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Abstract. While international climate policies now focus on limiting global warming well below 2 °C, or pursuing 1.5 °C, the

climate modeling community has not provided an experimental design in which all Earth System Models (ESMs) converge and

stabilize at the same prescribed global warming levels. This gap hampers accurate estimations based on comprehensive ESMs

of the carbon emission pathways needed to meet such agreed warming levels, and of the associated climate impacts under

temperature stabilization. Here, we apply the Adaptive Emission Reduction Approach (AERA) with ESMs to provide such5

simulations in which all models converge at 1.5 °C and 2.0 °C warming levels by iteratively adjusting their emissions. These

emission-driven simulations provide a wide range of emission pathways and resulting atmospheric CO2 projections for a given

warming level, uncovering uncertainty ranges that were previously missing in the traditional CMIP scenarios with prescribed
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greenhouse gas concentration pathways. Meeting the 1.5°C warming level necessitates a 40 % (model full range: 7 to 76 %)

reduction in multi-model mean CO2-forcing equivalent (CO2-fe) emissions from 2025 to 2030, a 98 % (57 to 127 %) reduction10

from 2025 to 2050, and a stabilization at 1.0 (-1.7 to 2.9) PgC yr-1 from 2100 onward after the 1.5 °C target is reached. For

the 2.0 °C warming level, CO2-fe emissions require a 47 % (8 to 92 %) reduction until 2050 and a stabilization at 1.7 (-1.5

to 2.7) PgC yr-1 from 2100 onward. The on-average positive emissions under stabilized global temperatures are the result of

a decreasing transient climate response to cumulative CO2-fe emissions. This evolution is consistent with a slightly negative

zero emissions commitment - initially assumed zero - and leads to an increase in the post-2025 CO2-fe emission budget by a15

factor 2.2 (-0.8 to 6.9) by 2150 for the 1.5 °C warming level and a factor 1.4 (0.9 to 2.4) for the 2.0 °C warming level compared

to its first estimate in 2025. Our simulations highlight shifts in carbon uptake dynamics under stabilized temperature, such as

a cessation of the carbon sinks in the North Atlantic and in tropical forests. On the other hand, the Southern Ocean and the

northern high-latitude land remain carbon sinks over centuries after temperatures stabilize. Overall, this new type of target-

based emission-driven simulations offers a more coherent assessment across climate models and opens up a wide range of20

possibilities for studying both the carbon cycle and climate impacts, such as extreme events, under climate stabilization.

1 Introduction

Climate goals outlined in international policies, such as the 2015 Paris Agreement (UNFCCC, 2015), primarily focus on global

warming targets. The Paris Agreement in particular aims to hold "the increase in the global average temperature to well below

2°C above pre-industrial levels" and to pursue efforts "to limit the temperature increase to 1.5°C above pre-industrial levels”.25

Global warming levels are chosen in international policies as they are often directly correlated to global and regional impacts

of climate change (IPCC, 2018; Seneviratne et al., 2016). Hence, each fraction of avoided warming reduces risks for humans

and ecosystems (IPCC, 2022).

The Coupled Model Intercomparison Project (CMIP) provides climate projections of Earth System Models (ESM) for the

21th century and beyond. These projections, however, follow an approach that poses challenges in estimating carbon emission30

pathways and budgets that are consistent with the goals of the Paris Agreement. In CMIP projections, ESMs have traditionally

been driven by prescribed pathways in the concentrations of CO2 and other radiative agents (O’Neill et al., 2016; Meinshausen

et al., 2020), although there is now a push towards more emission-driven scenario designs (Sanderson et al., 2023). For a

given greenhouse gas emissions or concentrations trajectory, each ESM simulates different global warming trajectories (e.g.,

Tebaldi et al., 2021, and see schematic in Fig.1), primarily due to the wide range in climate sensitivity or in the transient35

climate response (e.g. Zelinka et al., 2020; Meehl et al., 2020; Arora et al., 2020). The varying responses of ESMs has lead to

varying estimates for the cumulative CO2 emissions until a given global warming level is reached (Rogelj et al., 2016; Tokarska

et al., 2018). In addition, for the inverse problem, it is difficult to estimate the emission pathways that align with stabilizing

the climate at specific global warming levels. Instead, the emission pathways and budgets for temperature stabilization were

estimated with reduced-form models (Millar et al., 2017), Earth System Models of Intermediate Complexity (Steinacher et al.,40

2013; Matthews et al., 2017; Mengis and Matthews, 2020; Damon Matthews et al., 2021), or by the near-linear relationship
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between anthropogenic global surface warming and cumulative emissions suggested by ESMs (Allen et al., 2009; Matthews

et al., 2009; Zickfeld et al., 2009).

Figure 1. Schematic of the forward vs. backward modelling approach. Black lines indicate the same prescribed variable (emissions for

CMIP, global warming target for AERA) in all models. Red lines indicate the resulting range across models in simulated temperature, and

the resolved range in emissions in AERA.

Numerous studies have confirmed the near-linear response between global temperature increase and cumulative CO2 emis-

sions, with the slope of this relationship called the Transient Climate Response to Cumulative CO2 emissions (TCRE). The45

TCRE has been estimated from observational data (e.g. Millar and Friedlingstein, 2018) and model experiments, and has been

used to estimate the amount of cumulative emissions that could still be emitted before reaching a given global warming target

(Meinshausen et al., 2009; Rogelj et al., 2016, 2019). The amount of cumulative CO2 emissions up to the point of net zero CO2

emissions is known as the remaining carbon budget (RCB) for a fixed warming level. The RCB from the beginning of year

2023, for example, has been estimated to be 250 GtCO2 (68 PgC) for a 50 % chance of maintaining the global temperature50

below 1.5 ºC of warming, with its uncertainty range being 27 to 136 PgC, for an 83 %-17 % chance (Forster et al., 2023). For

the 2.0 ºC target, the RCB ranges from 218 to 545 PgC. The uncertainty of the RCB is large due to uncertainties in the TCRE,
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climate-carbon feedbacks, climate response to zero emissions, unrepresented feedbacks, future warming from non-CO2 agents

(Rogelj et al., 2019), and pathway dependencies (Millar et al., 2017).

As the uncertainties in the TCRE, feedbacks, and future warming from non-CO2 agents will unlikely be significantly reduced55

in the near future, an iterative and regular update of the RCB is necessary to ensure that the latest scientific understanding is

included and to ensure policies can be judiciously implemented to avoid exceeding the given global warming levels. Through

an adaptive process aligned with the “pledge and review” mechanism of the Paris Agreement, the RCB and emission path-

ways might be regularly updated at each stocktake period based on the best available science (Otto et al., 2015). The iterative

approach ensures that the emission pathway remains in line with the warming target and adaptively adjusts to uncertainties60

in the evolution of the climate response, such as the potential warming or cooling at near-zero CO2 emissions (Zero Emis-

sions Commitment - ZEC - MacDougall et al., 2020), and the response to mitigation rates in non-CO2 radiative agents.

Such adaptive approaches have been proposed and tested with reduced complexity models running forward from present day,

and offer promising potential. Goodwin et al. (2018a) introduced the “Adjusting Mitigation Pathways” method using a cli-

mate box model. However, limitations, including idealized emission trajectories, disregarding non-CO2 agents in TCRE and65

RCB calculations, and challenges in reaching the target within the uncertainty range of ± 0.25 ºC by 2300, hinder its real-

world applicability. Further approaches which do not make use of an adaptive RCB include backwards modelling approaches,

like temperature tracking using models of intermediate complexity (EMICs; Matthews and Caldeira (2008); Zickfeld et al.

(2009, 2013); Mengis et al. (2018)) or employing impulse-response functions with a simple climate model (Millar et al., 2017)

to convert a smooth temperature trajectory into an emission pathway. In contrast, the recently developed Adaptive Emission70

Reduction Approach (AERA), validated with the Bern3D-LPX Earth System Model of Intermediate Complexity (Terhaar

et al., 2022a, 2023), offers a less idealized approach and addresses several limitations inherent in previous approaches. AERA

provides smoother emission pathways, incorporates non-CO2 agents, always stabilizes at the warming targets within ±0.2 °C,

and can also be applied to run simulations that temporarily overshoot the warming target. However, as of now, AERA has not

yet been implemented in comprehensive fully coupled ESMs.75

Here, we implement the AERA introduced by Terhaar et al. (2022a) across a range of fully-coupled CO2 emission-driven

Earth System Models. This new Adaptive Emission Reduction Approach Model Intercomparison Project (AERA-MIP) pro-

vides projections that stabilize surface temperature to the same warming level. The AERA-MIP framework enables estimations

of the remaining carbon budget, compatible emission pathways, and the ocean and land carbon cycle response to those path-

ways within scenarios of stabilized warming levels at 1.5 ºC or 2 ºC, which we present in this study. Other potential applications80

of AERA-MIP will be addressed in the Conclusions.

2 Methods

The detailed protocol for the simulations of the AERA-MIP is provided in Frölicher et al. (2022). The protocol is a slightly

modified version from the method originally proposed by Terhaar et al. (2022a). The AERA code is distributed as a python
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module openly available under https://github.com/Jete90/AERA, with a guided documentation and examples. Below, the pro-85

tocol is summarized before introducing the participating models, simulations, and carbon stock analysis.

2.1 Adaptive emission reduction approach - AERA

The goal of the AERA is to quantify successive future trajectories of CO2-forcing equivalent (CO2-fe) emissions that stabilize

the global surface air temperature (GSAT) at a predetermined level (Terhaar et al., 2022a). The concept of CO2-fe emissions is

used to consider the emissions of various radiative forcing agents and precursors using a unified metric. CO2-fe emissions of90

all non-CO2 agents represent the quantity of CO2 emissions that would cause the same radiative forcing trajectory as emissions

from these non-CO2 agents (Jenkins et al., 2018; Allen et al., 2018; Smith et al., 2021). Thus, the CO2-fe metric is well

suited for comparing emissions from different agents in the context of temperature stabilization pathways. AERA achieves

the temperature stabilization at a predetermined warming level by estimating future CO2-fe emissions based on the estimated

TCRE-fe (the transient climate response to cumulative CO2-fe emissions). The TCRE-fe in turn is derived from simulations of95

past annual GSAT, past fossil fuel and land-use change CO2 emissions, and CO2-fe emissions from non-CO2 forcing agents

calculated from their radiative forcing estimates (Jenkins et al., 2021).

