostatistical interpolation method that combines ordinary least square 310 

regression and kriging to provide accurate predictions of non-stationary data at a local scale (Giustini et al., 2019). 



12 
 
 

An exponential semi-variogram model and an empirical transformation were selected for the EBRK model, which 

was evaluated using leave-one-out cross-validation (Mallik et al., 2022). The EBRK method is different from 

EBK in that predictor variable information is accommodated by including their principal components as regression 

variables prior to the kriging step. Thus, all the predictor variables from the substrate classification map 315 

(bathymetry, backscatter, bpi, vrm and slope) were masked to the soft substrate area in ESRI ArcGIS Pro 3.1 and 

included in the EBRK model to improve estimation of OC density.  

3.9 Cross Validation Methods 

To estimate the accuracy of the EBK and EBRK predictions, the mean error (ME) and the root-mean-square error 

(RMSE) were calculated. ME is the average of the cross-validation errors, measures model bias and should have 320 

a value close to zero (Acharya and Panigrahi, 2016). 

𝑀𝐸 =
1

𝑛
∑ {𝑧(𝑥𝑖) − �̂�(𝑥𝑖)}𝑛

𝑖=1   (5) 

RMSE measures the difference between the predicted and the observed values and estimates the standard deviation 

of the residuals (Boumpoulis et al., 2023). A small root mean square error (RMSE) indicates that the model has 

performed well and can predict the data accurately.  325 

𝑅𝑀𝑆𝐸 = [
1

𝑛
∑ {𝑧(𝑥𝑖)  − �̂�(𝑥𝑖)}2𝑛

𝑖=1 ]1/2  (6)  

The z(xi) is the observed OC and �̂� (xi) is the prediction of OC at location xi, and n is the number of observations. 

These cross-validation error parameters were calculated within the Geostatistical Wizard Tool in the ESRI ArcGIS 

Pro 3.1. 

4 Results 330 

4.1 Grain size Distributions, Sediment Properties, and Organic Carbon Content 

Van Veen grab samples provided grain size and OC measurements at each station (Table 2). It is important to note 

that silt and clay were merged into a single mud class to estimate the OC stock (Burdige, 2007; Hedges and Keil, 

1995).  

Table 2. Raw data from grab samples including grain size and OC measurements.  335 

Station  >4000 

um (%)  

>2000 

um (%)  

Sand  

Content  

(%)  

Silt 

Content  

(%) 

Clay  

Content  

(%) 

Porosity  Dry Bulk  

Density 

(kg/m3)  

Organic  

Carbon 

Content 

(%)  

ES-02 0.27 0.08 54.3 38.4 7.13 0.59 1077.6 1.22 
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ES-03 0.003 0.06 90.8 7.11 2.03 0.46 1443.0 0.12 

ES-04 0.33 0.01 93.7 4.28 1.69 0.44 1475.1 0.13 

ES-07 0.00 0.00 24.4 65.2 10.3 0.71 773.0 1.85 

ES-15 0.59 0.11 94.6 3.44 1.29 0.44 1487.4 0.06 

ES-17 2.07 0.30 63.7 30.5 4.18 0.55 1185.1 0.10 

ES-18 0.60 0.04 80.2 17.4 1.93 0.49 1340.5 0.23 

ES-19 0.00 0.04 96.7 2.15 1.12 0.43 1502.2 0.08 

ES-21 0.14 0.10 91.4 7.23 1.17 0.45 1450.4 0.06 

ES-23 0.08 0.21 93.8 4.68 1.27 0.44 1475.1 0.07 

ES-25 0.006 0.01 95.4 3.50 1.05 0.44 1489.3 0.05 

ES-27 0.04 0.05 85.0 13.3 1.67 0.48 1384.7 0.07 

ES-28 0.00 0.05 85.2 13.2 1.63 0.48 1385.8 0.08 

ES-29 0.00 0.02 86.7 11.4 1.87 0.48 1401.4 0.08 

ES-31 21.42 9.97 45.8 22.2 1.11 0.51 1199.2 0.57 

ES-34 2.15 0.71 52.4 39.9 6.15 0.59 1071.1 0.61 

ES-35 34.00 0.37 17.3 44.0 4.26 0.61 793.01 0.62 

 

