
 

1 
 

Reactive nitrogen in and around the northeastern and Mid-Atlantic 
US: sources, sinks, and connections with ozone 
Min Huang1,2, Gregory R. Carmichael3, Kevin W. Bowman4, Isabelle De Smedt5, Andreas Colliander4, 
Michael H. Cosh6, Sujay V. Kumar1, Alex B. Guenther7, Scott J. Janz1, Ryan M. Stauffer1, Anne M. 
Thompson1, Niko M. Fedkin1, Robert J. Swap1, John D. Bolten1, Alicia T. Joseph1 5 
1Earth Sciences Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 
2Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA  
3College of Engineering, University of Iowa, Iowa City, IA 52242, USA 
4Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA 
5Royal Belgian Institute for Space Aeronomy, 1180 Brussels, Belgium 10 
6Hydrology and Remote Sensing Laboratory, US Department of Agriculture, Beltsville, MD 20705, USA 
7Department of Earth System Science, University of California at Irvine, Irvine, CA 92697, USA 

Correspondence to: Min Huang (minhuang@umd.edu) 

Abstract. This study describes an application of a regional Earth system model (NASA-Unified Weather Research and 

Forecasting with online chemistry) with updated parameterizations for selected land-atmosphere exchange processes and 15 

multi-platform, multidisciplinary observations. First, we estimate reactive nitrogen (Nr = oxidized NOy + reduced NHx) 

emissions from anthropogenic and natural sources, nitrogen dioxide (NO2) column densities and surface concentrations, total 

and speciated Nr dry or/and wet deposition fluxes during 2018–2023 over the northeastern and Mid-Atlantic US, most of 

which belong to nitrogen oxides-limited or transitional chemical regimes. The estimated multi-year Nr concentrations and 

deposition fluxes are then related to ozone (O3), in terms of their spatiotemporal variability and key drivers as well as 20 

possible ecosystem impacts. Finally, through three sets of case studies, we identify and discuss about 1) the capability of 

land data assimilation (DA) to reduce the uncertainty in modeled land surface states at daily-to-interannual timescales that 

can propagate into atmospheric chemistry fields; 2) the impacts of irrigation on land surface and atmospheric fields as well 

as pollutants’ ecosystem uptake and impacts; and 3) the impacts of transboundary air pollution during selected extreme 

events on pollutants’ budgets and ecosystem impacts. With the updated model parameterizations and anthropogenic emission 25 

inputs, the eastern US surface O3 modeled by this tool persistently agrees better with observations (i.e., with root-mean-

square errors staying within 4–7 ppbv for the individual years’ May-June-July) than many of those in literature where model 

errors are often tens of ppbv. The model-based correlation between daytime surface O3 and early afternoon NO2 columns, 

which shows a dependency on column HCHO/NO2 ratios, is higher in 2020 than during 2018–2023 (r=0.62 and 0.54, 

respectively). The O3 vegetative uptake overall dropped by ~10% from 2018 to 2023, displaying clearer downward temporal 30 

changes than the total Nr deposition due to the declining NOy emission and deposition fluxes competing with the increasing 

NHx fluxes. It is highlighted that, temporal variability of Nr and O3 concentrations and fluxes on subregional-to-local scales 

respond to hydrological variability that can be influenced by precipitation and controllable human activities such as 
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irrigation. Deposition processes and biogenic emissions that are highly sensitive to interconnected environmental and plants’ 

physiological conditions, as well as extra-regional sources (e.g., O3-rich stratospheric air and dense wildfire plumes from 

upwind regions), have been playing increasingly important roles in controlling pollutants’ budgets in this area as local 

emissions go down owing to effective emission regulations and COVID lockdowns. To better inform the design of 

mitigation and adaptation strategies, it is recommended to continue evaluating and improving the model parameterizations 45 

and inputs relevant to these processes in seamlessly coupled multiscale Earth system models using laboratory and field 

experiments in combination with satellite DA which would in turn benefit remote sensing communities. 

1 Background, motivation, and goals 

Nitrogen oxides (NOx) are an important group of ozone (O3) precursor and destroyer, and ground-level O3 is a US 

Environmental Protection Agency (EPA)-regulated criteria air pollutant. NOx consists of nitric oxide (NO) and nitrogen 50 

dioxide (NO2), the latter of which is another US EPA-regulated criteria air pollutant that has the highest exposure disparities 

(Liu et al., 2021). Emitted from various anthropogenic (anth) and natural sources, NOx is readily transformable to/from other 

forms of reactive nitrogen (Nr = oxidized NOy + reduced NHx) species, such as ammonia (NH3), peroxyacetyl nitrate (PAN) 

and nitric acid (HNO3). Some of these chemical reactions also contribute to fine particulate matter pollution, which is 

connected with O3 via aerosol radiative effects and heterogeneous chemistry (Seinfeld and Pandis, 2016; Monks et al., 2021). 55 

Many previous studies have demonstrated that NOx emissions and concentrations play more crucial roles than volatile 

organic compounds (VOCs) in regulating the magnitude and spatiotemporal variability of O3 (e.g., Duncan et al., 2010; Jin et 

al., 2017; Koplitz et al., 2022; Souri et al., 2023) as well as aerosols (Carlton et al., 2010; Holt et al., 2015) in much of the 

northeastern and Mid-Atlantic states, the most populous US region where the land surface is highly heterogeneous and 

hydroclimatic extremes and exceedances of the US National Ambient Air Quality Standards occur from time to time (US 60 

Global Change Research Program, 2023; US EPA, 2023). An improved understanding of the sources, sinks, and 

distributions of NOx and Nr as well as how these have been and will be changing through time is beneficial for interpreting 

O3 air pollution levels and their spatiotemporal variability in this area. The removals of Nr, O3, and other chemicals involved 

in their life cycles from the atmosphere through wet or/and dry deposition closely interact with multiple other interconnected 

environmental stressors (e.g., temperature, humidity, precipitation, soil moisture, SM, and carbon dioxide, CO2) and plants’ 65 

physiological conditions. Together, they can cause intertwined and cascading effects on the diverse terrestrial and aquatic 

ecosystems (e.g., United Nations Economic Commission for Europe, 1999; Galloway et al., 2003, 2004; Felzer et al., 2009; 

Simpson et al., 2014; Lombardozzi et al., 2015; Mills et al., 2018; Walker et al., 2019; Clifton et al., 2020; Emberson, 2020) 

in this area. Due to effective environmental regulations and unusual situations such as COVID lockdowns, anth emissions 

continue to decrease there. For studies on Nr and O3, attention should also be given to quantifying the impacts of multiple 70 

climatic factors as well as nonlocal air pollution sources such as those imported from upwind US regions, Canada, and the 
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stratosphere, which are partially controlled by the Bermuda High and other pressure systems (e.g., Colarco et al., 2004; Zhu 

et al., 2013; Ott et al., 2016; Rogers et al., 2020).  

 75 

Previous global and regional modeling studies have shown that reproducing the observed warm-season Nr and surface O3 

levels in the US East is challenging (e.g., Fiore et al., 2009; Chai et al., 2007, 2013; Lapina et al., 2014; Huang et al., 2017a; 

Lin et al., 2017). The estimated background O3 therein, as well as the importance of its individual contributors, varies 

substantially among models. Often, the large model-observation mismatches in surface O3 of up to tens of ppbv were not 

well explained or attributed mainly to the models’ uncertain/outdated anth emission inputs. Some of these studies 80 

implemented advanced chemical data assimilation (DA) methods to reduce the errors in their predicted surface O3 states by 

~50% (Chai et al., 2007). They did not improve the mechanistic representations of O3 related processes, which are of higher 

policy-relevance and would lengthen the impacts of chemical DA since the model initializations/analysis times. The large 

uncertainty in model results limits our capability of understanding air quality over these regions and evaluating potential 

strategies to mitigate the air pollution impacts. High-resolution Earth system modeling with proper model parameterizations, 85 

up-to-date inputs, and comprehensive, process-based analysis aided by cross-disciplinary observations can help elucidate the 

various factors controlling Nr and O3 (Fig. 1a) to better assist with assessing their environmental impacts from past to future.  

 

This study is designed to support the International Global Atmospheric Chemistry-Tropospheric Ozone Assessment Report 

(TOAR) Phase II activity, which aims to further examine the distributions, temporal changes, and impacts of O3 and its key 90 

precursors. A regional Earth system model is applied with updated parameterizations for selected land-atmosphere exchange 

processes (Section 2.1), running over the Northeast and Mid-Atlantic states for multiple years at 10 km horizontal resolution 

that is considered to be able to better capture NOx lifetime and budgets than coarser resolution systems (Li et al., 2023). The 

model is used together with multiplatform, multidisciplinary observations (Section 2.2) and a range of analysis methods 

(e.g., model evaluation and diagnosis, formal DA, and sensitivity simulations, Section 2.3) to help achieve the following 95 

specific goals: 1) to estimate Nr emissions from various anth and natural (e.g., soil NO and nitrous acid, HONO) sources, 

NO2 surface concentrations and column densities, total and speciated Nr dry or/and wet deposition fluxes during 2018–2023, 

with discussions on key anth and environmental/climatic drivers of their spatiotemporal variability during this period 

(Section 3.1); 2) to relate Nr and O3 concentrations as well as their deposition fluxes during 2018–2023, in terms of 

spatiotemporal variability, reactions to environmental and biophysical stresses, and potential ecosystem impacts (Section 100 

3.2); and 3) through three sets of case studies (Section 3.3), to discuss in detail about land-atmosphere exchange processes 

which have been understudied topics. Specifically, we demonstrate the capability of land DA to reduce the uncertainty in the 

modeled land surface states, land-atmosphere exchange processes and atmospheric states at daily-to-interannual timescales; 

the impacts of controllable human activities such as irrigation on land surface and atmospheric fields and pollutants’ 

ecosystem uptake; and the impacts of transboundary air pollution during selected extreme events on air pollutants’ budgets 105 
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and ecosystem impacts. These case studies also help identify sources of model uncertainty before we draw conclusions and 

outline future directions for further advancements in related areas in Section 4. 

