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Abstract. Untangling the complex network of physical processes driving regional precipitation regimes in the present (1979-

2014) and near-future climates (2020-2050) is fundamental to support a more robust scientific basis for decision making in  

the water-energy-food nexus. We propose a data-driven mechanistic approach to: (Goal 1) identify changes and variability of 

the regional precipitation mechanisms and (Goal 2) reduce the ensemble spread of future projections by weighting and 

filtering models that satisfactorily represent these drivers in present climate.  Goal 1 is achieved by applying the Partial Least  

Squares  (PLS)  technique,  a  two-sided  variant  of  principal  component  analysis  (PCA),  on  a  reanalysis  dataset  and  30  

simulations of the future climate submitted to CMIP6 to discover the links between global sea-surface temperature (SST) 

and precipitation in Brazil. Goal 2 is achieved by selecting and weighting the future climate simulations from climate models 

that better represent the dominant modes discovered by the PLS in the present climate; with this subset of climate simulation, 

we produce precipitation change maps following IPCC’s WG1 methodology. The main mechanistic link discovered by the 

technique is that the generalised warming of the oceans promotes a suppression of precipitation in Northeast and Southeast  

Brazil,  possibly  mediated  by  the  intensification  of  the  Hadley  circulation.  We  show  that  this  pattern  of  precipitation  

suppression is stronger in the near-future precipitation change maps produced using our methodology. This demonstrates that 

a reduction of epistemic uncertainty is achieved after we select models that skillfully represent these mechanisms in the 

present climate. Therefore, the approach is capable of supporting both a quantitative analysis of regional changes as well as  

the construction of storylines supported by mechanistic evidence.

1 Introduction

Information about near-future regional precipitation change is crucial for planning and managing critical infrastructure, such 

as  hydropower  plants,  water  reservoirs,  and  city  planning.  Unpreparedness  for  changes  and  variations  in  regional 

precipitation regimes may lead to disruption in the water-food-energy supply chains as well as avoidable deaths and damages 

by flooding and landslides. Although there is a degree of certainty about global precipitation changes (Shepherd et al., 2018),  
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such as  the intensification of the hydrological  cycle,  a current  major  challenge  in  climate change science  is informing 

planners and decision-makers about regional changes within the critical time-frame of the next three decades.

Within this time frame, the two main sources of uncertainty in regional precipitation changes are model uncertainty and 

internal  variability  (Hawkins  and  Sutton,  2011).  Uncertainty  due  to  the  internal  variability  of  the  climate  system  is  

impossible to reduce and is aleatoric and related to the chaotic nature of the system (Shepherd, 2019). Model uncertainty, on 

the other  hand,  is  epistemic  in  nature  and stems from our limited knowledge of  Earth’s  climate system and from the 

challenges  in  translating  this  system into  computer  models.  Currently,  there  are  131 available  models  on  the  CMIP6 

database, each representing Earth’s climate with a range of parameterizations and numerical modelling strategies.

In this study, we seek for a reduction of the epistemic uncertainty of regional precipitation changes in Brazil through a data-

driven process-based methodology of model selection and weighting. The method discovers the relationships between sea  

surface  temperature  and  precipitation  in  Brazil  and  evaluates  the  capability  of  CMIP6  models  to  reproduce  these 

precipitation  mechanisms in  the  present  climate.  Later,  the  best  models  are  selected  and  weighted  to  produce  refined 

precipitation maps. Due to the process-based nature of the method, it  is  also possible to isolate  mechanisms and draw  

storylines of plausible futures. The paper answers the following questions:

● What are the spatiotemporal links between global sea-surface temperature (SST) and regional precipitation change 

and variability in Brazil?

● Many patterns have been identified in the literature,  but  here we choose to use a supervised ML approach to  

systematically identify and quantify their importance

● Can we take advantage of these mechanisms to filter CMIP6 simulations and reduce the epistemic uncertainty of  

regional precip changes?

● How precipitation will look like in the next 30 years in Brazil; as predicted by a filtered model ensemble, in which  

we can consider the mean, the trend or individual model runs as possible futures.

2 Materials & Methods

2.1 Data-driven discovery of precipitation mechanisms

To discover the underlying mechanisms linking the SST spatiotemporal variability and regional precipitation in Brazil we 

employ a data-driven dimensionality reduction method known as Partial Least Squares (PLS) adapted to a lat-lon grid; which 

has been recently shown to successfully identify circulation mechanisms leading to precipitation (Perez et al, 2022).