4.2 Relationship between Grain Size and Organic Carbon   

A linear regression was performed to examine the relationship between OC content (%) and the percentage grain 

size composition of mud. There was a significant positive relationship between OC content and percent mud 

(p<0.001; R2=0.81) (Figure 5), suggesting that % mud content may be useful as a proxy for OC content, as also 340 

observed at many other sites (Burdige, 2007; Hedges and Keil, 1995; Hunt et al., 2021). 
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Figure 5. Linear regression indicating the relationship between OC and percent mud. The grey area represents a 95 

percent confidence interval for the slope of the regression line. 

4.3 Substrate Classification Map   345 

Outputs from Random Forest indicated that bathymetry, backscatter, vector ruggedness measure (VRM) and slope 

were all important for the sediment classification. Figure 6 shows the relative importance of the five variables in 

the model. Backscatter was the most important variable for predicting sediment type, followed by VRM, slope, 

bathymetry, and BPI.  
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 350 

Figure 6. The importance of predictor variables as estimated using Random Forest. 

The confusion matrix calculated using the OOB observations is presented in Table 3. A kappa score of 0.69 

indicates substantial agreement between observations and predictions of each class, suggesting that the model was 

able to successfully differentiate soft and hard substrates within the study area. 

Table 3. Confusion matrix of substrate type predictions.  355 

  Observed 

 

Predicted 

 Hard Substrate Soft Substrate 

Hard Substrate 129 16 

Soft Substrate 9 44 

 

 

The sediment classification map revealed that the hard substrate was the most spatially extensive (178 km2) 

whereas the soft substrate class was smaller, covering approximately 45 km2 of the study area, corresponding with 

contiguous patches of relatively low relief seafloor (Figure 8). Sediment grain size from the grab samples revealed 360 

grain size percentiles d10=17 um, d50 = 147 um and d90 = 1822 um. This suggests predominantly sandy sediments, 

with varying smaller proportions of silt and clay (Figure 7). Two samples were comprised of around 30% coarse 

substrate (>2000 um) (Figure 7). 
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Figure 7. Sediment classification map indicating predicted soft (orange) and hard (blue) substrates. Pie charts depict 365 

ratios of sand (yellow), silt (orange red), clay (purple), and coarse (green) for each sediment sample collected. 
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Figure 8. Sediment classification map indicating areas of soft (orange) and hard (blue) substrate. Proportional symbols 

of OC indicate the sampled percentage (yellow). 370 

4.4 Organic Carbon Density Maps 

Predicted OC density was high on the west part of the study site near lower west Jeddore and in the middle of the 

study area near Owls Head Harbour (Figure 9). Cross-validation of the EBK model indicated the accuracy of the 

OC density predictions were ME=-0.27 kg/m3, and RMSE=4.21 kg/m3, suggesting low bias but also that the 

magnitude of prediction error was substantial compared to the range of the observed data (e.g., Figure 9). 375 
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Figure 9. Spatial interpolation of OC using EBK.  

The EBRK model prediction suggested high OC density in the west and south-west of the study area. A significant 

quantity of OC density was predicted eastward near Owls Head Harbour (Figure 10). The lowest OC density was 

predicted at the eastern part of the study area with quantities close to zero. Cross-validation indicated ME= -0.31 380 

kg/m3 and RMSE= 3.52 kg/m3, suggesting slightly higher bias than the EBK model, yet more accurate predictions. 