2 Methods 110 

2.1 Coupled modeling system and the baseline simulation 

On a 10 km, 63 vertical layer Lambert conformal grid (Fig. 1b–c) from the subsurface to ~100 hPa, the NASA-Unified 

Weather Research and Forecasting model with online chemistry (WRF-Chem) simulations were conducted over the 

Northeast and Mid-Atlantic states for 2018–2023 growing seasons starting from 25 April of each year. The analysis of the 

baseline simulation was focused on May-June-July (MJJ) of 2018–2020, 2022, and 2023. MJJ falls within the plant growing 115 

and O3 seasons when atmospheric Nr and O3 most actively interact with ecosystems (Li et al., 2015; Clifton et al., 2020). 

Year of 2021 is not an emphasis in this paper partly due to the lack of reliable information to represent the COVID impacts 

on anth emissions for that year. The four-layer Noah-Multiparameterization (MP, Niu et al., 2011) land surface model 

(LSM) version 3.6 within the NASA Land Information System served as the land component of this modeling system, 

running with a sprinkler irrigation and the Community Land Model type of SM factor controlling stomatal resistance (i.e., β 120 

factor) schemes. Noah-MP was forced by the North American Land Data Assimilation System Phase 2 forcing data during 

the long-term (since 2000) offline spin-up. Noah-MP’s CO2 forcings for 2018, 2019, 2020, 2022, 2023’s warm seasons were 

set to 410, 412, 415, 420, and 423 ppmv, respectively, based on measurements at the Mauna Loa Observatory and its nearby 

Maunakea Observatories for part of 2023 (https://gml.noaa.gov/webdata/ccgg/trends/co2/co2_mm_mlo.txt, last access: 12 

January 2024). This advanced Noah-MP’s default setup in terms of appropriately representing the global CO2 growth rates of 125 

2–3 ppmv year-1 for recent years (https://gml.noaa.gov/ccgg/trends/gl_gr.html, last access: 12 July 2024). Ignoring the spatial 

and (intra)seasonal variability in CO2 of up to tens of ppmv over the study region (Karion et al., 2020) may have introduced 

only small uncertainty in photosynthesis and deposition modeling according to independent model sensitivity analysis in 

which CO2 forcings were perturbed (e.g., Sun et al., 2022). The land use/land cover (LULC) and soil type inputs of Noah-

MP were based on the 20-category International Geosphere-Biosphere Programme-modified Moderate Resolution Imaging 130 

Spectroradiometer (MODIS, Fig. 1b) and the 16-category State Soil Geographic (Fig. S1) datasets, respectively. Crop-type 

and irrigation map/fraction information required by the irrigation scheme came from Monfreda et al. (2008) and Salmon et 

al. (2015), respectively, the latter of which (Fig. 1c) incorporated MODIS information.  

 

Major atmospheric and land model physics as well as chemistry schemes were configured in similar ways to those in Huang 135 

et al. (2022). The photosynthesis-based dry deposition approach recommended in Huang et al. (2022) and a number of other 

previous dry deposition studies cited therein was applied to most gaseous species. No change was made to sulfur dioxide dry 

deposition approach (Erisman et al., 1994) for this study. The modeled wet deposition fluxes were also evaluated and 

discussed in this work. In replacement of the metric-based approach in Huang et al. (2022), O3 vegetative impacts were 
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dynamically modeled by applying two separate factors to photosynthesis and stomatal conductance rates (Lombardozzi et 140 

al., 2015) that are calculated in Noah-MP. These factors are land cover-dependent functions of O3 uptake cumulated during 

growing season when leaf area index (LAI) exceeds 0.5. To account for the ability of plants to detoxify O3, O3 fluxes were 

only accumulated when they exceeded a threshold of 1.0 nmol O3 m-2 s-1. As demonstrated in previous offline (Lombardozzi 

et al., 2015) and online (Li et al., 2016; Sadiq et al., 2017) modeling studies, dynamically modeling O3 vegetative impacts 

could help quantify the perturbations of O3 to a variety of hydrological, ecological, and weather variables. Online-calculated 145 

biogenic emissions of O3 precursors such as VOCs and Nr species in the simulations were adjusted to be more sensitive to 

multiple environmental stresses. Specifically, a drought adjusting factor γd was introduced in the Model of Emissions of 

Gases and Aerosols from Nature (MEGAN) biogenic isoprene emission calculations following the suggestions by Jiang et al. 

(2018), which depends on the β factor and the maximum carboxylation rate. The plant function type information needed for 

MEGAN was converted from the annual European Space Agency Climate Change Initiative (ESA CCI) land cover product 150 

for 2018–2020, and the 2020 data from this product were also used for the years afterwards. The Noah-MP modeled LAIv 

(i.e., LAI/Green Vegetation Fraction) feeds into MEGAN calculations. Soil emissions of NO were estimated largely based 

on the mechanism recommended by Hudman et al. (2012) and Simpson and Darras (2021), i.e., for dry and wet soils that are 

determined by a SM index (i.e., a function of SM, soil wilting point and field capacity), different sets of biome-based 

emission coefficients (Steinkamp and Lawrence, 2011) and the standing Nr pool plus nitrogen input from deposition being 155 

adjusted by water-filled pore space θ (i.e., SM divided by porosity), soil temperature (Wang et al., 2021), and canopy 

reduction factor. The pulsing effects, which are small for this study area/season, were accounted for. Soil HONO emissions 

were also calculated online, scaled from soil NO emissions using biome-dependent factors specified in Table A1 of Rasool 

et al. (2019) that were partly adapted from Oswald et al. (2013). Nitrogen input from fertilizer was not included in the soil 

emissions calculations to avoid double counting with agricultural emissions from the anth emission input to be introduced 160 

below. Oceanic natural NH3 emissions were not included, which were estimated to have negligible impacts on Nr overland 

(Paulot et al., 2013). Lightning emissions were also calculated online and vertically distributed adopting the setup described 

in Huang et al. (2021) which was based on cloud-top-height-based parameterizations (Wong et al., 2013) and climatological 

intra-cloud to cloud-to-ground flash ratios. A passive lightning NOx tracer was again implemented, that experienced 

atmospheric transport but not chemical reactions. Aerosol direct, semidirect and indirect radiative effects were enabled. 165 

 

Emissions from various anth source sectors came from the Copernicus Atmosphere Monitoring Service (CAMS) global 

inventory version 5.3, available at 0.1°×0.1° horizontal resolution with monthly and year-by-year variability. To account for 

COVID impacts, for 2020, grid- and sector-dependent factors (Doumbia et al., 2021) were applied to adjust the emissions. 

This CAMS inventory for the years after 2015 was developed by extrapolating the Emissions Database for Global 170 

Atmospheric Research version 5 based on the Community Emissions Data System version 2 trends and including emissions 

from ships as well as monthly variability that were estimated separately (Granier et al., 2019; Soulie et al., 2024). It’s noted 

in Elguindi et al. (2020) and references therein that NOx emissions for recent decades from an earlier version of CAMS 



 

6 
 

inventory do not notably differ from other bottom-up inventories over the US where more detailed information for emission 

inventory developments are available. In contrast, top-down estimates diverge significantly due to uncertainty in the used 175 

satellite NO2 retrievals as well as the model representations of various atmospheric processes many of which are scale-

dependent. A clear understanding of the impact of background NOx sources, including natural emissions, on constraining 

NOx emissions with satellite NO2 data is urgently needed. The 0.1°×0.1°, version 2.6r1 of the Quick Fire Emissions Dataset 

(QFED, Darmenov and da Silva, 2015), developed with the fire radiative power approach, was applied with plume rise 

(Grell et al., 2011). QFED NOx emissions over North America during 2012–2019 are in comparable magnitudes with other 180 

widely-used fire emission datasets such as the Fire INventory from NCAR (FINN) while its NH3 emissions are higher than 

the estimates from other products (Wiedinmyer et al., 2023). Figure 2 presents the total anth and biomass burning (fire) NOx 

and NH3 emissions averaged for each year’s MJJ. Anth NOx emissions are shown to decrease due to effective emission 

controls (i.e., a -16.3% overall change from 2018 to 2023), except for slight increases along a few shipping lanes. They are 

anomalously low in 2020 (~23.8% lower than 2018) largely due to reduced human activities during the COVID lockdowns. 185 

The temporal changes in non-methane (NM) VOC emissions are relatively smaller, with the domain-mean in 2023 only ~6% 

lower than in 2018. The total anth NH3 emissions were growing in many places, most evidently over croplands as a result of 

the rising agricultural soil and livestock emissions. The QFED-based fire NOx and NH3 emissions were generally increasing, 

reaching their highest in 2023. 

 190 

Daily reinitialized atmospheric initial conditions (ICs) and boundary conditions (BCs) were downscaled from the 3-hourly, 

32 km North American Regional Reanalysis dataset. A set of the 6-hourly Community Atmosphere Model with Chemistry 

(CAM-Chem, for 2018–2020, 0.9°×1.25°/56 vertical levels) and Whole Atmosphere Community Climate Model (WACCM, 

beyond 2020, 0.9°×1.25°/88 vertical levels) simulations that also ingested QFED fire information served as the chemical 

BCs of the WRF-Chem baseline simulation because of its higher completeness of chemical species, and for WACCM, its 195 

availability for very recent years compared to chemical reanalysis products which are likely to be more accurate. The 

chemical BC models’ stratospheric O3 tracer fields also supported our multi-year analysis and a case study (Section 3.3.3). 