The PLS method identifies pairs of latent variable vectors and  that maximises the information present in XtY, where X and  

Y represent two arrays of SST and precipitation, respectively; rows of X and Y represent the monthly averaged temporal  

samples while the columns represent the spatial lat-lon grid points. The more familiar Principal Component Analysis (PCA)  

can be seen as a special case where X=Y. The initial set, or mode, of latent variables is determined through the following  

covariance Eq. (1):
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Cov(1,1)=max॥u॥=॥ v॥=1Cov (Xu ,Yv) , (1)

where u and v are temporally invariant arrays of loadings; in contrast to PCA, PLS yields a pair of loading matrices per  

component rather than a single loading matrix; the first pair of loading matrices is the one in which the corresponding latent  

vectors and  are  the most correlated. The following modes are found through repeating the process on the residuals of each 

preceding pair.

The interpretation of PLS results should always consider scores and loadings concurrently. A positive loading correlation,  

coupled with a positive trend in the scores, indicates an increase in signal strength over time. Conversely, when loadings 

exhibit the same signal but are associated with a negative trend in scores, this suggests a decrease in signal intensity. A 

detailed explanation of the method can be found in Wegelin (2000).

2.2 Present and future climate datasets

The PLS method was applied to two kinds of climate datasets: firstly, to present climate data from AMIP experiments and  

reanalysis and, secondly, to the future climate simulations. In the AMIP experiments, atmospheric models are forced by 

prescribed sea surface temperatures. The subsections below describe the methodologies and data behind the present and  

future climate results.

2.2.1 Present climate (AMIP)

The first step was to establish a transfer function linking SST and precipitation month-to-month co-variability using the PLS 

technique, for the reanalysis and atmosphere-only experiments. The goal is to identify models that accurately represent the 

transfer function identified in the reanalysis in the present climate. To achieve this, we employ precipitation data derived 

from the ERA5 reanalysis (Hersbach and Dee, 2016), in addition to precipitation data from 29 AMIP models from the  

Coupled Model Intercomparison Project Phase 6 (CMIP6), as outlined in Table 1. Before the PLS technique was employed, 

the  ERA5  precipitation  data  underwent  systematic  error  correction  using  observations  from  the  Global  Precipitation 

Climatology  Project  (GPCP,  Adler  et  al.,  2018)  as  a  reference  through  the  quantile  mapping  method,  which  adjusts 

probability distributions by individually matching each quantile to the respective quantile of the reference dataset (Jakob et 

al.,  2011).  Each precipitation dataset  was conservatively gridded to a regular  1°x1° lat-lon grid in a  monthly temporal 

resolution between 1979 and 2014. SST data was obtained from the COBE dataset, produced by the Japan Meteorological  

Agency (Hiragana et al., 2014).

Table 1 - CMIP6 simulations, their native resolutions, vertical levels and source institutions
Model Horizontal resolution Vertical levels Variant label Institution

ACCESS-CM2 1.875° × 1.25° 85 r1i1p1f1 CSIRO

ACCESS-ESM1-5 1.875 ° x 1.25° 38 r1i1p1f1 CSIRO

BCC-CSM2-MR 2.81° x 2.81° 46 r1i1p1f1 BCC
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Model Horizontal resolution Vertical levels Variant label Institution