 

Figure 10. Spatial interpolation of OC using EBRK. 
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Table 5. Outputs from the EBRK model predicting OC density within the soft substrate. Model performance results 

are given by the ME= Mean error and RMSE= Root Mean Squared Error.  385 

No of 

simulation 

Model 

selected  

No of 

variables 

ME RMSE 

100 Exponential 5 -0.31 3.52 

4.5 Organic Carbon Estimates 

Estimates of average OC density, OC stock per pixel and total OC stock were calculated for all four scenarios 

(Table 6).  

 

Table 6. Calculations used to determine the total stock of OC in the mud/sand sediment type and the total stock of OC 390 
in the entire study area.  

 

 

 

 395 

 

 

 

Maps Average density of 

OC per grid cell 

(kg/m3)  

Average OC stock 

per grid cell (kg 

per m2) 

Total grid cells  
 

Total stock of OC in 

study area (t) 

Scenario 1: assuming 

homogenous seabed 

(entire study site) 

 3.62 (0.804 to 

14.31) 

1.45 (0.322 to 

5.72) 

5.58E+07 

 

 

 

 

80,901(17,949 to 

319, 335) 

 

Scenario 2: EBK 

method (entire study 

site) 

2.62 (1.08 to 6.57) 1.05 (0.432 to 

2.63) 

58,406 (24,092 to 

146,560)  

Scenario 3: assuming 

heterogenous seabed 

(soft substrate)  

3.62 (0.804 to 14.31) 1.45 (0.322 to 

5.72) 

1.13E+07 

  

 

16,437 (3,647 to 

68,882)   

Scenario 4: EBRK 

method (soft substrate) 

OC 

 1.45 (0 to 7.91) 0.57 (0 to 3.16) 6,475 (0 to 35,850) 
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5 Discussion 

Our study explores how high-resolution spatial models can improve carbon budget estimates. We have described 400 

a quantitative spatial model of hard and soft substrate in a continental shelf environment and determined four 

estimates of OC stock in the surficial sediments (top 10 cm): scaling to the entire study area (scenario 1), 

interpolating OC density using an EBK model (scenario 2), scaling to only the soft substrate (scenario 3), and 

refining 𝑚𝑂𝐶 within the soft substrate estimated from an EBRK model (scenario 4). The results demonstrate that 

as spatial models become more detailed, the OC stock estimation increases in accuracy but decreases the overall 405 

predicted OC stock.  

5.1 Evaluation of Sediment Map 

The sediment map effectively classified the hard and soft substrate (kappa=0.69) and significantly refined our 

understanding of the detailed distribution of the OC. Previous studies have applied similar machine learning 

modelling approaches with success (Stephens and Diesing et al., 2015; Misiuk et al., 2019; Mitchell et al., 2019; 410 

Epstein et al. 2023). Our results further demonstrate that this approach is suitable for mapping benthic substrates 

where high-resolution MBES data sets and suitable sediment ground-truthing are available. Other studies have 

found the highest POC concentrations are associated with gravelly mud, mud, and sandy mud (Diesing et al., 

2017). This agrees with our linear regression that areas of increased OC have a high mud content (Figure 4). The 

empirical relationship observed between mud content and OC strongly suggests the importance of using substrate 415 

maps to precisely estimate the stock of OC.  

5.2 Variability in Organic Carbon Stocks 

Differences in estimated OC stock suggest that the substrate map was an essential component to this study. 

Smeaton et al. (2021) note that the seafloor is commonly assumed homogenous in benthic OC studies. Shelf 

environments are inherently heterogeneous, and scaling up OC measurements where high-resolution mapping data 420 

are available offers an effective way of obtaining accurate estimates of OC in these areas (Snelgrove et al., 2018). 

To improve estimates and better identify how the ocean carbon cycle will be altered by climate change and possibly 

human activities, carbon studies should embrace the full complexity of the seafloor (Snelgrove et al., 2018; Epstein 

et al., 2023). Our study emphasizes the benefits of high resolution MBES data for such applications, and the need 

for additional coverage and collection of seafloor mapping data sets in coastal waters where coverage is currently 425 

limited (Mayer et al., 2018). 

