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Note: Reviewer’s comments are in black italics. Our replies are in blue. Changes in the manuscript 
are in red. 

RC2: ‘Comment on egusphere-2024-479’, Anonymous Referee #1, 27 Mar 2024 

In this manuscript, Wang et al. quantity the inconsistencies in reported aerosol pH values that can 
arise from different averaging metrics and temporal resolutions of the pH calculation that are 5 

commonly used in field and modeling studies. They apply different averaging metrics and time 
resolutions to an ensemble of data generated from atmospheric chemistry model simulations for the 
North China Plain over the winter season. They show differences in the “average” pH of up to 2 
units and emphasize the importance of specifying the averaging metrics and temporal resolution in 
the future. The paper highlights an important but oft-neglected point about comparing aerosol pH 10 

values reported by different studies. The paper is well-written and the conclusions are based on 
sound analysis. 

  The following are my concerns about the paper and suggestions for improvement: 

Response: Thank you sincerely for your favorable assessment. We have thoroughly reviewed 
your comments and suggestions and responded by point-to-point below. 15 

1. It would be better if the authors could recommend some best practices that future studies could 
follow when reporting average pH values, given that pH and H+ molality are non-conserved 
quantities and their arithmetic mean has little physical meaning, but also considering the 
practicalities of field studies. Should field studies report other relevant data that would make it 
easier to compare their findings to other studies or models? The main recommendation of the 20 

manuscript is that studies should "clearly state their chosen averaging metrics,” but it seems from 
Table S1 that most studies already do that. The submission would be more significant if the authors 
could be more insightful in their recommendations. 

Response: While we provide specific information about the chosen averaging metrics in Table 
S1, it is crucial to acknowledge a significant limitation of existing studies: the opacity of pH 25 
averaging methods, often defaulting to the “arithmetic mean” as the sole measure of 
“average/mean”. This lack of clarity posed a challenge to data collection for this study. To 
mitigate the recurrence of such issues, we urge researchers in aerosol acidity to be mindful of the 
averaging methods employed and to furnish detailed information regarding these methods and 
temporal resolutions in their studies. It would have been beneficial if the authors included the 30 
original temporal resolution of the pH data in the provided supplementary information or made it 
available in publicly accessible datasets. As per your suggestion, we have incorporated this study 
as an example and included recommended practices that can be adopted in the manuscript. 
 
The purpose of this paper is not to determine which representation of central tendencies is 35 
correct. As mentioned in this paper, arithmetic mean (pH) is the most commonly reported 

approach in existing studies, and the arithmetic mean based on aH+ (pH*) aligns more closely 
with the central trend of aerosol pH from an atmospheric chemistry perspective. However, 
calculations involving reaction kinetics necessitate short time steps, and any averaging method 
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introduces significant uncertainties. Therefore, our additional recommendation is to utilize 40 
hourly-resolved data instead of longer-resolved data in subsequent theoretical calculations. 
 
We have made the following changes in the revised manuscript (Section 4 Conclusions, Page 11, 
Lines 281−292): 
   45 
This technical note underscores the importance of avoiding the default use of the “arithmetic 

mean” as the sole measure of “average”. Additionally, it is also essential to consider the 

uncertainties introduced by the chosen averaging approach and temporal resolutions, which 

should be described clearly in future studies to ensure comparability of aerosol pH between 

models and/or observations. Using this study as an example, pH results for the 2018/2019 winter 50 

in the North China Plain were derived at 3-hour resolution through GEOS-Chem simulations. 

Measures of central tendency included: arithmetic mean (pH, 4.6), median (pHMd, 4.6), mode 

(pHMo, 4.5), the arithmetic mean based on aH+ (pH*, 2.6), and the volume-weighted mean based 

on AWC and aH+ (pHw
* , 2.2). For further details, refer to Code and data availability. 