The AERA consists of three steps, which are repeated every five years, mirroring the stocktaking mechanism implemented

in the Paris Agreement (Terhaar et al., 2022a).

1. AERA estimates the anthropogenic warming ∆T from the simulated GSAT time series (relative to 1850-1900). The past100

anthropogenic warming is here estimated by applying a 31-year running mean with a linear extrapolation for the last

15 years, assuming constant warming rate based on the last 31 years. This is in contrast to the original AERA method,

which employs an impulse response function on radiative forcing and temperature estimates to determine anthropogenic

warming (Otto et al., 2015). The simple running mean method was applied here as it yields more robust results in cases

where the model’s radiative forcing is unknown (as is the case for most ESMs), and after reaching the temperature target.105

2. The anthropogenic warming calculated in step 1 is then divided by the cumulative CO2-fe emissions since 1850 to

determine the TCRE-fe. Using this TCRE-fe metric, we compute the amount of CO2-fe emissions that can still be

emitted before reaching the target temperature. This remaining CO2-fe emission budget, referred to as REB, is derived

by dividing the remaining warming until the temperature target is reached (∆Tremaining) by the TCRE-fe value:

REB =
∆Tremaining

TCRE-fe
(1)110

3. The REB from step 2 is then distributed in the future using a cubic polynomial function. The parameters of the function

are chosen to limit an overshoot in temperature and maintain minimal year-to-year changes in CO2-fe emissions (see

Terhaar et al. (2022a) for details). In contrast to Terhaar et al. (2022a) and to prevent large oscillations in the emissions

in the ESMs when the warming levels are reached, we modified the minimum and maximum length (both now variable

and depending on the REB and the annual emissions) of the cubic polynomial that distributes the CO2-fe emissions over115

the future years.
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2.2 Earth System Models

Thirteen models have participated in the AERA-MIP: ten fully coupled Earth System Models (ACCESS-ESM1-5, CESM2, EC-

Earth3-CC, NASA-GISS-E2-1-G-CC, GFDL-ESM2M, GFDL-ESM4, IPSL-CM6-LR-ESMCO2, MIROC-ES2L, MPI-ESM1-

2-LR and NorESM2-LM), two models of intermediate complexity (Bern3D-LPX and UVic-ESCM-2.10), and one atmosphere-120

ocean general circulation model coupled to a carbon cycle emulator (HadCM3-FaIR2, see Appendix A for a description of the

configuration). Nine of the fully-coupled ESMs have participated in the sixth phase of the coupled model intercomparison

project (CMIP6), and GFDL-ESM2M has participated in CMIP5. Table A1 lists the models, their abbreviation used in this

paper, as well as the corresponding references, the simulated time period and the number of ensemble members. A summary of

their components has been already provided in several multi-ESM studies (e.g., Séférian et al., 2020; MacDougall et al., 2020;125

Arora et al., 2020; Canadell et al., 2021).

Small initial condition ensembles were provided by two participating ESMs to estimate the uncertainty associated with

internal variability (Table A1). EC-Earth provided a three-member and GFDL-ESM2M a five-member ensemble. Ideally, larger

ensemble simulations for every ESM would have been necessary to properly quantify the internal variability of each model

(Lehner et al., 2020). However, even the small number of ensemble members available here provide a first-order estimate of130

internal variability.

ACCESS-ESM1-5 is the only model that does not converge to the target before 2200. The model most likely does not

converge due to a strong mismatch between the estimate of non-CO2 radiative forcing used in the AERA to estimate CO2-fe

emissions (from the RCP/SSP database, see below) and the non-CO2 radiative forcing simulated in the model based on the

prescribed atmospheric non-CO2 radiative agents. Hence, results from ACCESS were excluded from subsequent multi-model135

statistics but are still shown for transparency in Fig. 2.

2.3 Simulations

The simulations of the AERA-MIP are performed until at least 2150 (except for HadCM3-FaIR2 until 2100) and up to 2300

to allow for enough time to reach the temperature target and stabilize global surface warming (Table A1). Simulations have

been conducted for both the 1.5 °C and 2.0 °C temperature targets. To remove biases in simulated warming over the historical140

period relative to observations, we use the concept of a relative temperature target (Millar et al., 2017; Goodwin et al., 2018a;

Terhaar et al., 2022a). Under this concept, the remaining allowable warming in 2020 is first estimated from observations. In a

second step, the AERA adds this observation-based remaining allowable warming to the models’ anthropogenic warming in

2020 to calculate the absolute temperature target in each model (see Frölicher et al., 2022). Thus, each model estimates the

emission trajectory for the same remaining allowable warming in 2020, which is here estimated to be 0.28 ºC for the 1.5 ºC145

target and 0.78 °C for the 2.0 ºC target. These values were derived from the observation-based estimated warming of 1.22 °C

in 2020 (Terhaar et al., 2022a).

All simulations branch off an emission-driven simulation (esm-hist) over the historical period following the CMIP6 proto-

col. After the end of the CMIP6 historical period in 2014, fossil fuel CO2 emissions follow observed emissions until 2020
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(Friedlingstein et al., 2020; Le Quéré et al., 2021) and projected emissions from the Nationally Determined Contributions150

(NDCs; Climate Action Tracker: https://climateactiontracker.org/global/temperatures/, last accessed December 2021) from

2021 to 2025. Starting at the end of year 2025, fossil-fuel CO2 emissions prescribed to the model are obtained every five years

from AERA (see below and schematic in Fig. B1) by subtracting CO2-fe emissions from prescribed non-CO2 radiative agents

and land use land cover change from the AERA-derived total CO2-fe emission curve. Non-CO2 agents as well as land use and

land cover change are prescribed as in the SSP1-2.6 scenario after 2015. This low emission high mitigation scenario is often155

used in related climate stabilization approaches (e.g. Millar et al. (2017); Mengis et al. (2018)). An exception is the CMIP5-

type GFDL-ESM2M which follows the CMIP5 protocol for the historical period as well as the RCP2.6 scenario instead of the

SSP1-2.6 scenario for the non-CO2 forcing agents and land use and land cover change. After 2100, no further changes occur in

non-CO2 forcing agents, land use and land cover. A schematic is provided in Fig. B1, summarising the feedback loop between

the AERA module and the ESM during the post-2025 period of the simulations.160

As the AERA calculates the CO2-fe emissions, it requires information about emissions from non-CO2 forcing agents

(Enon-CO2-fe) and CO2 emissions from land use and land cover change (ELUC ; referred to as land use change emissions

for simplicity from now on) to estimate the past TCRE-fe, on top of the past fossil fuel CO2 emissions (EFOS). Moreover,

the future EFOS prescribed to the model after each stocktake are calculated as the difference between the CO2-fe emission

curve (Etotal-fe) from Step 3 of AERA, and the estimated future CO2-fe emissions from land use change and non-CO2 forcing165

agents:

EFOS = Etotal-fe −ELUC −Enon-CO2-fe (2)

As most models do not directly output the radiative forcing of non-CO2 agents (required to derive Enon-CO2-fe), we estimate

this time series from the radiative forcing given by the RCP/SSP database for both the historical period and SSP1-2.6 scenario.

Some models, however, have provided an estimate of the simulated effective radiative forcing for all non-CO2 radiative agents170

(see Table A2 and Fig. A1). For these models, the internally calculated effective radiative forcing estimates were used to derive

the CO2-fe emissions from the non-CO2 forcing agents (Smith et al., 2021). Similarly, some models (see Table A2 and Fig.

A2a) have conducted additional simulations to estimate ELUC (Lawrence et al., 2016; Liddicoat et al., 2021). In that case, the

model-specific ELUC is prescribed to AERA instead of the default ELUC estimate stemming from the Bern3D-LPX model

that was scaled to align with the Global Carbon Budget estimates from 1850 to 2020. The default Enon-CO2-fe and ELUC time175

series as well as the model-specific emissions for those who were able to estimate them are shown in Figs. A1 and A2a.

Although the future ELUC and Enon-CO2-fe are prescribed in AERA to enable the extraction of future EFOS as input to the

models (Fig. B1), the future CO2-fe emission curve Etotal-fe is largely insensitive to the chosen land use and non-CO2 forcings

(see tests in Terhaar et al. (2022a)).

Further details on the configuration of the AERA simulations in the models are provided in Appendix A.180
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2.4 Remaining emission budget over time

While the TCRE is commonly considered approximately constant, recent studies suggest a potential variability in TCRE when

CO2 emissions are reduced, owing partly to a non-zero ZEC (Frölicher and Paynter, 2015; Steinacher and Joos, 2016; Nicholls

et al., 2020; MacDougall et al., 2020). This indicates that the REB originally estimated at the end of 2025 may evolve over

time, with the additional effect of potential non-linearities in the response of non-CO2 forcing agents. To illustrate the temporal185

evolution of the REB from a fixed starting point, we reconstruct the CO2-fe emission budget from beginning of year 2026

(EB2026) at each stocktake by summing the REB calculated at the end of the stocktake year (tst) and the already emitted

CO2-fe emissions between 2026 and that year:

EB2026(tst) = REB(tst) +

tst∫

2026

Etotal-fe(t)dt (3)

EB2026(2025) is by definition REB(2025).190

2.5 Distribution of carbon in the Earth System

Within individual ESMs, all sources and sinks of the carbon mass balance are known and we can write:

EFOS = GATM + SOCEAN + (SLAND −ELUC) (4)

EFOS are the prescribed global fossil fuel CO2 emissions during the historical period and calculated by AERA post 2025.

GATM indicates the simulated atmospheric CO2 growth rate in PgC yr-1 by using the conversion factor of 2.123 PgC ppm-1195

(Enting et al., 1994). SOCEAN is the net ocean carbon sink derived from the CO2 flux into the ocean (CMIP6 variable fgco2).