The difference in the total mOC calculated based on the substrate map (16,437 and 6,475 t of OC) versus estimates 

in the absence of a map (80,901 and 58,406 t of OC) emphasizes that a spatial component to OC estimations is 

essential for carbon system models. This difference demonstrates the need to understand the presence of hard 

substrate at the seabed when calculating carbon stocks as suggested in recent broadscale carbon modelling studies 430 

(Epstein et al., 2023). Currently, global carbon models are oversimplifying carbon processes due to a lack of 

information and data on the complexity of the marine carbon cycle. For instance, previous studies have examined 
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carbon quantity at the surface of the oceans by analyzing phytoplankton activity using satellite imagery, since 

there is an assumption that carbon at the surface of the oceans correlates with areas of high carbon storage at the 

seafloor (Chase et al., 2022). This assumption ignores the complexity of carbon moving through the pelagic and 435 

benthic regions. Spatially continuous seafloor mapping data are a step towards improving accuracy in our 

estimation, which will enhance the ongoing investigations into the marine carbon cycle. 

Additionally, the resolution of the seafloor mapping data is important when modeling OC. For instance, by using 

a 2-by-2 m grid resolution we can interpolate the carbon within the soft substrate using EBRK models. Through 

the EBRK interpolation of carbon, the carbon stock (6,389 Mt of OC) was less than the estimates that assume a 440 

homogenous soft substrate. The EBRK method indicates that high resolution interpolated models of OC can help 

to further refine standing stock estimates and provide insight into where the carbon hotspots are within the study 

area.  

The estimates from our study were compared to the paper by Epstein et al. (2024) since they evaluated organic 

carbon stock in the entire Canadian continental margin, which included our study area. To compare these estimates, 445 

we clipped their OC density map to our study site and found that the mean OC density was 7.12 kg/m3 (3.89 kg/m3 

to 11.6 kg/m3). This mean OC density is within the range of scenarios 1, 3 (0.804 kg/m3 to 14,31 kg/m3), and 4 (0 

kg/m3 to 7.91 kg/m3) presented here. To compare the total OC stock for the study region, we adjusted the depth 

used by Epstein et al. (2024) from 0.3 m to 0.1 m by dividing their OC stock estimates by 3. The OC stock was 

161,552 t (88,183 t to 263,076 t), which is within the range of scenario 1 (17,949 t to 319, 335 t). One reason for 450 

the higher estimates in the study by Epstein et al. (2024) could be that no OC measurements within the study 

region were available in Epstein et al. (2024). Therefore, their model relied on OC data outside this area, which 

could lead to error. Furthermore, an underrepresentation of zero values in the response data, could lead to an 

overestimation of organic carbon standing stocks in their study, as zero values are unlikely to be predicted from 

model outputs. The comparison between both studies highlights the importance of sediment classification maps 455 

when estimating sedimentary OC stock; knowing the extent of bedrock can reduce the overestimation of OC 

content substantially. 

5.3 Organic Carbon Maps 

When comparing the EBK and the EBRK carbon maps, there were some similarities and differences. Both maps 

indicate a hotspot near Owls Head Harbour and low OC density on the eastern side of the study area. Yet, the EBK 460 

map shows a large area of high OC density on the west side of the study area, whereas the EBRK model has a 

smaller area slightly east of that location. These differences between the models emphasize that the EBK model 

could have some inaccurate interpolation due to the limited sediment samples in the study area. In contrast, the 

EBRK model was performed in the soft substrate, where all the samples were distributed, with fewer data gaps. 

The EBK model indicates that without high-resolution seafloor mapping data, you can obtain a general 465 

understanding of OC hotspots. However, the EBRK model can provide a more precise understanding of the spatial 

variability of OC density in the study site. 
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Both maps suggest high OC densities associated with locations further offshore (Figures 9 & 10) and within 

sediments containing increased amounts of silt and sand (Figures 7 & 8). Based on previous evaluations of the 

study area, inshore sediment is often comprised of bedrock with patchy sand and gravel, whereas further offshore, 470 

there is thick glacial marine mud over bedrock (Fisheries and Oceans Canada, 2019). This geomorphology could 

be the cause of higher OC density further offshore. The cause of increased OC content near Owls Head Harbour 

remains uncertain, lacking any aquaculture or substantial runoff from nearby agriculture. However, the ESI has 

substantial kelp and eelgrass beds; future research may explore relationships between these environments and OC. 

