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Abstract. Aerosol pH is commonly used to characterize the acidity of aqueous aerosols and is of significant scientific interest 

due to its close relationship with atmospheric processes. Estimation of ambient aerosol pH usually relies on the thermodynamic 

modeling approach. In the existing chemical transport model and field observation studies, the temporal resolution of the input 

chemical and meteorological data into thermodynamic models varied substantially ranging from less than an hour to a year 

because of the inconsistency in the resolution of the original data and the aggregation of time-series data in some studies. 15 

Furthermore, the average value of aerosol pH has been represented by diverse metrics of central tendency in existing studies. 

This study attempts to evaluate the potential discrepancies in the calculated average aerosol pH arose from differences in both 

averaging metrics and temporal resolutions based on the ISORROPIA-II thermodynamic model and the example datasets 

prepared by the GEOS-Chem chemical transport model simulation. Overall, we find that the variation in the temporal 

resolutions of input data may lead to a change of up to more than two units in the average pH, and that the averaging metrics 20 

calculated based on the pH value of individual samples may be about two units higher than the averaging metrics calculated 

based on the activity of hydrogen ions. Accordingly, we recommend that the chosen averaging metrics and temporal resolutions 

should be stated clearly in future studies to ensure comparability of the average aerosol pH between models and/or observations. 

1 Introduction 

Aerosol acidity, typically characterized by pH, stands as a crucial property of aqueous aerosols, influencing various physical 25 

and chemical processes (Tilgner et al., 2021). Aerosol pH can influence aerosol mass by regulating the gas−particle partitioning 

of semi-volatile acids and bases such as HCl−Cl−, HNO3−NO3
−, and NH3−NH4

+ (Zhang et al., 2021a; Nah et al., 2018; Ding 

et al., 2019), as well as by moderating the production of secondary components through multiphase reactions (Pye et al., 2013; 

Cheng et al., 2016). Aerosol pH can also affect the solubilization of trace metals such as copper and iron, and therefore has 
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implications for human health risks and nutrient cycling in ecosystems (Meskhidze et al., 2003; Lippmann, 2014; Vasilakos et 30 

al., 2018; Wu et al., 2023). 

The definition of pH is the negative log (base 10) of hydrogen ion (H+) activity on a molality basis according to the 

International Union of Pure and Applied Chemistry (IUPAC, https://goldbook.iupac.org/terms/view/P04524, last access: 15 

February 2024), as shown in Eq. (1) 

 pH = – log10(aH+) = – log10(γH+
m

H+
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)  – log10(

m
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m⊖
) – log10(γH+) (1) 35 

where aH+  is the activity of H+ (dimensionless), m⊖  is the standard molality (1 mol kg−1 water), and mH+  and γH+ 

indicate the molality (mol kg−1 water) and the activity coefficient (dimensionless) of H+, respectively. pH is also frequently 

defined based on the standard state of 1 mol H+ dm−1 solution (i.e., molarity based) or the standard state of a hypothetical pure 

H+ solution (i.e., mole fraction based). Jia et al. (2018) comprehensively compared aerosol pH quantified at the three different 

scales (i.e., molarity, molality, and mole fraction). They found that the difference between the mole-fraction-based and the 40 

molality-based pH values is a constant equal to 1.74. A minor difference (< 0.25 unit) exists between the molarity-based pH 

and the molality-based pH values owing to the effects of temperature, pressure, and the composition and density of aerosols. 