SLAND-ELUC denotes the net CO2 flux into land and is derived from the net biosphere production (CMIP6 variable nbp). It

includes the gross land carbon sink SLAND minus emissions from land use and land cover change, ELUC .

For the eight models that estimate their ELUC term, we can quantify the gross land carbon sink SLAND (Figure A2 and

Appendix A), by adding the two diagnostics nbp + ELUC . Thus, by rearranging Equation 4, we can separate net sources and200

sinks of CO2:

EFOS + ELUC = GATM + SOCEAN + SLAND (5)

As opposed to earlier studies (Liddicoat et al., 2021; Koven et al., 2022), atmospheric CO2 is freely evolving and not prescribed,

whereas EFOS is prescribed and does not need to be diagnosed.

From Equation 5, we derive the cumulative airborne (CAF ), ocean-borne fraction (COF ) and land-borne fraction (CLF ):205

CAF =
∫

GATM∫
(GATM + SOCEAN + SLAND)

(6)

COF =
∫

SOCEAN∫
(GATM + SOCEAN + SLAND)

(7)
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CLF =
∫

SLAND∫
(GATM + SOCEAN + SLAND)

(8)210

with the
∫

sign representing the time integral from 1850. Here we use GATM +SOCEAN +SLAND instead of EFOS +ELUC

as the denominator of the cumulative fractions to avoid minor budget closure errors. These errors are negligible in most models,

represent maximum a few percents (not shown), in which case they are very likely due to missing diagnostics.

3 Temperature, CO2-fe emission and atmospheric CO2 pathways

3.1 Convergence towards the temperature target215

The AERA effectively stabilizes the simulated GSAT around the target warming level within an uncertainty of ±0.2 ºC (Fig.

2a,b). The uncertainty of ±0.2 ºC corresponds to the uncertainty with which anthropogenic warming can be determined from

observations (Haustein et al., 2017; Jenkins et al., 2022a). Only the IPSL model temporarily leaves the 1.5 ºC uncertainty

range and MIROC very shortly the 2.0 ºC uncertainty range. In the 1.5 ºC simulation (Fig. 2a), the multi-model mean GSAT

anomaly (black thick line) enters the target temperature uncertainty range in 2026, i.e., the year the first AERA period begins.220

The temperature first peaks at 1.43 ºC in 2043 (min-max model range: 1.20 ºC to 1.57 ºC), temporarily drops to 1.40 ºC (1.23

ºC to 1.50 ºC) in 2069, and stabilizes around 1.44 ºC (1.25 ºC to 1.64 ºC) between 2100 and 2150. In the 2.0 ºC simulation

(Fig. 2b), the multi-model mean GSAT anomaly enters the uncertainty envelope in 2061, and stabilizes at around 1.90 ºC (1.77

ºC to 2.09 ºC) between 2100 and 2150.

The convergence to the temperature target here shows that the AERA approach works for both intermediate complexity225

models, as shown previously (Terhaar et al., 2022a), as well as for fully-coupled ESMs. This is the case despite differences

in ELUC and Enon-CO2-fe prescribed to the AERA framework and in the models themselves. An exception is the ACCESS

model that only converges to the respective targets by the late 22nd century after an overshoot of 0.3-0.5 °C (larger overshoot

for the 1.5 °C target; see Methods for more details).

3.2 Compatible CO2-fe emission pathways230

For the 1.5 ºC warming target, CO2-fe emissions decrease strongly and immediately after 2025 for all models, albeit with a large

inter-model spread (Fig. 2c; Table 1). By 2030, CO2-fe emissions drop to 8.1 (min-max range: 3.1 to 11.9) PgC yr-1, a 40 % (7

% to 76 %) decline compared to 2025 levels of 13.7 (11.0 to 18.9) PgC yr-1. During this strong decline phase, CO2-fe emissions

reach a maximum reduction of -2.0 (-0.4 to -3.6) PgC yr-2. Afterwards, the emissions reach a temporary minimum at nearly

zero in 2050 (0.2 PgC yr-1; range: -3.6 to 5.0 PgC yr-1), corresponding to a 98 % (57 % to 127 %) decline from 2025 levels,235

before peaking at 1.9 (-0.2 to 4.2) PgC yr-1 in 2077. This bounce in the CO2-fe emission curve could be explained by the very

rapid mitigation of non-CO2 forcing agents in the early decades of the SSP1-2.6 scenario, causing slightly negative forcing-

equivalent emissions approximately from 2030 to 2100 (Enon-CO2-fe, see Fig. A1). Because this decline in Enon-CO2-fe is not
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accounted for in the first estimate of the REB at the end of year 2025, the emission budget is re-evaluated and increases in the

stocktake years around 2050 relative to its 2025 estimate (Fig. 4a), leading to the on-average increase in emissions between240

2050 and 2077. Subsequently, emissions decrease again to 1.0 (-1.7 to 2.9) PgC yr-1 between 2100 and 2150 when global mean

temperatures have been stabilized. Until the end of the 22nd century, CO2-fe emissions remain slightly positive on average. The

positive emissions but large model spread during the temperature stabilization phase are consistent with the overall negative but

highly uncertain multi-decade zero emissions commitment (i.e., global surface temperature change after setting CO2 emissions

to zero and keeping emissions at zero thereafter) highlighted by MacDougall et al. (2020) and Jenkins et al. (2022b) across245

a range of EMICs and ESMs. In 4 out of 13 models (GFDL-ESM4, IPSL, MPI, UVic), negative CO2-fe emissions are not

necessary to stabilize at the 1.5 °C warming level.

Achieving the 2.0 ºC target also requires strong CO2-fe emission reductions, albeit less drastic than for the 1.5 ºC target. By

2030, multi-model mean CO2-fe emissions decrease to 13.0 (10.9 to 17.1) PgC yr-1, a 5.2 % (-1 % to 16 %) reduction from

2025 levels. By 2050, they further drop to 7.2 (1.3 to 11.4) PgC yr-1, a 47 % (8 % to 92 %) decrease compared to 2025, and250

stabilize at 1.7 (range: -1.5 to 2.7) PgC yr-1 between 2100 and 2150. The maximum reduction rate between 2026 and 2100

is -0.7 (range: -2.3 to -0.1) PgC yr-2. Only two models, EC-Earth and CESM2, exhibit temporary negative CO2-fe emissions

before 2150.

Several models simulate decadal-scale oscillations in emissions trajectories after reaching the temperature targets. These

fluctuations partly stem from the challenge faced by AERA’s anthropogenic warming estimation, utilizing an extended 31-year255

running mean, in distinguishing entirely between multi-decadal internal variability and anthropogenic trends in atmospheric

temperature. In particular in NorESM2, large multi-decadal temperature variations due to Atlantic Meridional Overturning

Circulation (AMOC) decline and subsequent recovery have been shown to occur when emissions are phased out (Schwinger

et al., 2022). However, these oscillations lead to temperature fluctuations that remain within the ± 0.2°C range around the

temperature target, except for a small undershoot simulated in the IPSL model, which takes a few decades to recover towards260

the warming target. This slow evolution of GSAT could be partly related to the large low-frequency internal variability exhibited

in this model (Bonnet et al., 2021).

Beyond 2200, a time period for which only three models provide results, CO2-fe emissions necessary for maintaining

temperature stabilization are still projected to evolve slightly. For example, GFDL-ESM2M shows a slower reduction in CO2-

fe emissions during the 21st century compared to other models due to its low TCRE and a negative temperature response to zero265

emissions on decadal timescales. However, by the mid-22nd to 23rd century, CO2-fe emissions in this model become slightly

negative and will remain so for several centuries in response to a time-varying ZEC and continued warming in this model

on multi-centennial timescales under zero emissions (Frölicher et al., 2014; Frölicher and Paynter, 2015). On the other hand,

the Bern and MIROC models simulate continuous (albeit small) positive emissions on these timescales, reflecting continued

cooling in these models under zero CO2 emissions (negative ZEC) on multi-centennial timescales (MacDougall et al., 2020).270

This time dependency of the ZEC response following a period of CO2 emissions erodes the value of the remaining budget

concept as a fixed estimate beyond the first several decades around net zero.
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The simulated uncertainty range in CO2-fe emission pathways across the models is not solely caused by model differences

but also by internal variability (as diagnosed by the range across individual ensemble members of one model; Table 1, Figs.

3b and B2b). The internal variability uncertainty range diagnosed here represents a lower bound of the true internal variability275

uncertainty from ESMs as only a few ensemble members are available. Across the 3 ensemble members of EC-Earth and 5

ensemble members of GFDL-ESM2M, the min-max range in CO2-fe emissions in 2050 is 3.9 PgC yr-1 for the 1.5 °C target and

0.7 PgC yr-1 for the 2.0 ºC target, corresponding to 45 % and 7 % of the multi-model range, respectively. These numbers rise to

66 % and 53 % between 2100 and 2150, respectively. The inter-member spread decreases during the temperature stabilization

period. For example, in the 2.0 ºC target ensemble by GFDL-ESM2M, the inter-member range decreases from 2.7 PgC yr-1 in280

2100-2150 to 1.1 PgC yr-1 in 2250-2300 (Fig. B2b). As for the maximum reduction rate in CO2-fe emissions between 2026

and 2100, the GFDL-ESM2M ensemble members range from -1.3 to -0.1 PgC yr-2 for the 2.0 ºC target, corresponding to 56

% of the spread across all models.
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Figure 2. Simulated temperature anomaly, CO2-fe emissions, fossil fuel CO2 emissions and atmospheric CO2 concentration for the 1.5ºC

and 2.0ºC targets. Panels a) and b) display the 31-year running mean of the global surface air temperature (GSAT) anomaly, aligned with

the observed value in 2020. Panels c) and d) illustrate CO2-fe emissions and panels e) and f) show fossil fuel CO2) emissions calculated

by AERA. Panels g) and h) show the simulated atmospheric CO2 mixing ratios. The multi-model mean, excluding the ACCESS model, is

displayed by the black thick line, with the grey shading indicating the min-max spread. The ensemble mean is shown for models that have

several ensemble members. The vertical dotted line at year 2026 marks the beginning of the AERA simulations.
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Figure 3. Comparison between model uncertainty and a lower bound for internal variability uncertainty in simulated temperature, CO2-fe

emissions and atmospheric CO2 pathways for the 2.0 ºC target. Similar to Fig. 2b,d,h, but the panels show the multi-model min-max range in

grey, and the inter-member min-max range of EC-Earth (3 members) in yellow and GFDL-ESM2M (5 members) in blue. The inter-member

ensemble ranges are centered on the multi-model mean. For the 1.5 ºC target, refer to Fig. B2.
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3.3 Fossil fuel emissions

Fossil fuel emissions (EFOS , see Equation 2) closely track the evolution of the CO2-fe curve (Fig. 2e,f). In the 1.5 ºC scenario,285

the multi-model mean emissions remain slightly positive throughout the simulation, reaching a minimum in 2046 of 0.9 (-2.7

to 6.6) PgC yr-1, peaking in 2069 at 1.7 (-1.0 to 5.4) PgC yr-1, and gradually declining towards zero by the end of the 22nd

century. Although the multi-model mean suggests that EFOS can remain positive if emission reductions are fast and strong,

negative emissions may still be necessary as five models simulate negative EFOS , reaching -4.5 to -1.6 PgC yr-1 before 2050.