5.4 Limitations of the Study 475 

The lack of dry bulk density measurements for the OC stock calculations was a major limitation of this study. The 

use of a dry bulk density equation derived from a previous study could introduce error into calculations based on 

regional geological differences. Only two seabed sediment classes were mapped here, which does not represent 

the actual complexity of substrate types within the ESI. Preliminary Random Forest model runs that incorporated 

additional sediment classes showed high error and poor performance, likely due to the difficulty in accurately 480 

determining sediment types from a small number of subsea video samples. We emphasize challenges associated 

with differentiating complex substrate classes that have been noted in previous similar studies (e.g., Diesing et al., 

2020). 

We have also assumed here that there is no OC in the hard substrate. The hard substrate class included more than 

bedrock, with regions of mixed sediment such as gravelly mud, visible in the subsea video which could contain 485 

some OC content. Thus, improving the sediment classification map to include more complex substrates could 

improve the OC stock estimates further. The limited number of OC samples may have skewed the interpolation 

since the data points were not uniformly distributed within the areas of soft substrate. We therefore recommend 

higher sampling densities for future OC studies.  

These limitations highlight the challenges of carbon modelling on the seafloor and the need for further research 490 

into evaluating the correct procedure for utilizing sediment classification maps when predicting OC stock. 

Furthermore, there is persistent uncertainty surrounding how much surface particulate OC (POC) reaches the 

seafloor and the spatial distribution of the sinks of this material. Thus, future carbon studies should evaluate 

benthic-pelagic coupling and the impact it has on OC stocks.   

5.5 Future Implications of Organic Carbon Models 495 

Marine spatial planners are trying to manage the seabed in a sustainable manner and high resolution regional-scale 

OC mapping data could be a practical option to help identify vulnerable C stores and hotspots, and to determine 

how these areas may be altered due to environmental change and anthropogenic activities (Hunt et al., 2021). 

MPAs have been defined as regions that conserve marine resources, ecosystem services or cultural heritage (Mayr 

et al., 2010). High-resolution seafloor OC models could help redefine MPAs and allow them to incorporate areas 500 
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of high carbon stock. It is important to recognize sediments as long-term carbon sinks that provide climate 

regulation services.  

It is challenging to measure how human activities like bottom trawling are impacting the seabed and how they 

influence OC without an understanding of the natural processes of marine carbon cycling. Studies that examine 

OC spatially and its connections to seafloor composition are a crucial component to piecing together the natural 505 

marine carbon cycle, which can help determine if the amount of remineralization occurring from human activities 

will have a substantial impact on climate. Even with a relatively limited number of OC samples, this study 

demonstrates that high-resolution seafloor substrate maps and spatial OC models are critical to understanding the 

spatial heterogeneity of OC on the seafloor. 

6 Conclusions 510 

In this study, we generated a high-resolution sediment map that accurately captured the spatial complexity and 

distribution of broad sediment types in the ESI area. Through the four scenarios for estimating OC stocks, we 

demonstrated that seafloor sediments are a good high-resolution proxy that enable accurate estimation of OC stock 

in the area, and that information (or lack of information) regarding the spatial heterogeneity of the seafloor 

substrata substantially influences estimates of OC stock (ranging from 80,901 – 6,475 t of OC). These results 515 

emphasize that further research should explore high-resolution multibeam echosounder data in determining OC 

rich hotspots to improve our understanding of the role that benthic systems play as global carbon stores, and how 

management of these systems can contribute towards climate change management strategies and marine climate 

policy.  
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