From 2018 to 2023, the lower free tropospheric O3 in MJJ first rose by up to 4 ppbv, and then dipped down by up to 4–6 

ppbv before rising again (Fig. 3a). The interannual variability in lower free tropospheric O3 and its precursors upwind of the 

eastern US, as well as the synoptic wind fields that shifted from westerly in 2018–2022 to northwesterly in 2023 (Fig. 3c), 200 

play critical roles in controlling the modeled large-scale O3 patterns and their temporal changes. Ozone transport from the 

stratosphere more strongly influenced the lower free tropospheric O3 over the southern part of our domain in 2023 than in 

2018 by up to 4 ppbv (Fig. 3a–b). Although the stratospheric air influences on surface O3 were diluted to no more than a few 

ppbv (Fig. S2), the challenges regional models experience in reproducing their magnitudes and interannual variability may 

introduce uncertainty to the estimated surface O3 changes.  205 
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2.2 Observations 

2.2.1 Chemical observations from satellites, aircraft, and ozonesondes 

The TROPOspheric Monitoring Instrument (TROPOMI) on board the Copernicus Sentinel-5 Precursor satellite launched in 210 

2017 provides trace gas and aerosol measurements at daily global coverage since April 2018, with ascending node ∼13:30 

local time overpasses. It has much finer resolutions (i.e., 3.5×5.5 km2 at nadir since August 2019, and 3.5×7 km2 before 

then), a wider spectral range and higher signal-to-noise ratio per ground pixel than its predecessors. TROPOMI data have 

demonstrated their robustness in studying air pollution from numerous source sectors (e.g., land and water traffic, power 

plants, oil, gas and other industries, biogenic and fire) in greater detail (e.g., Georgoulias et al., 2020; van der Velde et al., 215 

2021; Griffin et al., 2021; Goldberg et al., 2021; Dix et al., 2022). In this study, the gridded (0.02°×0.02°) monthly and daily 

level 2 TROPOMI tropospheric vertical column NO2 data were analyzed together with WRF-Chem fields to help understand 

the temporal changes in column NO2. The gridded (0.05°×0.05°) monthly TROPOMI formaldehyde (HCHO) tropospheric 

vertical columns (De Smedt et al., 2021) were also used to calculate HCHO/NO2 ratios to help determine O3 chemical 

regimes over the study area. The TROPOMI-based HCHO/NO2 ratios were supplemented by those derived from the gridded 220 

(1 km×1 km) NO2 and HCHO data collected on selected days of 2018 over New York City and the Long Island Sound by 

two similar airborne instruments (Judd et al., 2020) Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) 

and GEO-CAPE Airborne Simulator (GCAS).  

 

Additionally, to help identify and attribute air pollutants during highly polluted events in 2023 (Section 3.3.3), the Joint Polar 225 

Satellite System-1 Cross-track Infrared Sounder (JPSS-1/CrIS, with descending/ascending nodes of ~1:30/13:30 local time) 

O3, carbon monoxide (CO), and PAN level 2 daily summary data provided by the TRopospheric Ozone and Precursors from 

Earth System Sounding project, were analyzed. The analysis of these extreme events was also supported by eight 

ozonesondes launched from the Virginia Commonwealth University Rice Rivers Center (RRC, 37.33197°N, 77.20842°W) 

during the inaugural edition of NASA Student airborne Research Program (SARP)-East campaign in summer 2023 along 230 

with model results and ground-based observations (Section 2.2.3).  

 

2.2.2 Satellite SM and precipitation products 

To characterize drought conditions and their temporal variability, which interact with atmospheric chemistry, NASA’s L-

band Soil Moisture Active Passive (SMAP) 9 km enhanced surface (first 5 cm belowground) SM (SSM) data version 5 were 235 

utilized, as well as the version 7 of daily precipitation data from the NASA-JAXA Global Precipitation Measurement (GPM) 

produced at 0.1°×0.1° resolution using the Integrated Multi-satellitE Retrievals for GPM-Final run algorithm. Despite the 

different sampling strategies and retrieval algorithms of SMAP and GPM, interannual variability in the drought conditions 

indicated by these SSM and precipitation data are qualitatively consistent (Fig. 4), which are also consistent with information 

from independent sources such as the North American Drought Monitor (https://droughtmonitor.unl.edu/NADM, last access: 240 
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12 July 2024; see Table S1 and Fig. S3 for further analysis and discussions). In addition to rainfall, irrigation water and other 

elements relevant to water and energy balances can also impact the variability in SSM which has feedback to the regional 

precipitation patterns. The wide range of the SMAP SSM from <0.2 to >0.5 m3 m-3 and its interannual differences which 

often exceed 0.1 m3 m-3, indicate the diverse SM regimes (i.e., dry, transitional, and wet) and therefore spatially and 245 

temporally varying land-atmosphere coupling strengths (Seneviratne et al., 2010, and references therein). The varying SSM-

temperature coupling strengths were determined based on WRF-Chem results, with support of the 0.25°×0.25° European 

Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) surface air temperature field. In a case study 

(Section 3.3.1), SMAP SSM data were assimilated into the Noah-MP LSM to improve the land ICs of WRF-Chem, and 

further, the modeled weather and atmospheric chemistry fields.  250 

 

2.2.3 Ground-based observations  

Hourly surface ultraviolet absorbance O3 observations from the US EPA’s Air Quality System (AQS, a major source of the 

TOAR database, last update in August 2024) were used to support the quantification of O3 temporal variability and model 

evaluation. The AQS NO2 observations, which have poorer spatial coverage than their O3 data, were also examined to help 255 

qualitatively understand surface NO2 variability. These AQS NO2 measurements made using the chemiluminescence 

detection with catalytic conversion are known to be positively biased by up to 50% due to NOz (NOy-NOx) interferences 

(e.g., Dunlea et al., 2007). Speciated aerosol measurements offered by the Clean Air Status and Trends Network 

(CASTNET) and AQS, CASTNET HNO3, the National Atmospheric Deposition Program (NADP)/Ammonia Monitoring 

Network (AMoN) NH3 observations, as well as the NADP/National Trends Network (NTN) wet deposition fluxes and 260 

precipitation data, were used to infer or directly evaluate WRF-Chem’s deposition performance. Deposition datasets from 

other studies, some of which integrated surface or/and satellite observations with other models (e.g., Schwede and Lear, 

2014; Fu et al., 2022; Rubin et al., 2023), will be referred to in the discussions. 

 

Additional datasets for selected time periods were used in DA case studies to help interpret and validate the model results 265 

(Section 3.3.1). These include gauge-based precipitation data and SSM measured using HydraProbe sensors at Harvard 

Forest, Massachusetts (42.53523°N, 72.17393°W) and a US Climate Reference Network (CRN) site in Millbrook, New 

York (41.786°N, 73.74°W) during the July 2022 SMAP validation experiment (SMAPVEX22); and surface air temperature 

observations in July 2018 and 2022 from the National Centers for Environmental Prediction (NCEP) Global Surface 

Observational Weather Data product. 270 

2.3 Case studies and sensitivity simulations 

Temporal variability of Nr and O3 concentrations and fluxes at subregional-to-local scale are partially driven by hydrological 

variability which can be influenced by both precipitation and human activities such as irrigation. Two sets of modeling and 

DA case studies (Sections 2.3.1 and 2.3.2) were conducted to show that the modeled land surface states, such as SM, can be 
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improved via land DA and/or updating the model’s irrigation schemes, which further impacts the modeled land-atmosphere 

exchange processes and atmospheric fields.  285 

2.3.1 Effects of SM DA on modeled NO2 and O3 

For this case study, SMAP morning-time (~6 am local time) SSM data were bias-corrected via matching the means and 

standard deviations of SMAP and Noah-MP SSM monthly climatology. The bias-corrected data were then assimilated into 

the Noah-MP LSM using a 40-member ensemble Kalman filter approach to adjust WRF-Chem’s land ICs during July 2018 

and July 2022. Meteorological forcing (precipitation, short- and longwave radiation) and state (Noah-MP SM) perturbation 290 

attributes were set up largely based on Kumar et al. (2009) recommendations for the Noah LSM, and the input observation 

error standard deviation was set to be 0.04 m3 m-3 according to the SMAP data quality requirement. Through this experiment 

we evaluate whether and to what extent can satellite SM DA improve the day-to-day (i.e., before and after a precipitating 

event during the SMAPVEX22 campaign when in situ SSM data were also collected near the SMAP morning overpassing 

times) and interannual variability (i.e., July 2018 and July 2022) of Noah-MP SM, even in dense vegetation regions such as 295 

the eastern US where satellite SM retrieval is generally more challenging. How the adjustments to Noah-MP land surface 

states by DA impacted the modeled atmospheric fields was also quantified. 

 

2.3.2 Irrigation impacts on O3 vegetation uptake and Nr deposition 

Using flux-based O3 metrics derived from model outputs, recent studies (Mills et al., 2018; Huang et al., 2022) estimated that 300 

the negative impacts of ground-level O3 on crop yields are particularly large in humid irrigated and rainfed agricultural lands, 

where the plants’ stomatal uptake of O3 is significant. The global-scale coarse-resolution analysis for 2010–2012 by Mills et 

al. (2018), which was based on O3-flux metrics, also estimated that irrigation promotes the O3 impacts on wheat production 

by up to ~10%. To dynamically evaluate in detail the irrigation impacts on land surface and atmospheric fields as well as the 

estimated O3 and Nr ecosystem impacts across our study area for recent years, WRF-Chem simulations were conducted with 305 

three sets of irrigation configurations, defined as (a, b, c) below, and for each of these three scenarios, two simulations were 

conducted with and without O3 vegetation impacts:  

a) Full irrigation (baseline): Sprinkler irrigation occurs in the morning when rootzone SM drops below 50% of field capacity; 

b) Reduced irrigation: Sprinkler irrigation occurs in the morning when rootzone SM drops below 25% of field capacity, and 

the estimated irrigation water usage for this scenario is ~1/6 of the full-irrigation scenario for irrigated areas south of ~37°N 310 

in our domain;  

and c) Irrigation option was completely disabled.  