In the 2.0 ºC simulation, the multi-model mean reaches 8.2 (1.4 to 11.9) PgC yr-1 in 2050, stabilizes at 1.3 (-1.7 to 3.2)290

PgC yr-1 between 2100 and 2150, and slightly declines thereafter. In this scenario, only two models (CESM2 and EC-Earth)

simulate non-negligible negative fossil fuel emissions before 2150, reaching -1.5 to -2.0 PgC yr-1. A temporary increase in

EFOS occurs post 2025 in the 2.0 ºC simulation due to rapid reductions in non-CO2 emissions (Enon-CO2-fe) as prescribed in

the SSP1-2.6 scenario (Fig. A1).

The uncertainty across models found here in residual emissions compatible with temperature stabilization appears to be295

in agreement with the results from Jenkins et al. (2022b), who diagnosed compatible emissions with halting warming af-

ter 1pctCO2 and 1.5ºC-compatible CO2 emission-driven experiments. They calculate these emissions based on a theoretical

framework (defining the RAZE parameter - rate of adjustment to zero emissions), results from the ZECMIP simulations, and a

climate emulator. In their scenario in which non-CO2 forcing agents follow SSP1-1.9 and CO2 emissions linearly decrease to

zero between 2021 and 2050, the best estimate of CO2 emissions compatible with halting warming after 2050 is given at 0.66300

PgC yr-1 (2.2 GtCO2 yr-1), with a 5th-95th percentile range of -2.2 to 1.9 PgC yr-1. In their formulation of the multi-decade

ZEC response, this equates to a small negative RAZE parameter whose uncertainty spans zero. On the other hand, Mengis

et al. (2018) find that net negative fossil fuel CO2 emissions are necessary to stabilize global surface temperature at 1.5 ºC in

an observation-constrained carbon cycle perturbed-parameter ensemble of the UVic model. In their study, they used RCP2.6

non-CO2 forcing extended to the year 2200, which in total causes positive radiative forcing between the first time the temper-305

ature is reached in 2055, and the period of stabilisation until 2200. They discuss that this is a likely cause for the net-negative

CO2 emissions.

3.4 Consequences for atmospheric CO2

Since the simulations are CO2 emission-driven, atmospheric CO2 evolves dynamically (Fig. 2g,h). The multi-model mean

atmospheric CO2 reaches 420 ppm in 2020, slightly higher than the observed 412 ppm (Lan et al., 2023). In both temperature310

target simulations, the multi-model mean exhibits a peak and subsequent decline behavior. Atmospheric CO2 peaks at 438 ppm

in 2031 for the 1.5 ºC scenario and at 499 ppm in 2070 for the 2.0 ºC scenario, subsequently decreasing to 410 ppm in the

1.5 ºC scenario and to 480 ppm in the 2.0 ºC scenario by 2150. Thus, atmospheric CO2 should start to decrease around 2030

to reach the 1.5 ºC target, according to the multi-model mean. Some models do not simulate such a smooth peak and decline

behavior, and simulate in addition a (temporary) rise in atmospheric CO2 due to a temporary rise in CO2 emissions during or315

after the decline.
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The different CO2 emissions and the strength of the land and ocean carbon sinks lead to large differences in atmospheric

CO2. The model min-max range in atmospheric CO2 of 53 ppm in 2025 originates from different ocean and land carbon sinks

and ELUC emissions during the historical period (Hoffman et al., 2014) as all models have identical prescribed EFOS (Fig. 2e;

note HadCM3-FaIR2 differs due to the emissions being diagnosed and not prescribed, see Appendix A). After 2025, the spread320

in atmospheric CO2 is also driven by the divergent EFOS pathways and thus strongly increases, as EFOS evolves also with

the model-dependent AERA calculation every five years. The model min-max range expands to 105 ppm (1.5 ºC simulation)

and 55 ppm (2.0 ºC) by 2050, 125 ppm (1.5 ºC) and 139 ppm (2.0 ºC) by 2100, and 123 ppm (1.5 ºC) and 141 ppm (2.0 ºC) by

2150.

Part of these large uncertainties may stem from internal variability (Fig. 3c and B2c). GFDL-ESM2M’s 5 ensemble members325

show a min-max range of 54 ppm (1.5 ºC) and 49 ppm (2.0 ºC) by 2100, approximately 43 % and 40 %, respectively, of the

multi-model range. EC-Earth’s 3 ensemble members represent 29 % and 27 % of the model range in 2100. GFDL-ESM2M’s

range tends to decrease over the 23rd century, reaching 24 ppm (1.5 ºC) and 41 ppm (2.0 ºC) by 2300. Sensitivity simulations

with the Bern model, covering the IPCC AR6 likely range of TCRE, exhibit an inter-member spread in atmospheric CO2

levels that is as large as the inter-model spread, persisting during stabilization (not shown). Thus, while internal variability330

certainly plays an important role by 2100, differences in TCRE among the models remain the primary driver for the substantial

model uncertainties in simulated atmospheric CO2. Additional processes may be at play in explaining the model spread, not

explained by differences in TCRE, such as the sensitivity to evolving non-CO2 agents and the representation of land use land

cover changes in the models. For example, the MIROC model has a low TCRE and negative ZEC (MacDougall et al., 2020),

and yet it exhibits the lowest levels of atmospheric CO2 already at the end of the historical period (Fig. 2g,h).335

4 The evolving remaining emission budget

AERA calculates the simulated remaining CO2-fe emission budget (REB) every five years based on the remaining allowable

warming and the TCRE-fe relationship (see Equation 1 in Methods). At the beginning of year 2026, the start of the AERA

period, the multi-model mean REB is 99 (47 to 204) PgC for the 1.5 ºC target and 409 (248 to 581) PgC for the 2.0 ºC target

(Table 2). These REBs translate to 7 (3 to 14) years of CO2-fe emissions sustained at mean 2020 levels (14.1 PgC yr-1) for the340

1.5 ºC target and 29 (18 to 41) years for the 2.0 ºC target before reaching the respective temperature target. Based on the model

distribution, the REB from the beginning of year 2026 for a 50 % chance of staying below 1.5 ºC is 93 PgC and for staying

below 2.0 ºC is 412 PgC. For a 66 % chance, the REB decreases to 84 PgC for the 1.5 ºC target and to 372 PgC for the 2.0 ºC

target.

To compare these model-based estimates to other REB estimates from beginning of year 2021, we combine the CO2-fe345

cumulative emissions of 70 PgC on average from 2021 to 2025 with the REB from beginning of year 2026, which yields a

mean REB of 169 (113 to 264) PgC from the start of 2021 for the 1.5 ºC target and 479 (309 to 640) PgC for the 2.0 ºC target.

Our model-estimated REB range encompasses the AERA-based REB calculations from observations of 167 PgC for 1.5 ºC

and 472 PgC for 2.0 ºC (Terhaar et al., 2022a). The model’s estimated REB also aligns with observation-constrained estimates
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by Jenkins et al. (2021) of 128-237 PgC for an 83 %-17 % probability of limiting warming to 1.5 ºC (also based on total CO2-fe350

emissions).

Table 2. Remaining CO2-fe Emission Budget (REB) from beginning of year 2026, calculated at the first stocktake (end of year 2025;

EB2026(2025)), and recalculated and averaged between 2100 and 2150, taking into account the emissions actually seen by the models since

2026 (EB2026(2100-2150); see Eq. 3).

Models
REB at first stocktake

EB2026(2025) (PgC)

EB2026 averaged between stocktakes 2100-2150

EB2026(2100-2150) (PgC)

1.5 ºC 2.0 ºC 1.5 ºC 2.0 ºC

CESM2 100 345 6 298

EC-Earth

(3 members)

81

(52 ; 97)

339

(322 ; 359)

78

(16 ; 142)

310

(230 ; 365)

NASA-GISS 132 470 112 444

GFDL-ESM2M

(5 members)

204

(178 ; 244)

581

(534 ; 615)

353

(260 ; 423)

778

(678 ; 889)

GFDL-ESM4 111 407 475 756

IPSL

(2 members)

60

(58 ; 62)

248

(240 ; 256)

412

(386 ; 438)

585

(561 ; 609)

MIROC 86 478 259 599

MPI 104 416 416 721

NorESM2 47 442 -40 677

Bern

(72 members)

86

(24 ; 174)

374

(236 ; 554)

118

(-133 ; 396)

418

(109 ; 792)

UVic-ESCM 120 439 284 549

HadCM3-FaIR2

(29 members)

58

(-12 ; 148)

369

(230 ; 606)

133

(-89 ; 276)

491

(242 ; 718)

17th, 33rd, 50th, 67th, 83rd

percentiles
60, 84, 93, 106, 121 344, 372, 412, 440, 471 69, 116, 196, 302, 413 404, 474, 567, 619, 725

Mean (min;max) 99 (47 ; 204) 409 (248 ; 581) 217 (-40 ; 475) 552 (297 ; 778)