The pH values of ambient aerosols are generally estimated depending upon the thermodynamic modeling approach since a 

commonly accepted direct measurement method is still lacking despite some recent significant advances (Weber et al., 2016; 

Li and Kuwata, 2023; Li et al., 2023; Cui et al., 2021; Ault, 2020) . Thermodynamic models can predict the gas−particle, 45 

solid−liquid, liquid−liquid equilibria, liquid-phase activity coefficients, mass transfer of semi-volatile species, aerosol liquid 

water content (AWC, μg m−3 air), and pH (Pye et al., 2020). The input data for thermodynamic modeling should include the 

total (gas plus particle) chemical compositions (e.g., HCl + Cl−, HNO3 + NO3
−, and NH3 + NH4

+) and meteorological variables 

(relative humidity (RH) and temperature (T)). The E-AIM, AIOMFAC-GLE, MOSAIC, and ISORROPIA-II thermodynamic 

models are the common box models used to calculate aerosol pH, which differ by their treated chemical species, computational 50 

complexity and rigor, and solution methods for activity coefficients. MOSAIC and ISORROPIA-II are computationally 

efficient for application in three-dimensional chemical transport models such as WRF-Chem, WRF-CMAQ, and GEOS-Chem 

(Pye et al., 2020). 

Many studies have calculated aerosol pH using the thermodynamic modeling approach (see a brief summary in Table S1). 

The chemical and meteorological input data were obtained from either three-dimensional chemical transport model simulations 55 

or field observations. In these studies, the temporal resolution of the input data varied substantially ranging from less than an 

hour to a year. The original time resolutions of field observations may be from tens of minutes to one week. Chemical transport 

model simulations usually have time resolutions of less than an hour. Some studies may aggregate the time series of the original 

chemical and meteorological data to a lower resolution (monthly, seasonally, or yearly) before running thermodynamic models, 

while the others use the original dataset as model input. 60 
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The average of the aerosol pH dataset obtained from thermodynamic modeling has been represented by diverse measures 

of central tendency in existing studies (Table S1). A common metric was the arithmetic mean, denoted by pH and calculated 

with Eq. (2). The symbols n and i are the number of samples in the dataset and the ith sample, respectively. Another two metrics, 

pH* (pH based on the arithmetic mean of aH+) and pHw
*  (pH based on the AWC-weighted mean of aH ), have also been 

employed in previous studies to represent the center of the aerosol pH dataset, as described in Eqs. (3) and (4), respectively. 65 

Similar to pHw
* , the pH based on the volume-weighted mean of [H+] has been usually considered when averaging cloud/fog 

water pH and precipitation pH (MÖller and Zierath, 1986; Sun et al., 2010; Straub et al., 2012; Shah et al., 2020). 
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Since pH and aH+ are both non-conservative quantities upon mixing of individual samples, different averaging metrics and 

different temporal resolutions may lead to disparate values, posing potential challenges when comparing the reported average 

pH across studies. However, such discrepancies have not been addressed with sufficient care. The objective of this technical 

note is thus to quantitatively assess the averaged aerosol pH values using different metrics and different temporal resolutions. 

The rest of this article is structured as follows. In the Methods section (Sect. 2), we describe the preparation of the evaluation 75 

datasets in Sect. 2.1, which include the relevant chemical and meteorological variables and are obtained from the GEOS-Chem 

chemical transport model simulations. Statistical methods and analytical tools are provided in Sect. 2.2. In the Results and 

Discussion section (Sect. 3), we first present the probability distributions of aerosol pH and AWC from the evaluation dataset 

and estimate the differences among averaging metrics (Sect. 3.1). Sect. 3.2 provides theoretical explanations for the calculated 

differences within the averaging metrics. We then evaluate in Sect. 3.3 the discrepancies in the average aerosol pH raised by 80 

different temporal resolutions. At last, the conclusions of this study are given in Sect. 4. 

2 Methods 

2.1 Evaluation datasets 

The datasets were obtained from atmospheric simulations with the three-dimensional GEOS-Chem chemical transport model 

(version 14.1.1, DOI: 10.5281/zenodo.1343546). The North China Plain (33°N−41°N, 114.375°E−120°E, Fig. S1) was chosen 85 

as the modeling region where multiple studies on aerosol pH have been conducted because of the concern about haze events. 