ACCESS-CM2 1.875° × 1.25° 85 r1i1p1f1 CSIRO

CAMS-CSM1-0 1° x 1° 31 r1i1p1f1 CAMS

CanESM5 2.81° x 2.81° 49 r1i1p1f1 CCCma

CESM2-WACCM 0.9° x 1.25° 70 r1i1p1f1 NCAR

CIESM 1° x 1° 30 r1i1p1f1 THU

CMCC-CM2-SR5 1° x 1° 30 r1i1p1f1 CMCC

CNRM-CM6-1 1.4° x 1.4° 91 r1i1p1f2 CNRM-CERFACS

CNRM-CM6-1-HR 1.4° x 1.4° 91 r1i1p1f2 CNRM-CERFACS

CNRM-ESM2-1 1.4° x 1.4° 91 r1i1p1f2 CNRM-CERFACS

EC-Earth3-CC 0.7° x 0.7° 91 r1i1p1f1 EC-Earth-Consortium

EC-Earth3-Veg 0.7° x 0.7° 91 r1i1p1f1 EC-Earth-Consortium

EC-Earth3-Veg-LR 1.1° x 1.1° 62 r1i1p1f1 EC-Earth-Consortium

FGOALS-f3-L 1° x 1° 32 r1i1p1f1 IAP/CAS

FGOALS-g3 2° x 2° 26 r1i1p1f1 IAP/CAS

GFDL-CM4 1° x 1° 33 r1i1p1f1 NOAA-GFDL

GFDL-ESM4 1° x 1° 49 r1i1p1f1 NOAA-GFDL

IITM-ESM 2° x 2° 64 r1i1p1f1 CCCR-IITM

INM-CM4-8 2° x 1.5° 21 r1i1p1f1 INM

INM-CM5-0 2° x 1.5° 73 r1i1p1f1 INM

IPSL-CM6A-LR 2.5° x 1.3° 79 r1i1p1f1 IPSL

KACE-1-0-G 1.9° x 1.3° 85 r1i1p1f1 NIMS-KMA

MIROC6 1.4° x 1.4° 81 r1i1p1f1 MIROC

MPI-ESM1-2-HR 0.93° x 0.93° 95 r1i1p1f1 MPI-M

MPI-ESM1-2-LR 1.9° x 1.9° 47 r1i1p1f1 MPI-M

MRI-ESM2-0 1.125° x 1.125° 80 r1i1p1f1 MRI

NESM3 1.9° x 1.9° 47 r1i1p1f1 NUIST

NorESM2-LM 2° x 2° 32 r1i1p1f1 NCC

TaiESM1 1.25° x 0.9° 30 r1i1p1f1 AS-RCEC

The models listed above, through their computational representations of the atmosphere, choices of parameterisation, vertical  

levels etc, provide unique numerical representations of the physical climate system. Each of these representations have a  
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distinct level of skill in simulating the mechanisms of precipitation variability and changes in Brazil. Therefore, we rank and  

select the models with higher performance to represent the  SST-precipitation transfer function revealed by the PLS analysis.

This ranking is based on the Normalised Root Mean Square Error (NRMSE), which is obtained by comparing the PLS scores 

and loadings between each model and those derived from the ERA5 reanalysis. Models that exhibit NRMSE < 0.6 in at least  

two  out  of  the  first  four  PLS  components,  are  singled  out  as  more  reliably  representing  mechanisms  that  cause  the 

precipitation in Brazil while the rest is discarded for the remaining analysis.

After the model ranking and selection step, we provide a set of weights that will be later used for model averaging. This set  

of weights is found by multiplying the inverse of the NRMSE by the importance of each PLS component; this is done so that  

models  that  perform well  in  representing  more relevant  mechanisms are  favoured  during the  model  pooling step.  The 

importance of each PLS component is quantified by the coefficient of determination (r²) of the reconstructed precipitation 

using only that component and the original ERA5 precipitation.

2.2.2 Future climate

We employ the same PLS methodology on future climate simulations under the SSP2-2.45 scenario between 2020 and 2050; 

in  this  near-future  temporal  range,  we  do  not  expect  the  choice  of  scenario  to  influence  the  results  because  scenario  

uncertainty in regional precipitation changes only becomes relevant in later decades (Hawkins and Sutton, 2011).

Finally, the effectiveness of this methodology in reducing the  uncertainty of near-future precipitation changes in the CMIP6 

ensemble is assessed by comparing the uncertainty of all CMIP6 models listed in Table 1 with the uncertainty of the subset  

of models selected by our methodology. The uncertainty of the climate change signal was computed for each grid cell by  

determining the ratio (in %) between the ensemble mean climatologies of the SSP2-4.5 scenario for the years 2020-2050 and 

the  historical  period  of  1979-2014.  To  assess  the  robustness  of  the  models,  we  apply  the  procedure  adopted  by  the  

Intergovernmental Panel on Climate Change (IPCC), as outlined in its Sixth Assessment Report, made available through the  

Interactive Atlas developed by Working Group I (WGI). This approach determines the robustness of climate change signals 

based on a strong model consensus,  highlighting where  at  least  80% of the models agree on the sign of the predicted  

changes.