As the TCRE-fe evolves over time (see Fig. B3), so does the REB (Fig. 4), by definition (the two time series are almost

perfectly anti-correlated). In our simulations, the multi-model mean REB as estimated at the beginning of year 2026 (EB2026)

is smaller than the emissions that are actually emitted until temperature stabilization. Or in other words, the actual EB is larger

than the REB estimated at the beginning of 2026 (Table 2). Between 2100 and 2150, the multi-model mean estimate of EB2026355

(calculated as the sum of the REB in the respective year and the already emitted emissions between 2026 and that year, see

Methods for details) reaches 217 (-40 to 475) PgC for 1.5 ºC and 552 (297 to 778) PgC for 2.0 ºC. These updated emission
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budgets correspond to 15 years (-3 to 34) of sustained mean CO2-fe emissions at 2020 levels for 1.5 ºC and 39 years (21 to

55) for 2.0 ºC. Based on the model distribution, this results in a remaining emission budget from beginning of 2026 of 116

PgC (474 PgC) for a 66 % chance of staying below 1.5 ºC (2.0 ºC). Thus, the simulated remaining emissions until temperature360

stabilization are 2.2 times larger than estimated at the beginning of 2026 for the 1.5 ºC target and 1.4 times larger for 2.0 ºC. This

increase in the EB2026 between the beginning of the AERA period and the end of the simulations corresponds to a decrease

in the TCRE-fe (Fig. B3), which is qualitatively consistent with a slightly negative multi-decade zero emissions commitment

(and RAZE parameter) (MacDougall et al., 2020; Jenkins et al., 2022b) and the resulting residual positive emissions found on

average across models during the stabilization phase (Fig. 2). However, this relationship does not hold for all models, pointing365

to other dominant processes that may be at play, such as the evolution of physical feedbacks, heat uptake by the ocean, carbon

uptake by the ocean and land sinks, and the fraction of radiative forcing explained by CO2 compared to non-CO2 agents (e.g.

Williams et al., 2017, 2020).

When summed from 1850 to 2150, the total CO2-fe emissions amount to 1063 (750 to 1461) PgC for the 1.5 ºC target and

1380 (1087 to 1785) PgC for the 2.0 ºC target. The lower end of the multi-model distribution encompasses the estimate of 817370

PgC, respectively 1090 PgC found by Mengis and Matthews (2020) under a 1.5 ºC and 2.0 ºC stabilisation scenario with the

UVic model.

Similar to residual emissions compatible with temperature stabilization, the spread across models in EB2026 and its evolution

is very large. For the 1.5 °C target, this range spans from a decrease of a factor of -1.2 to an increase of a factor of 6.9 between

2025 and 2100-2150. The largest decrease in absolute value is simulated by CESM2, for which EB2026 is initially estimated375

at 100 PgC, but decreases drastically to 6 PgC by 2100-2150 for the 1.5 ºC target. The largest increase is simulated by GFDL-

ESM4, for which EB2026 is initially 111 PgC but increases sharply to 475 PgC. For the 2 °C target, the factor spans from 0.8

to 2.4.

This large range in EB2026 reflects the uncertainties in the non-linear evolution of the TCRE, in the response to non-CO2

forcing agents but also in internal climate variability. The range in EB2026, when estimated at the end of year 2025, across380

the ensemble members of GFDL-ESM2M, represents 41 % (24 %) of the total model range for the 1.5 ºC (2.0 ºC) target (Fig.

B4). For EC-Earth, the ensemble range amounts to 28 % (11 %) of the total model range. These differences are predominantly

caused by differences in GSAT anomaly across members. If a perfect fit to GSAT for anthropogenic warming existed, which

could remove all internal variability, these differences would vanish. This shows how sensitive the emission budget is to the

estimate of global warming (Tokarska et al., 2020). When EB2026 is re-estimated later in the simulations and averaged between385

2100 and 2150, the GFDL-ESM2M range is 41 % (44 %) of the model range and the EC-Earth ensemble amounts to 24 % (31

%).

As the evolution in the remaining emission budget is crucial for achieving the Paris Agreement goals, we here test if this

evolution can be explained by standard climate metrics, such as the (effective) Equilibrium Climate Sensitivity (ECS), the

Transient Climate Response (TCR) and the (CO2-only) Transient Climate Response to cumulative CO2 emissions (TCRE).390

These metrics, reported by various studies (Arora et al., 2020; Meehl et al., 2020; MacDougall et al., 2020) are analyzed

alongside the 2025 estimate of the TCRE-fe including all CO2-fe emissions. For the 2.0 ºC target, there is no significant
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Figure 4. Remaining CO2-fe Budget recalculated from the beginning of year 2026 at each stocktake (denoted as EB2026 in the text) in the

1.5 ºC (a) and 2.0 ºC (b) target simulations. The ensemble mean is shown for models that have several ensemble members. The multi-model

mean is displayed by the black thick line and the grey shading covers the min-max spread.

relationship between those metrics and the differences in EB2026 between the 2100-2150 average and the first estimate at

the end of 2025 (Fig. 5). The IPSL model stands out as being a highly sensitive model (Boucher et al., 2020), thus with a

very low initial estimate of the EB2026 compared to other models. However, as emissions rapidly decrease during the AERA395

simulations, the linearity of the TCRE-fe relationship breaks in this model and positive emissions become necessary to keep

warming the model at the target temperature. This could be due either to large negative ZEC (which needs to be confirmed

by dedicated ZECMIP simulations), and/or to strong sensitivity to non-CO2 greenhouse gases which are heavily mitigated

in the SSP1-2.6 scenario. When the IPSL model is removed from the analysis, a clearer relationship emerges. Models with

higher sensitivity (e.g., high ECS/TCR/TCRE/TCRE-fe) tend to exhibit a lower increase or even a slight decrease in the400

EB2026, while less sensitive models show a more substantial increase. It is noticeable that the relationship between the different

configurations of the Bern model (small pink dots) aligns particularly well with the slope of the linear regression between

models excluding IPSL (red line). This relationship aligns with previous findings illustrating a positive correlation between the

zero emissions commitment (implying decreases in EB over time) and TCR or TCRE across multiple models (MacDougall

et al., 2020). Additionally, this correlation is evident between the zero emissions commitment and ECS within parameter-405

perturbed ensembles of a single model (MacDougall et al., 2020), as also shown here for the Bern model. Nevertheless, this

relationship is not true for all models as shown in Fig. 5 and the range remains large. For example, NASA-GISS has a low
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sensitivity but a decreasing EB2026. As pointed out by MacDougall et al. (2020), the evolution of the surface temperature and

thus the evolving amount of emissions needed to stabilize warming is a balance between large quantities controlled by heat

and carbon dynamics, and thus not expected to scale particularly well with these climate metrics.410

Figure 5. Simulated changes in the EB2026 between the estimate averaged over 2100-2150, and the first estimate at the end of year 2025,

plotted against ECS (a), TCR (b), CO2-only TCRE (c) and TCRE-fe at the end of year 2025 (d). Here only the 2.0 ºC simulation is shown.

Results for the 1.5 ºC simulation are displayed in Fig. B5. The black line indicates the linear regression including all models, and the red

line excluding the IPSL model. The 9 parameter-perturbed configurations of the Bern model are displayed by the small pink dots but the

regression is calculated based on the ensemble mean (larger pink dot).

5 Where does the carbon go?

5.1 Global response

Atmosphere, ocean and land carbon fluxes exhibit peak and decline patterns, albeit with distinct differences between all three

sinks (Fig. 6). In this section, our emphasis is on the 2.0 ºC scenario. However, the analysis for the 1.5 ºC scenario is shown

in the Appendix (Fig. B6), and the numbers for the cumulative emissions and sinks are reported for both scenarios in Tables 3415

and 4.

The atmospheric CO2 growth rate, GATM , initially mirrors fossil fuel emissions, reaching 4.7 (3.5 to 5.7) PgC yr-1 in 2020

(Fig. 6a), consistent with the observation-based estimate of 5.0 ± 0.2 PgC yr-1 (Friedlingstein et al., 2022). As emissions

decrease, GATM deviates from fossil fuel emission trends, turning negative and reaching -0.5 (range: -2.7 to 1.7) PgC yr-1

between 2100-2150 due to continued carbon uptake by the ocean and land. The ocean remains a consistent carbon sink, with420

multi-model mean uptake decreasing from 2.9 (2.2 to 3.3) PgC yr-1 in 2020 to 1.2 (0.2 to 1.9) PgC yr-1 by 2100-2150 (Figs.

6c). Conversely, the net land carbon sink (SLAND-ELUC) undergoes a transition from a net source to a sink between 1850-

1950. The net land carbon sink peaks at 2.1 (0.5 to 4.1) PgC yr-1 in 2020 and remains a net sink or neutral until 2200 (Fig. 6g).
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Figure 6. (a) Atmospheric CO2 growth rate (GATM ), (c) net ocean sink (CO2 flux into the ocean; SOCEAN), (e) gross land sink (SLAND),

(g) net land sink (CO2 flux into land; SLAND - ELUC), cumulative (b) airborne, (d) ocean-borne and (f) land-borne fractions, in the 2.0 ºC

simulation. The multi-model mean is displayed by the black thick line and the grey shading covers the min-max spread. Apart from the

cumulative fractions, all time series have been smoothed with a 31-year running mean to remove short-term internal variations for visual

purposes. The numbers are reported in the text without the 31-year average to be comparable with the Global Carbon Budget estimates.
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Notably, the land sink reaches a neutral state faster than the ocean sink, even temporarily shifting to a small carbon source by the

end of the 22nd century. The simulated ocean and land carbon uptake in 2020 align well with the observation-based estimates:425

3.0 ± 0.4 PgC for ocean carbon uptake and 2.0 PgC yr-1 (SLAND = 2.9 ± 1.0 PgC yr-1 minus ELUC = 0.9 ± 0.7 PgC yr-1) for

land carbon uptake (Friedlingstein et al., 2022). Among the models providing land use change emissions estimates, the gross

land carbon uptake SLAND emerges as a larger sink than the net land carbon flux SLAND−ELUC (Fig. 6e), trending towards

neutrality or even displaying a source tendency on longer timescales in GFDL-ESM2M. SLAND in NASA-GISS, which lies

at the lower end of the model range, is small because its sensitivity to CO2 fertilization is damped: while the model simulates430

enhanced photosynthetic uptake of CO2, its vegetation structure remains fixed and the extra carbon is instead allocated to the

soil where it can still be respired back to the atmosphere. Also, it does not capture regrowth from secondary forest. These

together lead to a relatively smaller cumulative land-borne fraction (Fig. 6d) and larger cumulative ocean-borne fraction by

compensation (Fig. 6d).