The vertical grid spanned from the surface to the mesosphere, encompassing 47 hybrid sigma/pressure levels. The horizontal 

resolution of 0.625° (longitude) × 0.5° (latitude) was used and the boundary conditions were supplied by a global simulation 



4 
 

with a coarser resolution of 5° × 4°. Meteorological input was from the Modern-Era Retrospective Analysis for Research and 

Applications, version 2 (MERRA-2) product, provided by the Goddard Earth Observing System (GEOS) of NASA’s Global 90 

Modeling and Assimilation Office (Gelaro et al., 2017). The simulation period covered the winter season from December 2018 

to February 2019 and the summer season from June to August 2019. The detailed settings of emission databases and chemical 

mechanisms are shown in Text S1. The modeled concentrations of fine aerosol components (SO4
2−, NO3

−, NH4
+, elemental 

carbon, and organic materials) were evaluated with the Tracking Air Pollution in China (TAP) dataset (Geng et al., 2017; Liu 

et al., 2022; Wang et al., 2012; Wang et al., 2020a). As a reanalysis data product, TAP amalgamated surface observations, 95 

remote sensing, emission inventories, and model simulations to construct a near real-time dataset of aerosol and gas pollutant 

concentrations over China. We found a reasonable agreement between our GEOS-Chem model simulation results and the TAP 

reanalysis dataset (Fig. S2). 

  The ISORROPIA-II model (version 2.2) was used in GEOS-Chem to calculate the thermodynamic equilibrium processes 

for the H+−NH4
+−K+−Ca2+−Mg2+−Na+−OH−−SO4

2−−NO3
−−Cl−−H2O inorganic aerosol system (Fountoukis and Nenes, 2007; 100 

Pye et al., 2009). The model assumed that γH+ was always equal to unity. The calculation of pH was simplified as Eq. (5) 

 pH =  – log10(
m

H+

m⊖
) (5) 

 mH+ = 
x

H+

xwater
× 55.509  (6) 

where xH+ and xwater indicated molar fraction of H+ and aerosol liquid water, respectively. m⊖ was the standard molality 

(1 mol kg−1 water), and 55.509 was the molality of water (Peng et al., 2019). 105 

During the application of ISORROPIA-II, we assumed that the aerosol was internally mixed, forming a single aqueous 

phase encompassing the inorganic species, without phase separations that could affect pH (Guo et al., 2017). In the mode 

calculations, meteorological data (T and RH), gaseous concentrations (HCl, HNO3, and NH3), and aerosol concentrations 

(SO4
2−, NO3

−, NH4
+, Cl−, fine-sized dust, and fine-sized sea salt) were called by the ISORROPIA-II routines. Fine-sized dust 

was used to estimate Ca2+ and Mg2+, and fine-sized sea salt was used to estimate Na+ and Cl− (Wang et al., 2019). We chose 110 

the forward mode (i.e., using the total gas + aerosol concentrations as model inputs) and assumed that the aerosol was in the 

metastable state. Calculations using only aerosol-phase composition as model inputs (i.e., reverse mode) have been suggested 

sensitive to observational errors of ionic species and thus should be avoided (Hennigan et al., 2015). The assumed particle 

phase state, either stable or metastable, does not significantly affect pH calculations (Song et al., 2018). 

Two datasets from the GEOS-Chem simulation outputs were used in this study. The first dataset was used in subsections 3.1 115 

and 3.2, which encompassed aerosol pH, AWC, meteorological data (T and RH), gaseous concentrations (HCl, HNO3, and 

NH3), and aerosol concentrations (SO4
2−, NO3

−, NH4
+, fine-sized dust, fine-sized sea salt, and PM2.5) at the surface layer during 

the 2018/2019 winter for the North China Plain. The AWC and aerosol pH values were calculated online within the GEOS-

Chem model using the incorporated ISORROPIA-II thermodynamic module. The dataset had a temporal resolution of 3 hours, 
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consistent with that for the meteorological input data of GEOS-Chem. Following previous studies (Guo et al., 2016; Haskins 120 

et al., 2018), we selected the data with RH between 25% and 95% to meet the metastable assumption set by ISORROPIA-II 

and to avoid the large uncertainty associated with very high RH. After filtering, this dataset contained approximately 100,000 

individual samples. The second dataset consisted of the chemical and meteorological data in the Beijing grid (centered at 40°N, 

116.25°E) extracted from the first dataset. This dataset had the same temporal resolution of 3 hours and 720 samples for the 

2018/2019 winter season. It could be considered as a pseudo-observation dataset analogous to what was reported by a field 125 

campaign. 