From an atmospheric chemical perspective, pHw
*  may offer a more accurate representation of the 55 

central tendency of aerosol pH. However, significant changes in pH can induce shifts in reaction 

rates, and utilizing any averaging method may fail to capture the reaction dynamics over 

extended time scales. Therefore, when utilizing pH datasets for theoretical calculations of 

reaction rates, we advocate for the utilization of hourly resolution data over longer time 

resolution data. 60 

2. The submission would also be stronger if it included a discussion of the measures of dispersion, as 
they are important when statistically comparing different pH datasets. 

Response: We appreciate your suggestion and agree that discussing measures of dispersion is 
crucial for comparing different pH datasets. However, to clarify, the most conventional measures 
of dispersion for the winter 2018 aerosol pH dataset in the North China Plain are standard 65 
deviation or percentiles. It's worth noting that this study presents five statistics of central 

tendency (pH, pHMd, pHMo, pH*, and pHw
* ), and standard deviation and percentiles only account 

for the variability of pH. 
 
To derive comprehensive distributional parameters from an existing dataset and construct 70 
appropriate confidence intervals to mitigate statistical randomness, we employ Bootstrap. 
Simply put, Bootstrap is a statistical resampling technique. It offers a robust and flexible 
approach for statistical inference, particularly when the underlying distribution of the data is 
unknown or complex, or when traditional parametric methods may not be applicable. In this 
study, our original dataset comprised 105,403 sets of data. We utilized the Statistics and Machine 75 
Learning Toolbox in Matlab to perform BootStrap resampling, extracting 1,000 new datasets 

with 10,000 sets of data in each. For each new dataset, calculate pH, pHMd, pHMo, pH*, and pHw
*  
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separately. We conducted statistical analyses on the central tendency of these 1000 datasets (Fig. 

2). The results indicated that the means of pH, pHMd, pHMo, pH*, and pHw
*  were 4.6, 4.6, 4.5, 2.6, 

and 2.2 respectively, which were consistent with our original dataset. Additionally, the results 80 
exhibited high stability, with small interquartile distances (75th quartile minus 25th quartile) of 
0.01, 0.01, 0.16, 0.19, and 0.11 respectively. 

 
Figure 2. Dispersion in the calculations of pH, pHMd, pHMo, pH*, and pHw

*  in the North China 
Plain winter 2018, based on Bootstrap. The results were extracted from 1,000 new datasets, each 85 
containing 10,000 sets of data. In the box–whisker plots, the points indicate means, the whiskers, 
and boxes indicate the values greater than the sum of the upper quartile and 1.5 times IQR, 75th 
percentiles, 50th percentiles, 25th percentiles, the values less than the sum of the lower quartile 
and 1.5 times IQR, respectively. 
 90 
We also conducted similar sampling for the Beijing pseudo-observation data (3-hour resolution, 
totaling 720 sets of data) in subsection 3.3. Each dataset underwent 720 samplings and a total of 

1,000 new datasets were collected. And the means of pH, pHMd, pHMo, pH*, and pHw
*  calculated 

for each of these 1,000 datasets were 5.1, 4.8, 4.3, 3.2, and 2.2, respectively (Fig. S5), slightly 
different from the Beijing pseudo-observation data (5.1, 4.8, 4.4, 3.2, and 2.1). The stability of 95 
the results was good, but higher than that of the North China Plain, with interquartile distances 
of 0.06, 0, 0.3, 0.3 and 0.4, respectively. The reason was that the sample size of this dataset was 
much smaller than that of the North China Plain, leading to greater variability in repeated 
random sampling. 



4 
 

 100 

Figure S5. Dispersion in the calculations of pH, pHMd , pHMo , pH* , and pHw
*  in the pseudo-

observation data for Beijing in winter 2018, based on Bootstrap. The results were extracted from 
1,000 new datasets, each containing 720 sets of data. In the box–whisker plots, the points 
indicate means, the whiskers, and boxes indicate the values greater than the sum of the upper 
quartile and 1.5 times IQR, 75th percentiles, 50th percentiles, 25th percentiles, the values less 105 
than the sum of the lower quartile and 1.5 times IQR, respectively. 
 