This sensitivity analysis is focused on 21–30 June 2022, when irrigated fields in the Carolinas that grow mostly O3-sensitive 

crops were under stress according to the Vegetation Drought Response Index produced by the National Drought Mitigation 

Center (Fig. S4). This region also encompasses Nr deposition hotpots that have been experiencing critical load (CL) 315 

exceedances (i.e., the amount of Nr deposition exceeds the CL threshold, the point above which deposition could harm 
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sensitive ecosystems). For this period, irrigation water consumption under the full-irrigation scenario may be higher than 

normal, and the estimated surface fluxes under reduced- and no-irrigation scenarios may be particularly smaller than usual 

and more strongly constrained by SM. 320 

 

2.3.3 Impacts of transboundary pollution on weather, air quality and ecosystems 

The Northeast and Mid-Atlantic US air quality is regularly affected by pollutants emitted or/and formed in upwind US states. 

Actions have been taken to tackle cross-state air pollution such as using the Cross-State Air Pollution Rule framework 

(https://www.epa.gov/Cross-State-Air-Pollution/overview-cross-state-air-pollution-rule-csapr, last access: 12 January 2024). 325 

However, with the US EPA’s “Good Neighbor Plan” being put on hold by the Supreme Court (https://www.epa.gov/Cross-

State-Air-Pollution/good-neighbor-plan-2015-ozone-naaqs, last access: 12 July 2024), downwind US states may continue to 

face difficulties in complying with the 2015 O3 National Ambient Air Quality Standards due to the upwind states’ pollution 

impacts. Periodically, distant sources including Canadian wildfires and O3-rich stratospheric air also travel to the 

northeastern and Atlantic states. Satellite and in situ observations are powerful in detecting such episodic events that occur 330 

more frequently in recent years, assisting with early warnings and early actions. To help quantify the impacts of such 

extreme events, as well as other upwind air pollution sources, on weather, air quality and ecosystems during 13–16 June 

2023, two WRF-Chem sensitivity simulations were conducted and analyzed together with the baseline simulation and 

multiplatform observations. Clean chemical BCs were applied in one of these sensitivity simulations, and WACCM running 

with the FINN fire emission input served as the chemical BCs of the other WRF-Chem sensitivity simulation named “Sen”. 335 

Fire emission is identified as one of the most important configurations in global wildfire modeling (e.g., Veira et al., 2015). 

3 Results and discussions 

3.1 Nr emissions, concentrations, and deposition fluxes during 2018–2023 

The modeled soil NO and HONO emissions vary strongly with SM as well as soil temperature that can be impacted by SM. 

Even without land DA the model fairly well reproduced the large-scale spatial gradients and interannual variability of soil 340 

wetness (Figs. 4a and S5). Soil emissions exhibit notable monthly variations, with multi-year June- and July-mean values 

~11% and ~59% higher than the May-mean, respectively, associated with overall warmer and drier conditions. These 

monthly variations, together with the ~8% and ~18% multiyear June-May and July-May mean differences in anth+fire 

emissions as well as modeled surface and column NO2 fields, help interpret the higher TROPOMI and AQS NO2 on warmer 

months over many rural areas, especially those near high-temperature agricultural regions (Fig. S6), a point Goldberg et al. 345 

(2021) also highlighted. The maxima and minima of MJJ soil emissions are shown in 2020 and 2018, respectively, and the 

interannual variability of soil emissions roughly anti-correlates with that of SM, with correlation coefficient r ranging from    

-0.63 to -0.40 (p<<0.01; Fig. 5a;c). For most years, the estimated MJJ-mean soil NO and HONO emissions are particularly 

high in warm and/or dry areas including parts of the Carolinas, Virginia, New York, Michigan, and Canada’s Ontario, where 

their contributions to the total soil+anth+fire NOy emissions persistently exceeded 30% (Fig. 5a–b). Based on a global 350 
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atmospheric chemistry model with a similar soil emission scheme, previous estimates of the soil NO emission contributions 

to column NO2 for this area were minor compared to other US regions in 2005 (i.e., <15% uniformly, Vinken et al., 2014), 

when anth NOx emissions were >25% higher than in 2018 according to the CAMS inventory and other estimates. Owing to 

the overall declining US anth emissions and the changing climate, soil emissions play an increasingly important role in 

controlling Nr, and further, O3 air quality, in this area. Accordingly, the needs to properly parameterize soil emissions and 355 

accurately model soil environments (e.g., SM, soil temperature, pH) have been growing stronger which could greatly benefit 

from laboratory and field experiments.  

 

Despite the increasing anth NH3 and fire Nr emission trends (Section 2.1) and the abovementioned interannual variability in 

soil NO and HONO emissions, the total Nr emissions as well as surface NOy emissions that contributed to >50% of the total 360 

Nr emissions show decreasing year-to-year changes during 2018–2023 except for the dip in 2020 that is mainly attributable 

to the COVID lockdowns (Fig. 6a). Closely linked to such temporal changes in NOy emissions, that in many areas 

overwhelm the effects of slower NO2 and NOy dry deposition (Fig. S7 and later discussions), the modeled column and 

surface NO2 both display downward changes since 2018, with their lowest values occurring in 2020 (Figs. 6b and 7). From 

2018 to 2023, on average, column and surface NO2 dropped by 15–20%. Impacted by the decreasing NO2, HCHO columns 365 

overall demonstrate a few percent slower year-to-year changes than NO2 (Fig. S8), in large part because of less significant 

NMVOC emission changes (Section 2.1). Impacted mostly by shipping and lightning emissions as well as North American 

pollution outflows, the amount of NO2 above the ocean is lower than overland. Early afternoon (19 UTC, local standard time 

+5 or +6, near TROPOMI overpassing times) surface and column NO2 are ~44% and ~29% lower than their daytime 

averages (13–24 UTC, roughly the sampling times of geostationary missions such as the Tropospheric Emissions: 370 

Monitoring of Pollution, TEMPO, and the anticipated Geostationary Extended Observations). The stronger subdaily 

variability in surface NO2 than in column NO2 reflects the impacts of photochemistry and evolution of planetary boundary 

layer on the rapidly changing vertical distributions of chemicals throughout the daytime which have also been demonstrated 

in Huang et al. (2017b) and other studies with aircraft observations. Dependent strongly on convection, lightning NO 

emissions show high variations from year to year in terms of locations and magnitudes, having larger impacts on free-375 

tropospheric and column-average NO2 than surface NO2 (Fig. S9).  

 

The column NO2 spatiotemporal variability based on WRF-Chem and TROPOMI greatly resemble one another (Fig. 7a–b), 

and larger model-TROPOMI discrepancies are seen over the areas possibly influenced by lightning NO emissions and 

transboundary pollution where both model and retrieval errors may be large. The interannual variations in such pollutant 380 

sources aloft may also explain the different interannual variability in surface and column NO2 for some locations and years. 

AQS NO2 data, although sparsely distributed and positively biased, qualitatively confirmed the model-suggested year-to-year 

changes in surface NO2 (Fig. S10).   
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Drought conditions, as well as the opposite directions of NOy and NH3 emission and concentration changes, helped shape the 385 

interannual variability in the total Nr deposition fluxes (Fig. 8a). Overland, the modeled Nr wet deposition fluxes often 

contributed to nearly or lower than 30% of the total Nr deposition. These contributions are smaller than earlier estimates for 

this area (e.g., <60% in Tan et al., 2018, where wet deposition based on 11 global models was overestimated), due in part to 

WRF-Chem wet deposition being underestimated referring to the NADP/NTN measurements (Table S2 and Fig. S11). This 

underestimation in wet deposition can be attributed to known limitations in the WRF-Chem wet deposition scheme (Ryu and 390 

Min, 2022; Yao et al., 2023). The underestimated model precipitation rates and inaccurate model precipitation patterns on 

event-to-seasonal scales (Figs. 4b, S5, and S11; Section 3.3.1 case study), as well as observation representation errors, also 

have caused the negative biases in wet deposition fluxes and the positive biases in aerosol concentrations especially for NH4 

and NO3 (Figs. S11–S14). Such precipitation biases in WRF have also been reported in previous studies, and they can 

indirectly impact dry deposition modeling.  395 

 

Dry NOy deposition fluxes decreased evidently (i.e., by 5–16% overall and >50% in some populated areas) whereas NHx dry 

deposition fluxes show up to ±3% of overall interannual variability and rose by >20% over certain agricultural lands (Fig. 