2.2 Statistical analysis 

We computed the following five data metrics describing the central tendency of a pH dataset: pHMd (median of pH), pHMo 

(mode of pH), pH (arithmetic mean of pH), pH* (pH based on the arithmetic mean of aH+), and pHw
*  (pH based on the 

AWC-weighted mean of aH ). As per statistical definitions, pHMd and pHMo represent the value of the 50th percentile and 130 

the most frequently occurring value of the dataset, respectively. The algorithms for calculating pH, pH*, and pHw
*  have been 

provided in Eqs. (2−4), respectively. The probability density function of aerosol pH and AWC was calculated using the Kernel 

Smoothing Function (ksdensity and mvksdensity), a feature within the Statistics Toolbox of the MATLAB R2021b software. 

Prior to data processing, AWC was logarithmized. The “ksdensity” function was employed to calculate the probability density 

functions of aerosol pH and AWC, respectively. Meanwhile, the “mvksdensity” function was employed to calculate the joint 135 

probability density function of the two variables. The data metrics for averaging pH were calculated utilizing Microsoft Excel 

2016. In the calculations, a bandwidth of 0.1 was set to preserve important features of the distribution while suppressing noise. 

  To derive comprehensive distributional parameters from the available dataset and to construct appropriate confidence 

intervals to minimize statistical randomness, we used the Bootstrap approach (a statistical resampling technique, implemented 

through the “datasample” function of the Statistics and Machine Learning Toolbox of the MATLAB R2021b software). In this 140 

study, our original dataset in winter comprised 105,403 sets of data (Section 3.1). We extracted 1,000 new datasets with 10,000 

sets of data in each. We also conducted a similar sampling for the Beijing pseudo-observation data (720 sets of data, Section 

3.3). Each dataset underwent 720 samplings and a total of 1,000 new datasets were collected. For each new dataset, calculate 

pH, pHMd, pHMo, pH*, and pHw
*  separately. 

3 Results and discussion 145 

3.1 Distribution of aerosol pH and aerosol water content 

We present the probability distributions of the aerosol pH and AWC for the winter season in Fig. 1a and Fig. 1c, respectively, 
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as well as their joint probability distribution in Fig. 1b. It can be seen that the distributions of aerosol pH and AWC are not 

independent (Yuan and Shou, 2022). Mechanistic studies have revealed that AWC was a primary contributor to pH shifts. 

Zheng et al. (2020) proposed a multiphase buffer theory suggesting that AWC could considerably regulate the peak buffer pH 150 

of the individual buffering agent (i.e., conjugate acid-base pairs NH4
+/NH3, HSO4

−/SO4
2−, and HNO3/NO3

−). The distribution 

of AWC was characterized similarly to a skewed log-normal distribution, with noticeable differences between its arithmetic 

mean (53.3 μg m−3), median (6.8 μg m−3), and mode (0.5 μg m−3). The properties of hygroscopic components in aerosols and 

the positive feedback between the primary hygroscopic components (SNA: sulfate, nitrate, and ammonium) and aerosol water 

content lead to an exponential response of AWC to changes in relative humidity (Liu et al., 2023; Zhang et al., 2021b; Wang 155 

et al., 2020b). Simultaneously, the ambient relative humidity typically exhibits a skewed normal distribution (Yuan et al., 2020). 

These factors collectively shape the probability distribution of AWC. 