3 Results and discussion

In  this  section,  we  present  the  results  of  the  analysis  for  the  present  and  future  climates,  discussing  the  underlying  

precipitation mechanisms in reanalysis and model data. We also discuss the reduction of epistemic uncertainty of regional  

precipitation changes obtained through the selection of  models that  skillfully represent  precipitation mechanisms in the  

present climate. In all results, the Legal Amazon area was cropped off; this is because precipitation in the Amazon region  

presents  significantly  higher  variability,  dominating  the  results  and  washing  out  patterns  in  other  areas  that  are  also 

socioeconomically relevant.
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3.1 Precipitation mechanisms in the present climate (1979-2014)

In the present climate, the first PLS loadings matrix of the SST reveals a prominent  positive pattern in the central Pacific  

Ocean that  aligns with the region dominated by the El Niño/Southern Oscillation (ENSO) phenomenon (Fig.  1a).  This 

ENSO-like pattern with high statistical significance (unhatched area) extends from the west coast of South America to the 

Maritime Continent in the equatorial region, surrounded by a pattern of opposite signal. The associated PLS loadings matrix  

for precipitation shows a significant positive correlation in South Brazil and a negative correlation in Northeast Brazil (Fig. 

1b). The time series of the associated scores do not show a strong linear trend, reinforcing that this PLS mode is more  

associated with a natural variability mechanism like ENSO than to climate change (Fig. 1d).

The global warming trend can explain the mostly positive SST loadings matrix and the increasingly positive scores time  

series of the second PLS component (Fig. 2a,c). This warming oceanic pattern is linked to a precipitation reduction in most  

of Southeast and Northeast Brazil (Fig. 2b,d). A possible explanation for this precipitation suppression is the expansion of  

the Hadley  cell  under climate change (Lu et  al.,  2007;  Grise & Davis,  2020) and,  consequently,  the restriction of the 

equatorward motion of extratropical cyclones and their fronts, which are important precipitation mechanisms in Southeast  

Brazil (Perez et al., 2021). Perez et al. (2022) has shown that a temporary intensification of the Hadley circulation during  

positive NAO events leads to precipitation suppression in Southeast Brazil.
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Figure 1: First component of the PLS methodology applied using monthly precipitation data from ERA5 and SST data from  
COBE between 1979 and 2015. The spatial maps represent the loadings matrices and the time series represent the scores. The  
hatchings represent areas where the statistical confidence on the sign of the anomaly is lower than 95%.

Figure 2 - Second component of the PLS methodology applied using monthly precipitation data from ERA5 and SST data from  
COBE between 1979 and 2015. The spatial maps represent the loadings matrices and the time series represent the scores. The  
hatchings represent areas where the statistical confidence on the sign of the anomaly is lower than 95%.

Through the analysis of the PLS components in the present climate datasets, we are able to select and rank the models based  

on their performance to reproduce these components. The model selection is based on a threshold of NRMSE< 0.6, and the 

individual  model  weights  are based  on the inverse of  the average  NRMSE among the PLS components  scaled by the  

importance of each component, as described in the Methodology section. The table below lists the selected models and their  

respective weights along with the components these models skillfully represent, later employed to construct the weighted 

ensemble mean in the future climate section.

Table 2 - List of selected models and their weights represented as a percentage of their contribution to the ensemble mean.
Model Components Weight (%)

CAMS-CSM1-0 1, 2, 4 7.76

CNRM-ESM2-1 1, 3, 4 7.73

GFDL-ESM4 2, 4 7.59
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Model Components Weight (%)

BCC-CSM2-MR 1, 2, 4 7.37

EC-Earth3-CC 1, 2 7.11

EC-Earth3-Veg-LR 1, 2 7.08

EC-Earth3-Veg 2, 4 6.83

IPSL-CM6A-LR 2, 3, 4 6.69

KACE-1-0-G 1, 2 6.61

CNRM-CM6-1-HR 2, 3, 4 6.56

MPI-ESM1-2-HR 1, 4 6.28

CMCC-CM2-SR5 1, 2 6.19

FGOALS-f3-L 2, 3 6.18

MIROC6 1, 4 5.94

CESM2-WACCM 1, 4 4.08

3.2 Precipitation mechanisms in the future climate (2020-2050)

The oceanic mechanisms driving precipitation in Brazil in the future climate (2020-2050) are discovered by applying the 

PLS methodology in CMIP6 future climate simulations (Fig. 3 and 4). Figure 3 shows the first PLS component and Figure 4 

the second PLS component; for each component, only models that performed well (NRMSE < 0.6) in the present climate are  

considered. The spatial maps show the average loadings matrices of the model ensemble, where each model is weighed by 

its skill in the present climate (Table 2); the hatched areas represent regions where at least 80% of the models disagree on the 

sign of the loadings matrix.