S15) where NH3 emissions have been climbing up. Due to not applying a bi-directional approach (Zhang et al., 2010; 

Massad et al., 2010; Pleim et al., 2019), these NH3 fluxes may be overestimated over source regions by a few percent (Zhu et 400 

al., 2015; Liu et al., 2020a), contributing to the model’s minor negative NH3 biases relative to the NADP/AMoN data (Table 

S2 and Fig. S13). Nevertheless, the contrasting directions of change in NOy and NHx deposition fluxes as well as the 

importance of NHx deposition in total deposition corroborate results from other studies for earlier periods (e.g., Schwede and 

Lear, 2014; Li et al., 2015; Jia et al., 2016; Geddes and Martin, 2017; Liu et al., 2020b, and references therein). With several 

percent of interannual differences in flux partitioning (Fig. 8b–c), in all years’ MJJ, HNO3 and NH3 contributions (>35%) 405 

dominated in the Nr dry deposition fluxes. NO dry deposition is negligible due to extremely high surface resistance and in 

figures is combined with NO2 into NOx fluxes, that contribute to 12–15% of Nr dry deposition fluxes. Unlike most other 

species, surface resistance of HNO3 is nearly zero, whose dry deposition variability is therefore driven dominantly by 

aerodynamic resistance and quasi-laminar sublayer resistance and responds differently to drought conditions than the other 

Nr species and O3 (Section 3.2). The modeled HNO3 daytime dry deposition velocities over most forested areas fall within 410 

4–8 cm s-1, close to the measurements reported in literature for similar land cover types in the eastern US (e.g., Nguyen et al., 

2015). These are ~a factor of 10 higher than the dry deposition velocities of NO2 and PAN, similar to the results in Wu et al. 

(2011) based also on a photosynthesis-based dry deposition model and the flux measurements summarized by Delaria and 

Cohen (2023).  

 415 

Many global models have provided their estimates of total and speciated Nr deposition fluxes for previous decades (e.g., 

Dentener et al., 2006; Paulot et al., 2018; Tan et al., 2018; Rubin et al., 2023). Here, our regional model results present more 

details which could be beneficial for estimating CL exceedances on relatively smaller spatial scales. They are overall of a 
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lower magnitude, reflecting the impacts of the declining NOy and Nr emissions which are anticipated to continue into the 420 

coming decades. This may also be attributed to the impact of the changing climate and the model uncertainty relevant to 

scales, deficits in deposition schemes and inputs as well as uncounted deposition of certain organic Nr species due to our 

chosen chemistry and aerosol schemes. Possibly also for these reasons, a little over 50% of the surface Nr emissions were 

estimated to be removed via deposition in this area for all years (Fig. 6a), slightly lower than the estimates in previous 

modeling studies.  425 

 

Comparing our WRF-Chem Nr deposition fluxes to the CL thresholds in Simkin et al. (2016) for herbaceous plants that 

range from 7.4 to 19.6 kg ha-1 a-1, from 2018 to 2023, the high likelihoods of CL exceedances in Pennsylvania dropped 

whereas those in parts of North Carolina may have remained high. The Nr deposition fluxes stayed below these CL 

thresholds over most of the northern forests, a region where primary productivity has been determined to be nitrogen-limited 430 

(Du et al., 2020) and can be highly sensitive to the interannual variability in Nr deposition (Fig. S16). The empirical CL 

thresholds of >3–8 kg ha-1 a-1 for the eastern US forests in Pardo et al. (2011) are higher than the modeled Nr deposition 

fluxes over the forests in New England states and West Virginia whereas for the other forests roughly close to or lower than 

the modeled. These results help explain the findings in Horn et al. (2018) that tree growth and survival have increasing and 

flat-to-slightly-decreasing relationships with Nr deposition for New England/West Virginia forests and other eastern US 435 

forests, respectively. For lichen, WRF-Chem suggests that widespread CL exceedances occurred throughout the study 

period, according to the static CL thresholds of 3.5, 3.1, 1.9, and 1.3 kgN ha-1 a-1 for total species richness, sensitive species 

richness, forage lichen abundance, and cyanolichen abundance, respectively (Geiser et al., 2019). Note that these lichen CL 

thresholds are likely to be conservative for the eastern US as they were derived partially from biased model deposition fields, 

and further assessments on the uncertainty of these thresholds are necessary.  440 

 

3.2 Spatiotemporal variability of Nr and O3 concentrations and deposition fluxes 

The interannual, day-by-day and subdaily variability in HCHO/NO2 ratios derived from TROPOMI and airborne GCAS and 

GeoTASO data indicates the variable photochemical environments driven by the changing meteorology and emissions, but, 

as noted in a number of prior studies (e.g., Duncan et al., 2010; Jin et al., 2017; Tao et al., 2022; Souri et al., 2023), can also 445 

be affected by retrieval uncertainty and several other types of errors. Yet, they indicate that, much of the study area belong to 

NOx-sensitive or transitional chemical regimes during 2018–2023 (i.e., HCHO/NO2 higher than empirical thresholds of 2–4, 

Fig. 9) except very few megacities such as the Greater New York City and Toronto, Canada, and for those urban regions, O3 

formation continues the trends of turning sensitive to NOx. 

 450 

Largely explainable by the changing NOy emissions and NOx-sensitive chemical regimes, the spatial patterns of the modeled 

interannual differences in column NO2 and surface O3 concentrations roughly resemble one another. Both NO2 and O3 

display downward changes over the majority of terrestrial areas whereas the opposite direction of changes over the Atlantic 
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Ocean (Figs. 7b and 10a). In more than half of the terrestrial model grids, the interannual variability of 19 UTC NO2 

columns and daytime surface O3 are moderately correlated (r>0.6), with the r value of 0.57 averaged across all overland 

grids and 0.92 for grids where the p values of the correlation tests are lower than 0.05. Fig. 11 indicates the connection 

between early afternoon (19 UTC) NO2 columns and daytime surface O3 as well as its dependency on column HCHO/NO2 460 

ratios. Daytime surface O3 concentrations exhibit the most robust spatial correlations with early afternoon NO2 columns in 

2020 (r=0.62, versus 0.54 for all years, Fig. 11), when the domain-wide median and mean HCHO/NO2 ratios are larger than 

the other years’ by at least 0.5. These point to a potential of inferring surface O3 variability from high-quality remote sensing 

NO2 and HCHO column data across this area.  

 465 

The reduction in NOy emissions contributed to the domain-average changes in median (-0.7 ppbv) and mean (-1.0 ppbv) 

daytime surface O3 concentrations overland from 2018 to 2023, which are much smaller than that in 95th% O3 (by -3.5 ppbv). 

The lowering NOy emissions also resulted in less titration, and consequently, the slightly increased 5th% O3 (by 0.3 ppbv). 

Such modeled general directions of O3 temporal changes in this area over the past ~5 years are qualitatively consistent with 

Cooper et al. (2012) for springs and summers of 1990–2010 as well as follow-on studies (Simon et al., 2015; Lin et al., 2017; 470 

Gaudel et al., 2018) and the US EPA’s periodically-updated O3 trend summary (https://www.epa.gov/air-trends/ozone-

trends, last access: 12 July 2024). The model captured the COVID-induced daytime surface O3 reductions in 2020 (i.e., 

overland, ~0.8 ppbv lower than in 2019 on average) that have also been reported in numerous independent studies (e.g., 

Keller et al., 2021; Steinbrecht et al., 2021; Putero et al., 2023). The interannual variability of imported O3 and its precursors 

from other regions, as well as the interconnected environmental and plant physiological conditions (e.g., via soil-vegetation-475 

atmosphere interactions whose strengths vary in space and time) modulated biogenic VOC emissions, deposition, chemical 

reactions, transport and mixing, also drove the O3 changes on regional-to-subregional scales.  

 

The spatial patterns of WRF-Chem modeled surface O3 broadly match the AQS observations for most of the years (Fig. 10), 

with root-mean-square errors (RMSEs) ranging from 4.0 to 6.5 ppbv which are significantly lower than the magnitudes of 480 

tens of ppbv in many earlier modeling studies for the similar regions. The better performance may have substantially 

benefited from the advancements in model parameterizations and the updated anth emission inputs. Although WRF-Chem 

surface and column NO2 temporal changes agree well with the observed, the model struggled to capture the observed 

deviations of surface O3 in 2023 from previous years, likely due to its failure in representing the particularly strong 

influences of stratospheric O3 or/and other extra-regional sources on (near-)surface O3 in 2023 (Figs. 3b and S2). Later in a 485 

case study, the dependency of WRF-Chem O3 performance on how well transboundary pollution as well as regional climatic 

conditions and their driving processes are represented in the model will be investigated further.  

 

Similar to dry deposition of Nr species and conclusions from Huang et al. (2022), the spatiotemporal variability of O3 dry 

deposition velocities is closely linked with land cover types, environmental and vegetation conditions, with their highest 490 
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daytime-average values (vd,o3 >1.0 cm s-1) seen over moist forests and >30% lower daytime-average values over croplands 

experiencing drier conditions (Figs. S7 and S15). Cumulative stomatal O3 uptake (CUO), a recommended metric for 

assessing the potential O3 vegetation impact, that is affected by stomatal conductance, boundary layer resistance, and surface 

O3 levels, appears also high over the croplands in Ohio and Indiana (~40 mmol m-2) where surface O3 concentrations are 505 

high while much lower over drier croplands in the Carolinas (<30 mmol m-2). Except for regions influenced by the wetter-

than-normal conditions or/and increasing surface O3 concentrations, the CUO fields show declining trends (i.e., overall 

dropped by ~10% from 2018 to 2023). Our results are qualitatively consistent with those in Clifton et al. (2020) for the 

northeastern US, where based on a global model, stomatal O3 uptake cumulated through MJJ 2010 with no detoxification 

threshold was estimated to be ~35 mmol m-2. Their modeled flux was projected to decrease under the Representative 510 

Concentration Pathways 8.5 future scenario under which soil may be drier than present day conditions over the eastern US 

(Cook et al., 2020). As indicated in Fig. 12a, our modeled CUO values are higher over croplands and forests than shrub/grass 

averagely and more spatially variable. These CUO fluxes display clearer trends in most grids than the total Nr deposition 

fluxes, due to NOy and NHx deposition fluxes having competing directions of changes through the past years (Figs. 8b–c and 