 

 

Figure 1. Probability distributions of (a) aerosol water content (AWC, μg m−3) and (c) aerosol pH, and (b) the joint probability 160 

distribution of AWC and aerosol pH in the North China Plain during winter season from December 2018 to February 2019. The 

position of the blue triangle is based on the pH and the AWC, the pink inverted triangle is based on the pHMd and the AWCMd, the 

yellow diamond is based on the pHMo and the AWCMo, the green square is based on the pH* and the AWC, and red circle is based 

on pHw
*  and AWC. 

 165 

On the other hand, the distribution of aerosol pH was approximate to a skewed normal distribution, along with very small 

differences (< 0.1 unit) among its arithmetic mean (pH , 4.6), median (pHMd , 4.6), and mode (pHMo , 4.5). However, the 

calculated pH*  (the arithmetic mean of pH based on aH+ ) was 2.6, close to 2 units lower than the above three metrics, 

indicating a deviation of around 2 orders of magnitude in the activity of hydrogen ions. aH+ followed a skewed log-normal 

distribution. Based on the AM-GM inequality (geometric mean does not exceed arithmetic mean), it can be deduced that pH* 170 
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is always less than or equal to pH. For example, assuming that the aerosol was strong acidity for half of a day, such as pH=1, 

which means aH+ was 10−1; and the aerosol was weak acidity at the remaining time, such as pH=5, which meant aH+ was 

10−5. In this case, the pH  was 3 (pH
1+5

2
 – log10 10–1∙10–5 ), while the pH*  was 1.3 (pH* = – log10(

10–1+10–5

2
 )), as is 

evident that 10–1∙10–5 is less than 
10–1+10–5

2
. pHw

*  (AWC-weighted mean) differed from pH* by only about 0.4 unit. 

  We employed the Bootstrap approach to measure the dispersion for pH, pHMd, pHMo, pH*, and pHw
* . We extracted 175 

1,000 new datasets, each comprising 10,000 sets of data, and calculated pH, pHMd, pHMo, pH*, and pHw
*  for each new 

dataset separately. The results of the statistical analysis were shown in Fig. 2. The results indicated that the means of pH, 

pHMd, pHMo, pH*, and pHw
*  were 4.6, 4.6, 4.5, 2.6, and 2.2, respectively, which were consistent with our original dataset. 

Additionally, the results exhibited high stability, with minimal differences in interquartile distances, namely 0.13, 0.19, 0.02, 

0.02, and 0.38, respectively. 180 

 

 

Figure 2. Dispersion in the calculations of pH , pHMd , pHMo , pH* , and pHw
*   in the North China Plain winter 2018, based on 

Bootstrap. The results were extracted from 1,000 new datasets, each containing 10,000 sets of data. In the box–whisker plots, the 

points indicate means, the whiskers, and boxes indicate the values greater than the sum of the upper quartile and 1.5 times IQR, 185 

75th percentiles, 50th percentiles, 25th percentiles, the values less than the sum of the lower quartile and 1.5 times IQR, respectively. 

 

Indeed, it’s noteworthy that the aforementioned discrepancies were notably diminished during the summer season. Fig. S3 

illustrates the probability distribution of aerosol pH and AWC during the summer season, as well as their joint probability 

distribution. The joint distribution in summer was opposite to the winter results, with higher pH observed at high AWC values 190 

and lower pH at low AWC values. This is because summer months are typically cleaner, with AWC predominantly influenced 

by RH. The resulting high AWC has a dilution effect on acidic components, leading to higher pH levels. The quantitative 

results for pH, pHMd, pHMo, pH*, and pHw
*  were 2.6, 2.7, 3.0, 2.0, and 2.4, respectively. The main reason for the lower pH 

in summer compared to winter is the temperature difference (Text S2). While pH* and pHw
*  remained lower than pH, the 
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difference was significantly smaller compared to winter. The smaller range of pH also contributed to the proximity of the three 195 

statistics. 

The significant bias between the averaging metrics calculated based on the pH value of individual samples (pH, pHMd, and 

pHMo) and those based on the activity of hydrogen ions of individual samples (pH* and pHw
* ) may have important implications 

on the understanding of atmospheric processes regulated by aerosol pH (Pye et al., 2020). For instance, the phase partition of 

HNO3−NO3
− and NH3−NH4

+ could achieve a complete transition between the gaseous and particulate phases with two units 200 

of pH change in their sensitive regime (Chen et al., 2016; Chen et al., 2018). 