The first component shows a strong Niño-like pattern in the Central Pacific, similarly to what is  found in the present climate  

(Fig. 3a). However, unlike the present climate analysis, this Niño-like component shows a strong linear trend in the time 

series of scores (Fig. 3c), suggesting that the climate models are mixing the natural variability of the ENSO phenomenon and 

anthropogenic global warming; this warming trend can also be seen in the increasingly positive patterns in the tropical 

Atlantic and Indian oceans. The impact of this warming trend in the Brazilian regional precipitation is a wetting pattern in  

South Brazil and a drying pattern in Northeast Brazil, interfaced by a large region of uncertainty (Fig. 3b).

The  second  component  illustrates  a  generalised  warming  trend  in  most  regions  of  model  agreement  (Fig.  4a,c).  This  

component impacts precipitation in Brazil through a drying trend in the southernmost border of the country and a wetting 

trend in the southeastern area. Some coastal areas in Northeast Brazil are significantly affected by a drying trend (Fig. 4b,d).
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Figure 3 - First component of the PLS methodology applied using monthly precipitation data from CMIP6 models under the  
SSP2-4.5 scenario, listed in Table 2, between 2020 and 2050. The spatial maps represent the loadings matrices and the time series  
represent the scores. The regions with hatching indicate areas of uncertainty with < 80% agreement in the sign change among the  
models.
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Figure 4 - Second component of the PLS methodology applied using monthly precipitation data from CMIP6 models under the 
SSP2-4.5 scenario, listed in Table 2, between 2020 and 2050. The spatial maps represent the loadings matrices and the time series  
represent the scores. The regions with hatching indicate areas of uncertainty with < 80% agreement in the sign change among the  
models.

3.3 Future climate precipitation changes and uncertainty reduction

While  the  analysis  of  individual  PLS components  may support  storyline  approaches  and  mechanistic  understanding,  a  

quantitative  precipitation  change  map  is  often  required  by  decision-making  bodies.  With  that  in  mind,  we provide  an 

uncertainty map based on the methodology employed by the IPCC in its 6th Assessment Report (Fig. 5). Here, we focus on 

the percentage of projected changes in 2020-2050 relative to 1979-2014. The hatching highlights regions where there is a 

significant  lack of  consensus,  with at  least  80% of the models  analysed  showing non-concordance,  similar  to  the PLS 

uncertainty maps shown in the previous section.

Figure 5a shows the future precipitation changes using all CMIP6 models, listed in Table 1, while Fig. 5b uses the subset of  

models in Table 2 weighted by their skill in simulating precipitation mechanisms in the present climate (Fig. 5b). Firstly, we 

notice that the reduction of epistemic uncertainty by the proposed methodology is revealed by stronger anomalies and fewer  

hatched areas. Particularly, the South Atlantic Subtropical High (SASH) shows stronger negative anomalies, suggesting a 

trend towards drier conditions in the region via an intensification of the Hadley cell  descending branch.  Moreover,  the  
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positive changes in South Brazil have increased after the application of the methodology; this enhanced dipole between the 

SASH and South Brazil is consistent with the mechanism of restriction of cold fronts revealed by the PLS in the present  

climate and discussed in Sect. 3a. In other words, selecting and weighting models that reproduce important precipitation 

mechanisms in the present climate has increased the clarity of what may happen in the region in the near-future climate.

Figure 5 - Percentual precipitation changes in 2020-2050 relative to 1979-2014 based on all assessed models, as listed in Table 1, (a)  
and the percentual changes based on the selected models listed in Table 2 (b) from CMIP6 under the SSP2-4.5 scenario. The  
regions with hatching indicate areas of uncertainty with < 80% agreement in the sign change among the models.