S15). The potential impacts of Nr deposition are strongest and weakest on croplands and water, respectively (Fig. 12b). 515 

 

3.3 Three case studies 

3.3.1 Land DA  

As indicated by GPM, SMAP, and in situ observations collected at Harvard Forest and the CRN-Millbrook site during the 

SMAPVEX22 campaign, a precipitating event associated with a frontal passage occurred from late 13 July to early 14 July 520 

2022 causing sharp increases in SSM around 14 July in Massachusetts (by >0.06 m3 m-3) and parts of the eastern New York 

(by ~0.02 m3 m-3) where surface O3 dropped abruptly by up to 30 ppbv (Figs. 13a and S17). Baseline simulation without DA 

failed to reproduce this strong daily SSM variability at site-to-regional scales (Fig. 13b). After enabling the SMAP DA, 

Noah-MP SSM in Massachusetts and the eastern New York increased remarkably on 14 July (Fig. 13c), better matching the 

observed quantities. Along the southern New York-Connecticut as well as the northern New York-Vermont borders, the 525 

slightly drier conditions on 14 July are also better represented in Noah-MP with the implementation of SMAP DA (Fig. 13a–

c). The enhancements in soil wetness resulted in a bit cooler surface soil/air, thinner atmospheric boundary layer, suppressed 

biogenic VOC and soil NOy emissions as well as O3 formation while deposition accelerated. Lightning emissions were also 

sensitive to the DA-induced SM changes. Consequently, above many Connecticut River watershed areas, WRF-Chem NO2 

columns dropped (Fig. 13e–f). Due to increased upwind pollution contributions whereas weakened local emissions and 530 

production, both enhancements and reductions by up to ~4 ppbv in daytime surface O3 levels (not shown in figures) are 

found in the New England region (40.5–43.1°N, 70.0–74.0°W). Across the New England region, WRF-Chem daytime 

surface O3 performance for 14 July was improved in 31 out of 50 of the model grids where AQS data were available, with 

the largest improvement of nearly 2 ppbv. It is also highlighted that the various processes SM can impact help shape the 

vertical profiles of NO2 and other chemical species, a critical ancillary data for calculating the air mass factor that is needed 535 
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to convert slant columns to vertical columns in satellite retrievals (Lorente et al., 2017) and derive averaging kernels (AKs, 

Eskes and Boersma, 2003). At Harvard Forest, the vertical distributions of NO2 as well as their responses to SMAP DA 540 

changed rapidly during this event (Fig. 13g–h), despite the minor change in NO2 column. It is suggested that cautions are 

taken when attributing the mismatches between TROPOMI and models (with AKs, that indicate lower TROPOMI sensitivity 

towards the surface) over the scenes where NOx near the surface and aloft may both be significant. Also, productions, 

interpretations, and applications of satellite NO2 retrievals could benefit from evaluating and tuning their model-based a 

priori profiles with in situ measurements of NO2 vertical distributions under various environments.  545 

 

Figure 14a–c illustrates that, on a larger timescale, SMAP DA effectively narrowed the Noah-MP wet biases in July 2022-

July 2018 SSM differences in Canada’s Ontario (croplands) as well as the dry biases in Virginia (forests) that may have 

resulted from inaccurate representations of meteorological drought conditions. WRF-Chem weather fields, biogenic VOC, 

soil NOy and lightning emissions, and deposition processes all responded to the DA-induced changes in the model’s land 550 

ICs. The July 2022-July 2018 differences of WRF-Chem NO2 columns and surface O3 over these regions became closer to 

(by as high as ~50% and >4 ppbv, respectively) what TROPOMI and AQS observations indicate (Fig. 14d–i). Notably, the 

SMAP DA flipped the sign of surface O3 interannual differences over the northern Virginia, for which region the DA had 

strong impacts on the modeled surface O3 in both July 2018 and July 2022 (Fig. S18). The remaining modeled-observed NO2 

and O3 discrepancies over some of the northern states and coastal North Carolina, which are highly correlated because of the 555 

dominating NOx-limited regime, can also be explained by uncertainties in the model’s chemical BCs and wind fields. 

 

These analyses demonstrate that microwave satellite SM DA can improve the modeled SM dynamics at daily-to-interannual 

timescales. Similar findings were previously reported by Draper and Reichle (2015) where SM from the X-band (sensitive to 

top ~1 cm soil) Advanced Microwave Scanning Radiometer-Earth Observing System was assimilated at only four sites, but 560 

not on regional scales for forested regions where SM retrievals have been considered challenging and need validation. It is 

also shown in this work that the DA adjustments to LSMs’ SM fields can positively impact weather and chemistry fields 

from their coupled atmospheric models, benefiting our interpretations and prediction skills of air pollutants’ distributions and 

temporal changes which can in turn help advance satellite retrievals. It is important to note that SSM-atmosphere coupling 

strengths vary strongly in space and time, influenced by the evolution of local hydrological regimes. As 2022-2018 SSM and 565 

surface air temperature differences show strong negative correlations of -0.78 (Fig. S19), the land DA impacts on WRF-

Chem’s atmospheric chemistry fields were in some part through adjusting the weather, as indicated in Figs. 14j–l and S18. 

For the times/locations that SSM and atmosphere coupling strengths are weak, land DA is anticipated to impact the modeled 

atmospheric chemistry fields mostly via the direct control of land surface on natural emissions and deposition. 

 570 

3.3.2 Irrigation approaches 
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Based on the three sets of simulations representing full-, reduced-, and no-irrigation scenarios (Section 2.3.2), the impacts of 

irrigation on surface O3 concentrations, CUO and O3 injury to vegetation, as well as Nr deposition were quantified (Fig. 15). 575 

Across the domain, O3 perturbs gross primary productivity more strongly (up to 20–30%) than transpiration (mostly <10%), 

and therefore reduces the vegetation water use efficiency. Its reductions to leaf biomass over the stressed irrigated lands in 

the Carolinas in late June 2022 are estimated to be <5% under all three scenarios. Under the limited- and no-irrigation 

conditions, O3-induced crop yield losses were reduced over irrigated areas by up to ~2%, a result of lowered SM (Fig. S20) 

and deposition fluxes despite the enhanced soil/air temperatures, soil NOy emissions and surface O3 concentrations (by up to 580 

~10 ppbv). This result supports and extends the findings from previous coarse-resolution modeling (Mills et al., 2018) and 

observational (Harmens et al., 2019) studies. The period-integrated O3 stomatal uptake increased slightly outside of the 

irrigated land due to higher O3 being transported away from the irrigated areas. Over/near the irrigated areas, the estimated 

total Nr deposition would also be lower under reduced- and no-irrigation scenarios by more than 50%, which would be 

below possible CL thresholds, as less irrigation would result in stronger atmospheric mixing and reduced SM although soil 585 

NOy emissions would increase. These impacts on Nr deposition over most of the irrigated lands are important also according 

to Student’s t-tests comparing the base and sensitivity simulations (p<0.05). The impacts of irrigation on Nr deposition over 

non-irrigated areas are rather noisy and more intense than on O3, where Student’s t-tests comparing Nr deposition from 

different simulations gave larger-than-0.05 p values. These sensitivities away from irrigated lands still highlight the complex 

net effects of irrigation-induced changes in land surface and meteorological conditions on a group of species with 590 

substantially different properties undergoing various atmospheric processes. 

 

Compared with long-term offline LSM simulations forced by independently produced O3 data, evaluations of O3 vegetation 

impacts using coupled modeling systems like WRF-Chem with land surface feedback to regional weather and atmospheric 

chemistry being accounted for are more realistic. Nevertheless, such approaches are hundreds of times more computationally 595 

expensive and may be subject to uncertainty from the atmospheric model. Survey- and satellite-based irrigation types and 

water use information, including wastewater use that may impact plant growth, nutrient supply and soil environments (Aman 

et al., 2018), direct stationary and/or airborne measurements of water, carbon, energy, air pollutants’ concentrations and 

fluxes, as well as plant traits within and outside of irrigated areas for variable hydroclimatic conditions, would help evaluate 

and improve irrigation modeling and the model-based holistic assessments of irrigation impacts on regional environments 600 

that could assist with forming pollution mitigation and ecosystem adaptation strategies for future.  

 

3.3.3 Transboundary pollution 

Periodically, distant pollution sources make strong environmental impacts on the Northeast and Mid-Atlantic US states. For 

example, during the 2023 SARP-East campaign, JPSS-1/CrIS observed high O3 and low CO on 13 June; and high O3, CO, 605 

and PAN on the following days of the same week (Fig. 16) when elevated NH3 columns and aerosol optical depths were also 



 

18 
 

observed from space by multiple instruments (not shown). These data suggest that long-range transported stratospheric air 

and Canadian wildfire plumes reached the eastern US. 

 

As indicated by the stratospheric O3 tracer of the chemical BC model WACCM, the 13 June stratospheric intrusion event 610 

associated with a frontal passage enhanced lower tropospheric O3 by as high as 30–40 ppbv along the northeast corridor, 

which helps explain the spike at ~700 hPa (>30 ppbv O3 enhancement) in the SARP-East RRC ozonesonde profile for that 

day (Fig. 17a–b). The WACCM-estimated stratospheric impact on surface O3 in our WRF-Chem domain is only ¼–1/3 of its 

impact on free tropospheric O3 (Fig. S21), consistent with prior knowledge that stratospheric impacts on the US East are 

often confined at higher altitudes while surface O3 remains low (Ott et al., 2016). Thick Canadian wildfire plumes that 615 

moved into the study region, dramatically enhanced O3 spanning a wide altitude range (i.e., from >900 hPa to ~600 hPa) 

above the RRC site on several days of that week (Fig. 17b). Under the strong influences of Canadian fires, O3 in the US 

outflows during that week was close to that in the air sampled ~two decades ago along the East Coast (Cooper et al., 2005). 