The net ocean carbon flux initially has a narrow spread across models during the historical period, with a min-max range of435

0.8 PgC yr-1 over 2000-2020. However, this spread notably widens after 2025, reaching 1.5 PgC yr-1 over 2040-2060 and 1.7

PgC yr-1 over 2100-2150. Pre-2025 differences among models are mainly due to various representations of ocean circulation

and biogeochemistry in ESMs (Terhaar et al., 2022b). Post-2025, the widening spread results also from differing emission

pathways. In contrast, the land carbon flux exhibits a much wider spread during the historical period, reaching 4.0 PgC yr-1

over 2000-2020. This range only increases slightly after 2025 to 5.0 PgC yr-1 over 2040-2060, reverting to 4.0 PgC yr-1 over440

2100-2150. The substantial spread in land carbon flux, not entirely depicted in Fig. 6 due to a 31-year average for visual clarity,

arises from the diverse representations of land carbon processes across models (Canadell et al., 2021).

From 1850 to 2020, 294 (236 to 354) PgC of the cumulative CO2 emissions from fossil fuel (462 PgC, Table 3) and land use

change (170 PgC) stayed in the atmosphere, while the ocean has taken up 173 (128 to 208) PgC, and the land absorbed 168

(79 to 254) PgC (Table 4). This partitioning translates to a cumulative airborne fraction of 0.48 (0.41 to 0.53), an ocean-borne445

fraction of 0.27 (0.24 to 0.31) and a land-borne fraction of 0.26 (0.16 to 0.33). These values are similar to observation-based

estimates for 1850-2020 of 0.26 for the ocean sink and 0.30 for the land sink (Friedlingstein et al., 2022). Over the simulation

period, the cumulative airborne fraction steadily decreases alongside declining emissions after 2025, signifying the gradual

uptake of anthropogenic carbon by the ocean and the land (Fig. 6b,d,f). By the year 2150, the cumulative airborne fraction

decreases to 0.34 (0.26 to 0.42), with an average of 416 (284 to 354) PgC of anthropogenic carbon still remaining in the450

atmosphere. Concurrently, the ocean-borne fraction consistently rises, emerging as the dominant fraction by the end of the

simulations. In 2150, the ocean-borne fraction increases to 0.36 (0.30 to 0.45), surpassing both the land-borne fraction of 0.30

(0.13 to 0.44) and the airborne fraction. The cumulative ocean sink by 2150 amounts to 426 (330 to 556) PgC, while the land

has taken up 370 (113 to 540) PgC. Nonetheless, substantial variability persists among model estimates for each fraction.

5.2 Regional distribution455

The continuous ocean carbon uptake until the end of the simulations is limited to specific regions (Fig. 7a,c,d). While the

ocean carbon sink increases almost everywhere from the early 20th century to the mid-21st century, it only continues to take up
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Table 3. Cumulative EFOS and ELUC emissions in 2020 and 2150.

Models EFOS (PgC) ELUC (PgC)

2020 2150 1.5ºC 2150 2.0ºC 2020 2150

CESM2 460 522 800 210 242

EC-Earth

(3 members)
460

563

(509 ; 629)

760

(672 ; 841)
311 334

NASA-GISS 467 511 841 42 40

GFDL-ESM2M

(5 members)
452

839

(747 ; 919)

1240

(1166 ; 1373)
309 425

GFDL-ESM4 467 925 1227 / /

IPSL

(2 members)

465

(465 ; 465)

841

(839 ; 843)

1049

(1033 ; 1065)
72 92

MIROC 461 641 966 / /

MPI 467 845 1146 204 293

NorESM2 461 491 1088 / /

Bern

(72 members)
459

604

(356 ; 867)

899

(615 ; 1259)
110 128

UVic 472 765 1021 103 173

Mean

(min-max)

462

(452 ; 472)

685

(490 ; 925)

1002

(759 ; 1239)

170

(41 ; 310)

215

(215 ; 425)

carbon after temperature stabilization at the end of the 21st century in the Southern Ocean and the low latitude regions close

to the equator. Especially the Southern Ocean around 60ºS remains a prominent and enduring carbon sink post temperature

stabilization, a consistent feature across models (no stippling in Fig. 7a,d). Cumulatively, the Southern Ocean south of 30ºS,460

representing 35 % of the ocean area, takes up 42 % (35 % to 46 %) of the global ocean carbon uptake by 2020, rising to 46 %

(35 % to 57 %) by 2150 in the 2.0ºC simulation shown here. This region remains a sink until 2300 for the models that have run

long simulations (GFDL-ESM2M, MIROC, Bern, not shown). Another strong present-day carbon sink (panel c), the subpolar

North Atlantic, ceases to absorb carbon when the surface temperature stabilizes (panel d). The subpolar North Atlantic north

of 40ºN (and using the northern boundary of Fay and McKinley (2014)) represents 3 % of the ocean area, but takes up 7 % (3465

% to 11 %) of global ocean carbon uptake by 2020, a fraction that decreases to 5 % (1 % to 11 %) by 2150. The prevalence of

the Southern Ocean carbon sink is consistent with results from CMIP5 and CMIP6 simulations for the historical period and for

idealized 1pctCO2 experiments (Frölicher et al., 2015; Terhaar et al., 2021; Williams et al., 2023). The pronounced long-term

steady carbon sink in the Southern Ocean can be attributed to the high carbon concentration feedback and efficient surface

to deep export of anthropogenic carbon shown in earlier studies (Tjiputra et al., 2010; Roy et al., 2011). In the mid-latitude470
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Table 4. Cumulative GATM , SOCEAN and SLAND sinks in 2020 and 2150. SLAND values can only be diagnosed for models which have

provided an estimate of their simulated ELUC (see Methods).

Models GATM (PgC) SOCEAN (PgC) SLAND (PgC)

2020 2150 1.5ºC 2150 2.0ºC 2020 2150 1.5ºC 2150 2.0ºC 2020 2150 1.5ºC 2150 2.0ºC

CESM2 308 172 284 166 257 330 207 383 492

EC-Earth

(3 members)

354

(348 ; 360)

231

(205 ; 262)

318

(269 ; 363)

209

(207 ; 210)

328

(304 ; 347)

391

(362 ; 411)

220

(214 ; 227)

345

(332 ; 354)

392

(376 ; 400)

NASA-GISS 272 204 369 160 292 400 80 57 113

GFDL-ESM2M

(5 members)

309

(299 ; 313)

375

(340 ; 401)

582

(532 ; 661)

197

(196 ; 198)

451

(426 ; 478)

557

(540 ; 582)

254

(250 ; 261)

435

(400 ; 467)

521

(504 ; 553)

GFDL-ESM4 331 392 550 206 426 509

IPSL

(2 members)

256

(256 ; 256)

295

(294 ; 296)

370

(362 ; 378)

123

(123 ; 123)

318

(314 ; 322)

378

(374 ; 382)

128

(128 ; 128)

312

(311 ; 313)

404

(399 ; 409)

MIROC 236 212 349 171 316 406

MPI 299 330 475 166 348 433 214 468 540

NorESM2 292 140 416 183 271 424

Bern

(72 members)

290

(282 ; 301)

241

(137 ; 347)

375

(245 ; 557)

160

(152 ; 166)

300

(227 ; 387)

398

(299 ; 507)

122

(118 ; 126)

191

(121 ; 263)

254

(175 ; 340)

UVic 293 349 488 161 371 455 124 213 245

Mean

(min-max)

294

(236 ; 354)

267

(139 ; 354)

416

(284 ; 354)

173

(128 ; 208)

335

(256 ; 450)

426

(330 ; 556)

168

(79 ; 254)

300

(56 ; 468)

370

(113 ; 540)

subtropics, some models even simulate less carbon uptake or outgassing due to the accumulation of anthropogenic carbon near

the surface layers (Couespel and Tjiputra, 2024; Rodgers et al., 2020).

The land carbon uptake also persists only in particular regions during temperature stabilization (Fig. 7b,e,f). Some strong

and robust carbon sink regions in the present era (2011-2030), particularly in tropical areas like South America, central Africa

and part of Indonesia, experience a complete cessation of carbon uptake after 2100. However, strong terrestrial carbon uptake475

persists in the Northern Hemisphere during temperature stabilization, including regions like Central America, temperate and

boreal forests in Eastern North America and Eurasia.

Compared to the ocean carbon uptake, the land carbon uptake has locally a larger uncertainty across models, although much

of this uncertainty is located in regions where no carbon exchange is found during the pre-industrial period (e.g. desertic

regions), and is thus not indicated by stipples on the maps (see caption in Fig. 7).480

The land and ocean carbon sink patterns look qualitatively similar as previous results based on low emission scenarios

(Canadell et al., 2021). The novelty of these simulations is a quantification of these sinks for a given temperature target and

the representation of carbon cycle dynamics beyond the 21st century under strong mitigation scenarios. For example, here we
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Figure 7. Multi-model mean ocean (top, SOCEAN ) and land (bottom, SLAND −ELUC ) carbon flux anomalies in the 2.0ºC simulation

relative to 1850-1900. In panels (a) and (b) the fluxes are zonally-integrated and smoothed with a 31-year running mean, while panels (c)-(f)

display maps averaged between 2011-2030 and 2100-2150. Stipples indicate where less than 80 % of the models agree on the sign of the

anomaly. Stippling is not shown where carbon fluxes during the 1850-1900 period are lower than 2.5 gC m-2 yr-1.

show that the North Atlantic ocean sink vanishes during and after stabilization while the Southern Ocean remains an active sink.