 

 
Figure 1. Probability distributions of (a) aerosol water content (AWC, μg m−3) and (c) aerosol pH, and (b) the joint probability 

distribution of AWC and aerosol pH. The position of the blue triangle is based on the pH and the AWC, the pink inverted triangle 205 

is based on the pHMd and the AWCMd, the yellow diamond is based on the pHMo and the AWCMo, the green square is based on the 

pH* and the AWC, and red circle is based on pHw
*  and AWC. 

 

3.2 Variations of aerosol pH with relative humidity 

In order to further explain the discrepancies among different aerosol pH averaging metrics in winter season, we calculated the 210 

trend of pHw
*  , pH* , pH , pHMd , and pHMo  with increasing RH bins (Fig. 32a). As shown, pH , pHMd , and pHMo  had a 

similar gradually decreasing trend with RH. pHw
*  and pH*, however, showed a different pattern from the above three metrics. 

Interestingly, there were significant drops in pHw
*  and pH* when RH increased from 30% to 50%, which then remained 

nearly constant within the RH range from 50% to 90%. Fig. S43 showed the joint probability distribution of AWC and aerosol 

pH, mirroring Fig. 1b, but with RH intervals of 10%. The characteristic skewed log-normal distributions of RH in the range of 215 

40% to 90% showed a right-skewed pH probability distribution (i.e., equal probability densities with a wider range for low 

pH). Conversely, RH = 30% aligned closer to a log-normal distribution where pH exhibited a symmetrical distribution. This 
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explained the variation in the gaps of aerosol pH between statistical metrics across different RH levels in Fig. 23a. 

We investigated the proportion changes of secondary inorganic aerosols (SNA: NH4
+, SO4

2−, and NO3
−) and dust in PM2.5 

under different RH conditions. As depicted in Fig. 32b, in general, the elevation of RH was accompanied by an ascending in 220 

the fraction of SNA and a descent in that of dust. The large proportion of dust at the low RH (~30%) was believed to enhance 

aerosol pH (Guo et al., 2018). As the RH escalated to around 50%, the SNA proportion experienced a rapid ascent, concurrently 

with a precipitous decline in the dust proportion, which better compatibly explained the decrease in aerosol pH. The relatively 

stable pHw
*  variation at from 50% to 90% RH could be explained by the multiphase buffering theory (Zheng et al., 2020; 

Zheng et al., 2022). The theoretical equation derived from the multiphase buffering theory (see Text S2) suggested, when the 225 

aerosol pH was predominantly moderated by the buffering of the conjugate acid-base pair NH3/NH4
+, that aerosol pH could 

be simplified as a function of pNH3
 (partial pressure of gaseous NH3), NH4

+ aq  (molality of NH4
+ in aerosol water), and 

γNH4
+(aq) (activity coefficient of NH4

+ aq ). Fig. 23c illustrated that pNH3
 was nearly constant under varying RH. Fig. 23d 

showed that NH4
+ aq   displayed a downward trend with elevated RH whereas γNH4

+(aq)  exhibited an upward trend 

particularly during the 70%−90% RH range. Overall, in consideration of the alterations in pNH3
, NH4

+ aq , and γNH4
+(aq), it 230 

was understandable that pHw
*  appeared to have minor variations within 50%−90% RH. Additionally, it should be noted that 

the reason for the consistent trend of pHw
*  and pH* with RH variation is that in most cases, there was more H+ production 

when AWC was high, and vice versa, as seen in both Fig. 1 and Fig. 23a. This led to the discrepancies between the pHw
*  and 

pH* caused by aerosol water content being masked. 