Ozonesondes also indicate that air quality improved remarkably in the following week, with O3 from the surface to ~700 hPa 

nearly 40 ppbv lower (Fig. 17b).  620 

 

The WRF-Chem baseline and “Sen” sensitivity simulations were evaluated with O3 observations during 13–16 June 2023. 

Overall, the baseline and “Sen” simulations moderately well reproduced the daytime surface O3 patterns and diurnal cycles 

observed at AQS sites during the events, with RMSEs of ~7 ppbv (Figs. 17c–k and S21). The negative mean biases of 1–2 

ppbv in the modeled daytime peak O3 (Fig. 17c) can be explained by the model’s incapability of accurately representing the 625 

stratospheric O3 influences. The choice of WACCM’s fire emission input had minor impacts on WRF-Chem daytime surface 

O3 averaged across the domain throughout the episode but enhanced/reduced WRF-Chem’s daily daytime surface O3 by up 

to ~10 ppbv on grid scale (Figs. S21–S22).  

 

The extremely high transported background aerosols and their precursors due to Canadian wildfires, along with upwind US 630 

pollution, interacted with meteorological and land surface fields (e.g., radiation, temperature, clouds, precipitation, and 

surface wetness) that are relevant to evapotranspiration and photosynthesis (see also discussions on Asian anth pollution 

impacts in Huang et al., 2020, and references therein), dry deposition velocity and wet deposition coefficient, and secondary 

pollutant formation. The baseline and “Clean BC” cases together indicate that, although under highly polluted conditions, 

dry deposition velocities are overall reduced (Fig. S23) and photochemistry activities are weakened, the period-integrated 635 

CUO and mean total Nr deposition fluxes are enhanced as the excessive amount of imported pollution significantly elevated 

surface O3 and Nr concentrations (Fig. 18). During this period, daily O3 stomatal uptake and the mean total Nr deposition 

overland are ~2% and ~26% higher than their 2023 seasonal-mean values, respectively. Comparisons of baseline and “Sen” 

simulations results show that the modeled grid-scale O3 stomatal uptake and total Nr deposition are sensitive to the choice of 

WACCM’s fire emission input (Fig. S22). This set of sensitivity analysis not only supports the findings about fire emission 640 
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impacts on deposition from offline air quality modeling studies (e.g., Koplitz et al., 2021), but also stresses the importance of 

accounting for aerosol radiative effects in assessing ecosystem impacts of pollutants from biomass burning and other sources, 

which will be investigated further on multiple spatiotemporal scales in an Hemispheric Transport of Air Pollution phase 3 

multimodel experiment (Whaley et al., 2024, https://doi.org/10.5194/gmd-2024-126, in review).  

 645 

Previous work has focused strongly on the impacts of long-range transport of pollution from Asia and the stratosphere, as 

well as regional pollution transport, on the western US O3 trends (e.g., Cooper et al., 2012; Huang et al., 2013; Lin et al., 

2017; Miyazaki et al., 2022). This case study demonstrates that extra-regional pollution can also compromise the efforts of 

improving air quality via controlling local and regional emissions over the eastern US. Possibly linked to climate change, 

such highly polluted events occurred more frequently during the 2023 warm season. For example, driven by hot and dry 650 

conditions, the Canadian 2023 wildfire season had the largest area burned in history (https://cwfis.cfs.nrcan.gc.ca/ha/nfdb, 

last access: 23 July). Due to Canadian wildfire impacts, there were at least two other known extreme air pollution events 

over the eastern US in June 2023 and more in the other months of the season (Fig. S24). Such events exerted controls on 

surface-atmosphere exchange processes and perturbing the long-term changes in O3, Nr and other chemical compounds. 

More accurate and consistently-configured chemical BC models or reanalysis products, preferably at higher resolutions with 655 

a more complete list of prognostic and diagnostic variables, are essential for further regional-scale modeling investigations 

on such events and their contributions to trends/variability. Addition of stratospheric tracers and accurate, time-varying 

upper chemical boundary conditions to regional models, assisted with O3 profile measurements from commercial aircraft, 

sondes, and Lidar networks, are expected to be also helpful for diagnosing and/or reducing errors in the simulations of some 

of such events.  660 

4 Summary and suggested future directions  

Based on WRF-Chem model simulations and multiplatform observations, this paper discussed Nr and O3 concentrations and 

fluxes during 2018–2023 in the northeastern and mid-Atlantic US, most of which fell into NOx-limited and transitional 

chemical regimes. Effective local emission controls resulted in evident decreases in NO2 and surface O3 concentrations, with 

the reduced human activities during the COVID lockdowns also contributing to their low values and the overall stronger 665 

surface O3-NO2 column correlations in 2020. Current polar-orbiting satellites take snapshots of NO2 columns only at a 

particular time of day, such as in the early afternoon when surface NO2 experienced their daily lows. With this sparse 

temporal sampling, TROPOMI did not miss the general NO2 interannual and seasonal variability and filled in the extremely 

large horizontal gaps between surface AQS observations most of which are in/near urban regions and positively biased. The 

WRF-Chem simulation described here has been extended into 2024, running on a routine basis, to support refined analyses 670 

concerning the subdaily variability of NO2 and other variables along with data from geostationary satellite missions such as 

the TEMPO.  
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The declines in NOy emissions and concentrations were roughly consistent with the temporal changes in NOy deposition, 

which were balanced out by the overall rising agricultural and total NHx emissions and deposition. The changes in NOy and 

NHx deposition together shaped the interannual variability in Nr deposition in contrast to the clearer downward trends in O3 

vegetation uptake that reduced plants’ water use efficiency and caused biomass/crop yield losses by a few percent. Certain 

hotspots of Nr deposition in North Carolina may have continued to exceed the CL thresholds for herbaceous plants and trees 680 

in literature, while the productivity of northern forests may have remained to be nitrogen-limited. Referring to the 

conservative lichen CL thresholds in literature, widespread lichen CL exceedances likely occurred persistently. Integrating 

nitrogen dynamics into LSMs could help improve their performance on land surface states as well as carbon, water, and 

energy fluxes, and further, the representations of Nr and O3 deposition processes and their interactions in coupled modeling 

systems. Standard versions of Noah-MP, including what was used in this work, represent nitrogen stress by applying 685 

constant foliage nitrogen factors (<1) in maximum carboxylation rate calculations (Niu et al., 2011). Following the JULES 

and Community Land Model, Cai et al. (2016) started to add nitrogen dynamics to Noah-MP. Running offline, their updated 

model yielded more accurate net primary productivity and evapotranspiration, and that may also be embedded into Earth 

system models in future, with the magnitudes and spatiotemporal variability of its Nr inputs (e.g., from deposition and 

fertilizer applications) being improved with the aid of atmospheric chemistry model routines or/and observations. Other 690 

areas for improvements include assimilating additional Earth observations (e.g., rootzone SM and terrestrial water storage); 

developing and applying high-quality, spatially and temporally varying CO2 forcings for Noah-MP; and tuning parameters 

that represent O3 vegetation impacts for various types of plants at different growth stages. 

 

With updated model parameterizations and anth emissions, the used WRF-Chem system performed stably and remarkably 695 

better on eastern US surface O3 than many of those in literature. This paper highlighted that, temporal variability of Nr and 

O3 concentrations and fluxes on subregional-to-local scales were partially driven by hydrological variability that can be 

influenced by precipitation and controllable human activities such as irrigation. Like deposition processes, biogenic soil Nr 

and VOC emissions that are highly sensitive to various climatic factors and plants’ physiological conditions, as well as extra-

regional sources (e.g., dense wildfire plumes from the western US and Canada, and O3-rich stratospheric air), have been 700 

playing increasingly important roles in controlling pollutants’ budgets in this area as local emissions went down. These 

outcomes based on this particular WRF-Chem system have implications for updating other modeling systems. 

 

It is worth noting that, urban emissions and air pollutants can be transported to and deposited into rural and remote regions, 

which may better be modeled at finer resolutions (e.g., urban scale at 1–4 km or street-to-building scales) with the urban 705 

landscapes and human influences on urban vegetation and soil properties being more carefully handled. Finer model 

resolutions may also allow more processes, such as convection, to be explicitly resolved, potentially leading to more accurate 

precipitation and deposition results. Successful finer-resolution simulations would require accurate inputs and observational 

constraints at similar resolutions. To better inform the designs of mitigation and adaptation strategies, it is highly 
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recommended to continue evaluating and improving the parameterizations and inputs relevant to various sources and 

processes in seamlessly coupled multiscale Earth system models using laboratory and field experiments in combination with 

satellite DA. Further improved Earth system model results are expected to in turn benefit remote sensing communities, for 

example, via serving as the retrieval a priori profiles for different types of environments. 

Code and data availability 715 

NASA-Unified Weather Research and Forecasting model (https://nuwrf.gsfc.nasa.gov/software, last access: 6 February 

2024) output of O3 and other key variables will be shared via Zenodo with the final version of this manuscript. Remote 

sensing and in situ data sets can be downloaded from: https://doi.org/10.5067/4DQ54OUIJ9DL (O’Neill et al., 2021), 

https://doi.org/10.5067/GPM/IMERGDF/DAY/07 (Huffman et al., 2023); https://doi.org/10.5067/MHH8R0UZ5BMJ 

(Bowman, 2022a); https://doi.org/10.5067/JL1HT3NGEAW3 (Bowman, 2022b); https://doi.org/10.5067/6HTQB4F81S08 720 

(Bowman, 2022c); https://www-air.larc.nasa.gov/cgi-bin/ArcView/listos (Janz, 2020); https://doi.org/10.5065/4F4P-E398 

(NCEP, 2004); and https://aqs.epa.gov/aqsweb/airdata/download_files.html (US EPA, 2024, last access: 1 October 2024). 