The divergence in carbon uptake between these regions can be attributed to distinct ocean circulation patterns. The Southern485

Ocean is the region where old, anthropogenic CO2-poor circumpolar deep waters are being upwelled (e.g. Mikaloff Fletcher

et al., 2006), even during global surface climate stabilization. This upwelling results in continuous carbon uptake due to the

positive air-sea gradient in anomalous pCO2 (Frölicher et al., 2015). On the other hand, when global temperature stabilizes, the

Atlantic Meridional Overturning Circulation (AMOC) is expected, at least in some models, to recover after an initial decrease

(e.g. Manabe and Stouffer, 1994; Sigmond et al., 2020; Frölicher et al., 2020; Schwinger et al., 2022; Bonan et al., 2022), a490

phenomenon associated with a recovery of deep convection in the subpolar North Atlantic, enhanced mixing of anthropogenic

CO2-rich waters previously sequestered at depth, and a consequently lower ocean carbon uptake in this region. A stronger

AMOC would also transport more warm surface waters with high anthropogenic carbon concentrations to the high latitudes

where the anthropogenic carbon would be outgassed during cooling (Siegenthaler and Joos, 1992; Völker et al., 2002; Tjiputra

et al., 2010), a phenomenon already simulated for the present time in the Arctic Ocean while atmospheric CO2 is still increasing495

(Terhaar et al., 2020). The exact drivers of the vanishing Atlantic Ocean carbon sink under temperature stabilization will be the

subject of future dedicated studies using the AERA-MIP simulations.
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6 Discussion

The AERA-driven simulations achieve temperature stabilization with realistic CO2 emission pathways across an ensem-

ble of comprehensive Earth System Models. However, applying the AERA with ESMs is more complex than traditional500

concentration-driven simulations and comes with its caveats and limitations.

We robustly quantify a decrease in CO2-fe emissions towards very low emissions for the selected 1.5 ºC and 2.0 ºC warming

targets. To which extent reductions in CO2-fe emissions are realized by reductions in emissions of fossil fuel CO2 vs other

agents depends on scenario choices. We opted for the low emission high mitigation scenario SSP1-2.6 for all greenhouse

gases except CO2. While the choice does not impact initial estimates of the REB and CO2-fe emission pathways (Terhaar505

et al., 2022a), it does affect fossil fuel CO2 emissions, atmospheric CO2 and the land and ocean carbon sinks (Terhaar et al.,

2023). Thus, the quantitative estimates presented here for the carbon distribution and atmospheric CO2 offer a likely pathway

under low emissions and high mitigation but may not encompass all uncertainties. These estimates may change if alternative

trajectories for non-CO2 radiative agents and land use change are pursued in the future. Nevertheless, qualitative statements

remain robust, such as the necessity to substantially reduce fossil fuel CO2 emissions for temperature stabilization and the510

continuous carbon uptake by the Southern Ocean even under temperature stabilization.

The choice of the scenario for non-CO2 radiative agents can also lead to unwanted trajectories of the CO2 emission curve

if the prescribed non-CO2 scenario is not ideal for the chosen temperature target. In the case of the 2°C target, CO2 emissions

increase from 2025 to 2030 and start to decrease strongly afterwards (Fig. 2f). The temporal increase in fossil fuel CO2

emissions is a result of a strong decline in CO2-fe emissions from declining non-CO2 radiative agents under SSP1-2.6, which515

exceeds the necessary total CO2-fe emission decline calculated by the AERA in 2025. As a result, fossil fuel CO2 emissions

increase to compensate for the strong decline in CO2-fe emissions from declining non-CO2 radiative agents. Such unwanted

effects could be avoided by adjusting the SSP1-2.6 scenario so that mitigation efforts of non-CO2 agents and land use start later,

as already applied by Millar et al. (2017), or simply by choosing the best fitting non-CO2 SSP scenario for each temperature

target. Another possibility which might be offered in the future when ESMs develop an emission-driven mode for non-CO2520

agents is to scale the CO2 and non-CO2 emissions, as already applied in Terhaar et al. (2022a) with an EMIC.

The non-CO2 and land use change emissions do not only add uncertainties to the carbon budget but also add uncertainties

to the AERA at each stocktake. At each stocktake, the AERA needs information about the CO2-fe emissions from non-CO2

radiative agents and from land use change. Unfortunately, most models do not provide emissions from land use change or the

non-CO2 radiative forcing from which the corresponding CO2-fe emissions can be estimated. As a result, the CO2-fe emissions525

from land use change and from non-CO2 agents provided to AERA are estimated from another source (see Methods), which

lead to discrepancies between the real CO2-fe emissions in the model and the estimated CO2-fe emissions seen by the AERA.

This discrepancy affects the estimate of the TCRE-fe and the future CO2 emission curve, which is estimated as the difference

between the AERA-derived CO2-fe emission curve and the CO2-fe emissions from land use change and non-CO2 radiative

agents. Fortunately, the simulations provided here with an ensemble of ESMs demonstrate that the re-evaluation of the TCRE-530

fe and the future CO2-fe emission curve every 5 years allows all models but one to reach the temperature target without any
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larger divergence (Fig. 2). For future simulations, possibly within CMIP7, diagnosing each models’ effective radiative forcing

of non-CO2 agents and land use change (Smith, 2020; Zelinka et al., 2023) would likely lead to even more precise results, as

shown in more detail for the IPSL model in Appendix A. This is particularly important for the aerosol radiative forcing, which

is the most uncertain component, with important repercussions for the ability to reach climate goals (Watson-Parris and Smith,535

2022).

Not only the implementation of the AERA with ESMs introduces uncertainties, but the ESMs themselves also have limita-

tions. Potential feedbacks such as thawing permafrost (MacDougall and Friedlingstein, 2015; MacDougall et al., 2015; Burke

et al., 2017; Gasser et al., 2018; Lowe and Bernie, 2018; MacDougall, 2021), peat land area and carbon evolution (Müller

and Joos, 2021), ocean circulation changes due to ice melt from Greenland or Antarctica (Bronselaer et al., 2018; Lago and540

England, 2019; Li et al., 2023), feedbacks between warming, nitrous oxide and methane (Stocker et al., 2013; Battaglia and

Joos, 2018; IPCC, 2021), and, on longer timescales than considered in this study, feedbacks associated with the potential melt-

ing and disintegration of polar ice sheets are currently missing from most ESMs. These feedbacks would potentially reduce

the emission budget over time and potentially make negative emissions over long time periods necessary to maintain a stable

temperature (Palazzo Corner et al., 2023).545

7 Conclusions

This study presents multi-ESM emission-driven projections compatible with internationally-agreed climate goals. We showed

that the Adaptive Emission Reduction Approach (AERA) proposed by Terhaar et al. (2022a) works not only for EMICs but

also for more complex, higher-resolution fully-coupled ESMs. The temperature targets are reached even when the simulated

non-CO2 radiative forcing and land use change emissions are not fully known, with the exception of one ESM.550

Unlike the standard CMIP scenarios that simulate different warming levels for the same prescribed CO2 concentration

or emission pathways (Tebaldi et al., 2021), all models converge to a given warming level. The convergence to a common

warming level with varying emissions now allows to quantify the diversity of model responses in terms of emission pathways

compatible with these warming levels, as well as resulting atmospheric CO2 levels, carbon cycle responses, and their effect

on ecosystems, such as ocean acidification (Terhaar et al., 2023). While globally integrated results are qualitatively similar to555

previous results with EMICs (Terhaar et al., 2022a, 2023; Goodwin et al., 2018b), the ESM simulations here allow to explore

a more quantitative and regional focus, to better quantify uncertainties, and especially to quantify the importance of internal

climate variability.

To limit warming to 1.5 ºC or 2.0 ºC (i.e., an allowable warming of 0.28 ºC and 0.78 ºC from year 2020 forward), drastic

reductions in greenhouse gas emissions are necessary. If such immediate and drastic emission reductions of around -1 to -2560

PgC yr-2 were implemented, both CO2-fe and fossil fuel CO2 emissions may even be allowed to stay positive (on the order

of 1 PgC yr-1 upon stabilization). However, the amount of allowed continuous CO2-fe emissions after the temperature is

stabilized is strongly model-dependent, with a large spread found across ESMs. The large spread is mainly caused by varying

zero emissions commitments and responses to non-CO2 forcing agents across the model ensemble. Importantly, the negative
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multi-model mean zero emissions commitment might have a bias towards low values because of important feedback processes565

missing in most ESMs (e.g., the release of carbon from thawing permafrost).

The spread in the zero emissions commitment in combination with a non-constant TCRE-fe also results in an initially biased

estimate of the remaining emission budget. On average across models, the REB that was estimated in 2025 could change by

a factor of 1.4 to 2 (Table 2). The direction of change mainly depends on the ZEC, with a negative ZEC allowing for more

emissions. Here, the REB was on average underestimated in line with a slightly negative multi-model mean ZEC (MacDougall570

et al., 2020). However, there are large uncertainties around the ZEC and hence the development of carbon and emission budgets

with time.

A few ensemble simulations pointed to a significant role of internal variability, potentially explaining 30 % to over 50 % of

the inter-model spread in compatible emissions, atmospheric CO2 levels and emission budgets. The origin of this uncertainty

partly lies in the estimate of the anthropogenic warming, which in practise differs among members and can lead to large575

differences in the emission budgets, as also pointed out by Tokarska et al. (2020). This indicates necessary caution when

interpreting remaining budgets estimates, and planning for a margin of error in mitigation pathways to avoid overshooting the

warming target.