 235 
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Figure 3 2. Variations of several chemical and physical parameters as a function of RH. (a) pHw
* , pH*, pH, pHMd, and pHMo. (b) 

Fraction of SNA (the summation of sulfate, nitrate, and ammonium) and Dust in PM2.5. (c) pNH3
(atm). (d) NH4

+ aq  (mol kg−1) 

and γNH4
+(aq). The range of RH was 25%−95%, and the parameters were averaged at 10% RH intervals. 240 

 

3.3 Influence of time resolution in input data on the averaged aerosol pH 

In our summary for aerosol pH calculations using the thermodynamic modeling approach and the data from chemical transport 

model simulations and field observations (Table S1), we found that the temporal resolution of the input data varied substantially 
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ranging from less than an hour to a year. This inconsistency might arise from the differences in the native resolutions of field 245 

sampling and model setting or from the choice of data aggregation in various studies. Differences in temporal resolution of the 

data used in calculating pH may lead to disparate results, making it inappropriate to directly compare the average aerosol pH 

values from different studies. In order to assess the impact of temporal resolutions, we applied the pseudo-observation data in 

Beijing from the winter season from December 2018 to February 2019 as inputs to the ISORROPIA-II thermodynamic model. 

The measures of dispersion for this site were shown in Fig. S5. The original input data with a 3-hour resolution, including both 250 

chemical and meteorological variables, were aggregated into daily, weekly, monthly, and seasonal time steps. The results of 

AWC, pH, pH*, pHw
* , pHMd, and pHMo calculated based on corresponding ISORROPIA-II output are listed in Table 1. 
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Table 1. Comparison of AWC, pH, pH*, pHw
* , pHMd, and pHMo calculated based on different temporal resolutions. 255 

Temporal resolution AWC (μg m−3) pH pH* pHw
*  pHMd pHMo 

3-hour 10.0 5.1 3.2 2.1 4.84.4 4.44.8 

daily 5.0 4.9 4.0 3.0 4.83.7 5.24.9 

weekly 2.8 4.9 4.3 4.1 5.1 5.1 

monthly 2.5 4.7 4.7 4.6 4.7 — 

seasonal 2.5 4.6 4.6 4.6 — — 

 

The alteration by temporal resolutions exerted distinct degrees of influence on AWC, pH, pH*, pHw
* , pHMd, and pHMo. 

AWC showed an overall declining trend as the time resolution became lower. This was mainly due to the fact that AWC had 

a general exponential relationship with RH and thus the high AWC incidences were largely averaged out when averaging RH 

at a lower resolution. The maximum deviation for pH, pH*, pHMd, and pHMo were 0.5, 1.5, 1.4, and 0.3 units, respectively. 260 

Of particular note was that there was a maximum deviation of 2.5 units in pHw
* , suggesting approximately more than 2 orders 

of magnitude fluctuation in the activity of H+. The discrepancy in pHw
*  was partly due to rapid and transient fluctuations in 

AWC during variations in meteorological conditions. pHw
*  tended to be lower as the temporal resolution got rougher which 

had an opposite trend with pH. The results indicated that comparing the average aerosol pH metrics with non-uniform temporal 

resolutions might lead to erroneous conclusions. 265 

Here, we use a simple example to illustrate the potential effect of temporal resolution in input data on multiphase chemistry 

reaction rates. It is well known that the rates of sulfate production from the oxidation of SO2 by dissolved O3 in the aqueous 

phase are pH dependen (Seinfeld and Pandis, 2016). The Beijing pseudo-observation data were applied with both 3-hour and 

daily resolutions to assess only the effect of deviations in aerosol pH on this sulfate formation pathway. The mean levels of 