Figure 6 shows the future precipitation changes broken down by season based on all models listed in Table 1 and only using  

the models selected by the methodology (Table 2). A noticeable reduction of uncertainty across all seasons is evident when  

comparing the hatched  areas  using all  models  versus  only using the  selected  models,  underscoring  the success  of  our 

process-based model selection methodology in enhancing our confidence in regional climate projections. The period from 

December to May corresponds to the rainy season, characterised by a prevalence of uncertainties; this is in agreement with  

Bazzanela et al. (2023) and Firpo et al. (2022), that also indicate that CMIP6 models perform better in the dry season than in  

the wet season.

From June to November the Central and Northeast regions exhibit a clear drying pattern. In JJA, in particular, precipitation 

in most of Brazil is largely driven by cold fronts, which, as previously discussed, can be restrained in higher latitudes if the 
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SASH is intensified. In SON, we expect an intensified SASH to also contribute to a later onset of the rainy season. This  

drying  pattern  in  JJA and  SON is  intensified  in  the  subset  of  selected  models.  This  is  unsurprising,  since  the  SASH 

subsidence associated with an intensification of the Hadley circulation is one of the mechanisms discovered by the PLS 

analysis in the present climate and used to select the best performing models.   

Figure 6 - Seasonal percentual precipitation changes in 2020-2050 relative to 1979-2014 based on all assessed models, as listed in 
Table 1, (up)  and the percentual changes based on the selected models listed in Table 2 (down) from CMIP6 under the SSP2-4.5  
scenario. The regions with hatching indicate areas of uncertainty with < 80% agreement in the sign change among the models.

4 Summary and Conclusions

This study aims to reduce the epistemic uncertainty of regional precipitation changes in Brazil through a data-driven process-

based methodology of model selection and weighting. To achieve this, we first employ the methodology to discover the main 

precipitation drivers in the present climate (1979-2014) in a reanalysis dataset (Sect. 3a), revealing that the El Niño and the  

generalised warming of the oceans are linked to significant precipitation impacts in Brazil (Fig. 1 and 2). A distinct positive  

linear trend in the global warming component is linked to a drying of most of Northeast and Southeast Brazil. We propose  

that the linking mechanism between these SST and precipitation patterns is the intensification of the Hadley circulation and, 

consequently, of the subsidence at the South Atlantic Subtropical High.
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The same methodology is then applied to CMIP6 present-climate simulations (Table 1) to evaluate the capability of CMIP6 

models to simulate these precipitation drivers,  thus creating a process-based model selection and weighting approach to  

underpin the future climate analysis. From a total of 30 models, we select 15 models that are capable of simulating at least 

two (Table 2) of the main regional precipitation drivers.

The mechanism discovery methodology is then applied to the near-future (2020-2050) climate simulations of the selected  

models. We find that an ENSO-like pattern, tied to a generalised warming of the tropical oceans, is linked to an increase of 

precipitation  in  South  Brazil  and  a  decrease  in  Northeast  Brazil  (Fig.  3  and  4),  consistently  with  the  present-climate  

indication  of  an  intensification  of  the  Hadley  circulation.  This  mechanistic  view of  regional  precipitation  changes  can 

underpin the development of storylines in future studies to support decision-making bodies in the water-energy-food nexus.

We  go  further  to  provide  a  quantitative  view  of  regional  precipitation  changes  based  on  the  IPCC  WG1  approach, 

contrasting the uncertainty of precipitation changes using 30 CMIP6 models versus using the 15 selected models. We show 

that the approach increased model agreement, particularly in South Brazil and SASH region. In the next 30 years (Fig. 6), a  

noticeable reduction in uncertainty across all seasons is evident mostly from June to November. This period is characterised  

by a clear drying pattern due to the strengthening of SASH, intensified within the subset of selected models, which leads to a 

suppression of precipitation in Northeast and Southeast Brazil, possibly delaying the rainy season in these regions.

Our methodology employs an approach focused on understanding the underlying precipitation drivers rather than simply 

comparing CMIP6 model precipitation with observations. By selecting and weighting models mechanistically, we achieve a 

reduction of the epistemic uncertainty of the CMIP6 ensemble. This approach, as highlighted by Shepherd (2014), is a more 

appropriate way to address the uncertainties of regional precipitation changes and to support physically sound storylines 

regarding shifts in precipitation patterns.
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