In addition to the "relative target" simulations presented here (i.e., same amount of remaining warming for all models after

2020 based on observations), the AERA can also be used to make simulations with an "absolute target" (i.e. all models are580

set up to warm by the same amount relative to 1850-1900) or with an overshoot. Absolute target simulations allow to explore

climate impacts of global surface temperature stabilization at different warming levels across Earth System Models (King et al.,

2021), which will be the focus of future dedicated studies. Temperature overshoot simulations with the AERA allow to define

the magnitude and length of the overshoot by varying temperature targets over time, e.g., a first temperature target of 2.0 ºC

until 2050 followed by a step-wise reduction of that target every 5 years to 1.5 ºC in 2100 (Terhaar et al., 2022a).585

The AERA framework proposed here only accounts for targets in global surface temperature, aligned with international

climate agreements. However, other climate change impacts, such as ocean acidification, sea level rise, interior ocean changes,

terrestrial productivity, regional extremes, pose important risks for ecosystem and human societies. Extending the AERA to

other targets, and towards avoiding crossing some of the Earth’s planetary boundaries (Rockström et al., 2009), as proposed

by Steinacher et al. (2013); Seneviratne et al. (2016); Avrutin et al. (2023), would enable to constrain the emission budget and590

pathways towards a safer world.

The success of the AERA-MIP simulations across a large group of modeling centres shows that the AERA can be used

in subsequent model intercomparison projects, such as CMIP7, with many applications for these temperature stabilization

simulations.

Code and data availability. The AERA code is distributed as a python module openly available under https://github.com/Jete90/AERA, with595

a guided documentation and examples. The AERA-MIP model outputs used in this study are available under Silvy et al. (2024). The Python

code used to produce the figures of this paper will be made openly available upon final publication.
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Appendix A: Further details on the AERA configuration of the participating models

All participating models are listed in Table A1. Both HadCM3-FaIR2 and MPI performed the AERA simulations with a

previous version of the AERA code using an impulse response function to the radiative forcing to estimate anthropogenic600

temperature instead of the 31-year running mean (as in Terhaar et al. (2022a)). The HadCM3-FaIR2 configuration is described

in details in Lee et al. (in review). Briefly, it uses the Hadley Centre Coupled Model version 3 (HadCM3, Collins et al.

(2001)), with 29 members from a physics perturbed parameter ensemble (Sparrow et al., 2018). Because HadCM3 runs in

concentration-driven mode and does not solve the carbon cycle, it is coupled to the Finite amplitude Impulse Response (FaIR)

version 2 (Leach et al., 2021) at each AERA stocktake. The FaIR parameters are chosen to fit each member of the HadCM3605

ensemble based on the 1881-2025 simulation period. The carbon cycle component of FaIR is used both to derive the CO2-

fe emissions from non-CO2 agents, and to convert the CO2 emissions given by AERA to CO2 concentration to prescribe to

HadCM3 every 5 years.

Model full name Abbreviation References Simulated years Ensemble members

ACCESS-ESM1-5 ACCESS Ziehn et al. (2020) 1850-2200 1

CESM2 CESM2 Danabasoglu et al. (2020) 1850-2200 1

EC-Earth3-CC EC-Earth Döscher et al. (2022) 1850-2169 3

GFDL-ESM2M GFDL-ESM2M Dunne et al. (2012, 2013) 1861-2300 5

GFDL-ESM4 GFDL-ESM4 Dunne et al. (2020) 1850-2150 1

IPSL-CM6-LR-ESMCO2 IPSL Boucher et al. (2020) 1850-2150 2

MIROC-ES2L MIROC Hajima et al. (2020) 1850-2300 1

MPI-ESM1-2-LR MPI Mauritsen et al. (2019) 1850-2150 1

NASA-GISS-E2-1-G-CC NASA-GISS Kelley et al. (2020); Ito et al. (2020);

Miller et al. (2021); Lerner et al. (2024)

1850-2150 1

NorESM2-LM NorESM2 Seland et al. (2020); Tjiputra et al. (2020) 1850-2200 1

Bern3D-LPX Bern Ritz et al. (2011) 1850-2300 72

UVic-ESCM-2.10 UVic Mengis et al. (2020) 1850-2200 1

HadCM3-FaIR2 HadCM3-FaIR2 Lee et al. (submitted) 1881-2100 29
Table A1. Earth System Models of full and intermediate complexities participating in AERA-MIP.

The time series prescribed to AERA (default or model-estimated ELUC and Enon-CO2-fe) are listed in Table A2. To estimate

their own simulated ELUC , most models compare land-air carbon fluxes between two concentration-driven simulations follow-610

ing historical+SSP1-2.6 CO2 concentrations (1850-2100), one with land use change activated and another without (Lawrence

et al., 2016; Liddicoat et al., 2021). This difference is then smoothed with a 21-year running mean to remove large interannual

variations. Eight models prescribed their internally-estimated ELUC to AERA. The NASA-GISS model underestimates ELUC

as it estimated the emissions from land use change due to crop cover change only, but did not include the transport of crop
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harvest from land, and did not include the deforestation component of ELUC . UViC used an estimate based on the carbon flux615

from vegetation burning only. The time series of all ELUC estimates prescribed to AERA are shown in Fig. A2a.

Model ELUC provided to AERA Enon-CO2-fe provided to AERA

ACCESS-ESM Model estimate Default

CESM2 Default Default

EC-Earth Model estimate Default

GFDL-ESM2M Default Model estimate

GFDL-ESM4 Default Model estimate from GFDL-ESM2M

IPSL-ESM
Default (r1i1p1f1)

Model estimate (r1i1p2f1)

Default (r1i1p1f1)

Model estimate (r1i1p2f1)

MIROC-ES2L Default Default

MPI-ESM Model estimate Default

NASA-GISS Model estimate Model estimate

NorESM2 Default Default

Bern3D-LPX Model estimate Prescribed from SSP1-2.6

UVic-ESCM Model estimate Prescribed from SSP1-2.6

HadCM3-FaIR2 Model estimate Model estimate
Table A2. AERA forcings prescribed to each model.

In the analysis of carbon distribution (Equation 5) presented in the paper, we corrected and re-estimated some of these

ELUC time series, to obtain the best estimate possible of the internally-simulated ELUC . These time series are shown in Fig.

A2b. GFDL-ESM2M performed a posteriori the concentration-driven simulations with and without land use change activated,

providing its estimate of ELUC for the carbon analysis from 1861 to 2100. We then extended the time series to 2300 by620

applying a linear decay to zero emissions from 2100 to 2150, and maintaining the emissions at zero afterwards. We similarly

corrected the MPI estimate between 2100 and 2150 by linearly decaying the emissions to zero. Dedicated UVic simulations

were additionally performed to better estimate ELUC in the AERA simulations for both targets. IPSL was also able to diagnose

online the simulated ELUC emissions within the AERA simulations. For CESM2, we were able to estimate ELUC for the

historical period, using the available concentration-driven hist and hist-nolu simulations available on the Earth System Grid625

Federation and the method described above (Lawrence et al., 2016). However, the extension for the SSP1-2.6 scenario was not

available. Nonetheless, the ELUC term during the historical period matched the default ELUC forcing from the Bern model

adjusted time series (not shown), so we used the default estimate for the carbon distribution analysis.

The simulated effective radiative forcing from non-CO2 agents was diagnosed in dedicated simulations for IPSL, but only

for CH4, N2O and aerosols, which have major climate impacts amongst non-CO2 forcing agents. For other agents, we used the630

estimates from Smith et al. (2023) for the historical period and from Smith (2020) for the SSP1-2.6 scenario period post-2022.
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Figure A1. Enon-CO2-fe diagnosed in 3 models and default AERA input for the other models.

Figure A2. ELUC diagnosed in the models and default AERA input. Panel a) shows the time series prescribed to AERA and panel b) the

corrected time series used in the carbon distribution analysis of this paper (see text for details of the corrections).

For the IPSL model, one set of simulations were performed by prescribing the default Enon-CO2-fe and ELUC forcings to

AERA, while another set of simulations were performed with the internally-calculated emissions (Table A2), enabling us to test

the effect of the mismatch in Enon-CO2-fe and ELUC between the default time series and the internally-simulated emissions.

The member with the internally-calculated emissions allowed for a shorter temperature undershoot in the 1.5 ºC simulation, and635

a better temperature stabilisation within the 2.0 ºC uncertainty range in the associated simulation. However, minor differences
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in emission budget and cumulative fossil fuel emissions were found overall between these two ensemble members, due to

compensating effects between CH4 and N2O in the estimated and the internally-calculated radiative forcing, and between

Enon-CO2-fe and ELUC . As an indication, the EB2026(2025) (i.e., the REB from beginning of year 2026 estimated at the first

stocktake) differs by 3 PgC for the 1.5 ºC target and by 15 PgC for the 2.0 ºC target between the two ensemble members. The640

differences increase to 52 PgC, respectively 48 PgC, for EB2026(2100− 2150).

The simulations performed with the Bern3D-LPX model correspond to the configuration in Terhaar et al. (2023), where two

parameters (ocean heat uptake efficacy and feedback parameter) were varied to obtain 9 values of Earth Climate Sensitivity

(ECS) spanning the range 2.23 ºC to 4.63 ºC. Since Bern3D-LPX does not represent atmospheric variability on GSAT, a

synthetic noise was added on the GSAT output read by AERA for each of these 9 ECS values, providing 8 synthetic ensemble645

members per configuration, hence a total of 72 ensemble members. This Bern3D-LPX range across members is thus more

representative of parametric uncertainty, and not comparable to the perturbed initial-condition ensembles of EC-Earth and

GFDL-ESM2M.

Appendix B: Additional figures
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Figure B1. Schematic of the feedback loop between the Earth System Model and the AERA module. Steps 1 to 4 are performed at each

stocktake year, starting at the end of 2025.
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Figure B2. Same as Fig. 3 but for the 1.5 ºC target.

Figure B3. TCRE-fe calculated by AERA at each stocktake year (solid lines). Dotted lines indicate the TCRE-fe calculated a posteriori with

the final ("true") estimate of the 31-year running mean timeseries of GSAT. This reconstructed TCRE-fe (dotted lines) is thus less variable

than the TCRE-fe calculated by AERA which calculates ∆T based on the last year of the extended 31-year running mean timeseries until

each stocktake year, which introduces some noise compared to the true final estimate.
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Figure B4. Same as Fig. 4 but showing only the multi-model mean and spread, as well as the min-max range across members for the GFDL-

ESM2M and EC-Earth ensembles, centered on the multi-model mean.

Figure B5. Same as Fig. 5 but for the 1.5 ºC target.
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