SO2 (3.8 ppb), O3 (15.1 ppb), and T (269.8 K) of the study period (Dec 2018–Feb 2019) were used in the calculations. More 270 

detailed formulas are provided in Supplement Information (Tables S2 and S3). It was seen from Fig. S64 that calculating with 

daily-resolved data resulted in many rapid sulfate production incidences otherwise not being captured. We also discussed the 

sulfate formation rate d(SO4
2−)/dt vs. AWC and d(SO4

2−)/dt vs. pH to isolate the effect of AWC (Fig. S64 b-e). This example 

showed that aerosol pH had a greater effect on the rate of sulfate production than AWC, where aerosol pH had a linear 

relationship with the d(SO4
2−)/dt. The mean sulfate formation rate for this winter period calculated based on 3-hour resolution 275 

data was 1.57 µg m−3, while the corresponding value calculated based on the daily-resolved data was merely 0.72 µg m−3, a 

factor of two smaller, indicating the significance of temporal resolution on the estimate of this chemical pathway. 
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4 Conclusions 

In the present study, we evaluated the discrepancies in the average aerosol pH arose from differences in the averaging metrics 

and temporal resolutions based on thermodynamic modeling and evaluation datasets from a chemical transport model. Among 280 

the five metrics investigated (pH, pHMd, pHMo, pH*, and pHw
* ), the former three metrics (calculated based on the pH value 

of individual samples) were found ~2 units higher than the latter two (based on the aH+ of individual samples) in winter, 

although there were only minor differences within each group. In summer, however, the differences were small for all five 

metrics. The change in the temporal resolutions of input data into thermodynamic models exerted distinct degrees of influence 

on the five metrics, with a maximum deviation of >2 units in pHw
* . The variation in pHw

*  was partly due to the fluctuations 285 

in aerosol water content.  

  Previous studies have highlighted the importance of maintaining consistency in terms of the assumed standard states (Jia et 

al., 2018) and the thermodynamic model used and the calculation method adopted (e.g., open vs. closed system and metastable 

vs. stable state) (Hennigan et al., 2015; Song et al., 2018) when comparing pH results across studies. This technical note 

underscores the importance of avoiding the default use of the “arithmetic mean” as the sole measure of “average”. Additionally,  290 

indicates that it is also essential to consider the uncertainties introduced by the chosen averaging approach and temporal 

resolutions, which should be described clearly in future studies to ensure comparability of aerosol pH between models and/or 

observations. Using this study as an example, pH results for the 2018/2019 winter in the North China Plain were derived at 3-

hour resolution through GEOS-Chem simulations. Measures of central tendency include: arithmetic mean (pH, 4.6), median 

(pHMd, 4.6), and mode (pHMo, 4.5), the arithmetic mean based on aH+ (pH*, 2.6), and the volume-weighted mean based on 295 

AWC and aH+ (pHw
* , 2.2). For further details, refer to Code and data availability. 

  From an atmospheric chemical perspective, pHw
*  may offer a more accurate representation of the average aerosol pH state. 

However, significant changes in pH can induce shifts in reaction rates, and utilizing any averaging method may fail to capture 

the reaction dynamics over extended time scales. Therefore, when utilizing pH datasets for theoretical calculations of reaction 

rates, we advocate for the utilization of hourly resolution data over longer-time resolution data. 300 

Appendix A: List of abbreviations. 

Abbreviation Definition Unit 

aH+ 
the activity of H+ in the standard state of a hypothetical ideal aqueous solution of 

standard molality and the reference state of an infinite dilute solution 
dimensionless 

AWC aerosol liquid water content μg m−3 air 
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mH+ the molality of H+ mol kg−1 water 

m⊖ standard molality 1 mol kg−1 water 

pH the negative log (base 10) of H+ activity dimensionless 

pHMd the median of pH dimensionless 

pHMo the mode of pH dimensionless 

pH the arithmetic mean of pH dimensionless 

pH* the negative log (base 10) of the arithmetic mean of H+ activity dimensionless 

pHw
*  the negative log (base 10) of the AWC-based weighted mean of H+ activity dimensionless 

γH+ the activity coefficient of H+ dimensionless 

 

Code and data availability. The data is available at: https://github.com/shaojiesong/GC14.1.1_output_for_pH. The code 

used in this paper has been described in Section 2.3, please contact the corresponding author upon request if there are further 

needs. 305 

Supplement. The supplement related to this article is available online at: https://doi.org/yyyy. 
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