Gridded TROPOMI data have been submitted by Isabelle De Smedt to TOAR-II Tropospheric Ozone Precursors Focus 

Group repository. 
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Figures 

Figure 1: (a) A simplified schematic representation of Nr-O3 relationships in the Earth systems; (b) model domain and the grid-
dominant land use/land cover (LULC) classifications, grouped from the original 20-category International Geosphere-Biosphere 1280 
Programme-modified Moderate Resolution Imaging Spectroradiometer (MODIS) using the same criteria as in Huang et al. (2022); 
and (c) irrigation fraction information required in the irrigation scheme. The grouped LULC is used for reporting potential O3 
and Nr ecosystem impacts in Section 3.2, and approximately 32%, 24%, 1%, 3%, and 40% of model grids belong to the grouped 
forests, crops, shrub/grass, urban, and water category, respectively. 
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Figure 2: (a;b) Anthropogenic (Anth) and (c;d) biomass burning (fire) (a;c) NOx and (b;d) NH3 emissions for MJJ 2018 and the 
differences between MJJ of each of the following years and 2018, in mol km-2 h-1. Numbers at the corners of the difference plots 
indicate the % changes relative to MJJ 2018. 1290 
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Figure 3: MJJ ~600–800 hPa (a) total and (b) stratospheric O3 and their interannual differences in ppbv, and (c) wind fields for 
each year’s MJJ, from WRF-Chem’s chemical boundary condition models. Stratospheric O3 impacts on the surface are indicated 
in Fig. S2. 1295 

 

Figure 4: (a) SMAP morning-time SSM (m3 m-3) on WRF-Chem grids and (b) GPM/IMERG precipitation (mm h-1) on its native 
grid for MJJ 2018 (left) and the differences between MJJ of each of the following years and 2018. SMAP measures the globe every 
2–3 days and GPM daily global-coverage products are used for this work. SMAP data are not available during 20 June–22 July 1300 
2019 due to instrument outages; and the ESA CCI version 8.1 SM product indicates qualitatively similar MJJ 2019-2018 
variability. 
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1305 
Figure 5: (a) Modeled soil NO and HONO emissions (mol N km-2 h-1) and (b) soil NO and HONO emission % contributions to total 
anth+fire+soil NOy emissions. Model results are averaged for MJJ 2018, shown together with the differences between MJJ of each 
of the following years and 2018. Numbers at the corners of the soil emission difference plots in (a) indicate the % changes relative 
to MJJ 2018. The scatterplot in (c) indicates relationships between the interannual differences in water-filled pore space (WFPS, 
whose spatial patterns are shown in Fig. S5) and soil NOy emissions including their correlation coefficients in the upper-right 1310 
legend (p<<0.01). 

 
Figure 6: (a) Emission and deposition fluxes by year, scaled to MJJ 2018 total emissions; (b) Domain-wide MJJ-average surface 
and column NO2, summarized for early-afternoon (19 UTC) and daytime, and for land and all model grids. Water and land model 
grids are defined in Fig. 1b. 1315 
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Figure 7: (a) TROPOMI and (b) WRF-Chem NO2 columns; and (c) WRF-Chem surface NO2 at 19 UTC. Results are averaged for 1320 
MJJ 2018 (left, in ×1016 molec. cm-2 for column NO2 and ppbv for surface NO2) and shown together with the % differences 
between MJJ of each of the following years and 2018. 

Figure 8: (a) Modeled MJJ 2018 total Nr deposition overland and differences between MJJ of each of the following years and 2018 
in kgN ha-1 a-1; and speciation of modeled (b) dry and (c) wet deposition fluxes by year, where prefix “p” indicates particle. 1325 
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Figure 9: TROPOMI (MJJ 2018–2023), GeoTASO (25 and 30 June 2018) and GCAS (2, 19 and 20 July 2018) HCHO/NO2 ratios. 1330 
GeoTASO and GCAS both took measurements over the Greater New York City (NYC) several times during the sampling days 
which indicate subdaily variability in HCHO, NO2 and their ratio. Their measurements closest to 19 UTC are used here. 

Figure 10: (a) WRF-Chem modeled and (b) AQS daytime surface O3. Results are averaged for MJJ 2018, shown together with the 
differences between MJJ of each of the following years and 2018, all in ppbv. Observations from the AQS sites having <10% 1335 
missing data for each year were used for evaluation. Model vs. AQS RMSEs (number of grids having collocated observations) for 
2018, 2019, 2020, 2022, 2023 are 5.6 (375), 6.5 (377), 5.9 (373), 4.8 (370), and 4.0 (381), respectively. 
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Figure 11: Scatterplot indicating the relationships between WRF-Chem modeled daytime surface O3 and 19 UTC NO2 column 
during MJJ 2018–2023 for all terrestrial model grids, colored by column HCHO/NO2 ratios. Their correlation coefficients 
(p<<0.01) are indicated in the corner legend by year.  

 1350 

Figure 12: Box-and-Whisker plots of (a) CUO and (b) mean total Nr deposition fluxes for MJJ 2018–2023 by the grouped surface 
types defined in Fig. 1b. 
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Figure 13: (a–c) 14 July-11 July SSM (m3 m-3) changes indicated by bias-corrected SMAP, free-running and SMAP-constrained 
Noah-MP results; (d–f) 14 July TROPOMI NO2 columns (×1016 molec. cm-2) collected between 18–19 UTC, free-running and 
SMAP-constrained WRF-Chem results at 18 UTC; NO2 vertical profiles from free-running and SMAP-constrained WRF-Chem at 
Harvard Forest (HF, solid line) and CRN-Millbrook (dash line) at (g) 18 UTC and (h) 19 UTC on 14 July, along with the impact of 1370 
SMAP DA on modeled boundary layer height (PBL) as well as TROPOMI averaging kernels (AK) on TROPOMI’s a priori model 
grid. The white + and × signs in (a–f) denote the locations of HF and CRN-Millbrook where in situ precipitation and SSM data are 
also analyzed. Ground-based SSM measurements on 11 July and 14 July near SMAP overpasses are 0.170±0.059 and 0.245±0.080 
m3 m-3 at HF, and 0.067 and 0.086 at CRN-Millbrook, respectively. Precipitation and ground-based O3 fields on 11 and 14 July are 
shown in Fig. S17.  1375 
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Figure 14: July 2022-July 2018 monthly differences in (a–c) SSM (m3 m-3) indicated by bias-corrected SMAP, free-running and 
SMAP-constrained WRF-Chem initial conditions (ICs); (d–f) early afternoon NO2 columns (%) based on TROPOMI, free-1385 
running and SMAP-constrained WRF-Chem results; (g–i) daytime surface O3 concentrations (ppbv) based on AQS observations, 
free-running and SMAP-constrained WRF-Chem results; and (j–l) daytime surface air temperature (K) based on the National 
Centers for Environmental Prediction (NCEP) Surface Observational Weather Data product, free-running and SMAP-
constrained WRF-Chem results. Green circles highlight areas in/around Virginia where improvements in WRF-Chem land ICs 
notably improved the weather, NO2 and O3 fields. Additional information on the SMAP data assimilation (DA) impacts is included 1390 
in Fig. S18. 
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Figure 15: (a) Daytime surface O3 concentration (ppbv, with the RMSE relative to AQS data of ~5.6 ppbv); (d) period-cumulated 
O3 stomatal uptake (mmol m-2); (g) O3 impacts on leaf biomass (%) over irrigated areas in/around the Carolinas; and (h) total Nr 1395 
deposition overland (kgN ha-1 a-1) from the baseline simulation during 21–30 June 2022, and (b;c;e;f;h;i;k;l) their sensitivities to 
adjustments in irrigation schemes. Sensitivity results are in ppbv for surface O3 concentration, and in % for all other plots. Green 
areas in (k;l) marked the grids where Student’s t-tests comparing Nr deposition from the baseline and sensitivity simulations gave 
smaller-than-0.05 p values. 
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Figure 16: JPSS-1/CrIS observed (a) O3 columns (mol m-2); (b) column-averaged CO mixing ratios (ppbv); and (c) column-
averaged PAN mixing ratios (ppbv) for the free troposphere between 825 and 215 hPa, during 13–16 June 2023.  1405 
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Figure 17: (a) WACCM model stratospheric O3 tracer (ppbv) results at ~700h Pa at 18 UTC of 13 June 2023, with location of the 
RRC site being indicated by a white diamond; (b) Ozonesonde profiles launched from the RRC; (c) Timeseries of the domain-1410 
mean observed and WRF-Chem modeled hourly surface O3 during 13–16 June 2023 at AQS sites; and daytime surface O3 
concentrations (ppbv) on 13–16 June 2023 from (d–g) the WRF-Chem baseline simulation and (h–k) AQS sites. WRF-Chem vs. 
AQS RMSEs (ppbv) are indicated in the lower-right corners of (d–g).  
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Figure 18: (a;d) Daytime surface O3 concentrations (ppbv); (b;e) total Nr deposition overland (kgN ha-1 a-1); and (c;f) period-
cumulated O3 stomatal uptake (mmol m-2) during 13–16 June 2023 from the (a–c) baseline simulation and (d–f) sensitivity 
simulation with clean chemical BCs. 1420 
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