In the revised manuscript, we have made the following changes in Section 2.2 Statistical analysis, 
Page 5, Lines 138−144: 
 110 
To derive comprehensive distributional parameters from the available dataset and to construct 

appropriate confidence intervals to minimize statistical randomness, we used the Bootstrap 

approach (a statistical resampling technique, implemented through the “datasample” function of 

the Statistics and Machine Learning Toolbox of the MATLAB R2021b software). In this study, 

our original dataset in winter comprised 105,403 sets of data (Section 3.1). We extracted 1,000 115 

new datasets with 10,000 sets of data in each. We also conducted a similar sampling for the 

Beijing pseudo-observation data (720 sets of data, Section 3.3). Each dataset underwent 720 

samplings and a total of 1,000 new datasets were collected. For each new dataset, calculate pH, 

pHMd, pHMo, pH*, and pHw
*  separately. 

 120 
In the revised manuscript, we have made the following changes Section 3.1 Distribution of 
aerosol pH and aerosol water content, Page 7, Lines 175−182, and also added Figure 2: 
 

We employed the Bootstrap approach to measure the dispersion for pH, pHMd, pHMo, pH*, and 

pHw
* . We extracted 1,000 new datasets, each comprising 10,000 sets of data, and calculated pH, 125 

pHMd, pHMo, pH*, and pHw
*  for each new dataset separately. The results of the statistical analysis 
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were shown in Fig. 2. The results indicated that the means of pH, pHMd, pHMo, pH*, and pHw
*  

were 4.6, 4.6, 4.5, 2.6, and 2.2, respectively, which were consistent with our original dataset. 

Additionally, the results exhibited high stability, with minimal differences in interquartile 

distances, namely 0.13, 0.19, 0.02, 0.02, and 0.38, respectively. 130 

 
Figure 2. Dispersion in the calculations of pH, pHMd, pHMo, pH*, and pHw

*  in the North China 
Plain winter 2018, based on Bootstrap. The results were extracted from 1,000 new datasets, each 
containing 10,000 sets of data. In the box–whisker plots, the points indicate means, the whiskers, 
and boxes indicate the values greater than the sum of the upper quartile and 1.5 times IQR, 75th 135 
percentiles, 50th percentiles, 25th percentiles, the values less than the sum of the lower quartile 
and 1.5 times IQR, respectively. 
 
In the revised manuscript, we have made the following changes in Section 3.3 Influence of time 
resolution in input data on the averaged aerosol pH, Page 9, Line 241, and also added Figure S5: 140 
 
The measures of dispersion for this site were shown in Fig. S5. 
 



6 
 

 
Figure S5. Dispersion in the calculations of pH, pHMd , pHMo, pH* , and pHw

*  in the pseudo-145 

observation data for Beijing in winter 2018, based on Bootstrap. The results were extracted from 
1,000 new datasets, each containing 720 sets of data. In the box–whisker plots, the points 
indicate means, the whiskers, and boxes indicate the values greater than the sum of the upper 
quartile and 1.5 times IQR, 75th percentiles, 50th percentiles, 25th percentiles, the values less 
than the sum of the lower quartile and 1.5 times IQR, respectively. The means of pH, pHMd, 150 

pHMo, pH*, and pHw
*  calculated for each of these 1,000 datasets were 5.1, 4.8, 4.3, 3.2, and 2.2, 

respectively, slightly different from the Beijing pseudo-observation data (5.1, 4.8, 4.4, 3.2, and 
2.1). The stability of the results was good, but higher than that of the North China Plain, with 
interquartile distances of 0.06, 0, 0.3, 0.3 and 0.4, respectively. 
 155 

3. The study used model data for the winter season. How different would the variations in “average” 
pH values be in the summer? 

Response: Thanks for your suggestion. We have incorporated the summer simulation results and 
computed the five “averages”. In complete contrast to the winter results, the joint distribution in 
summer was opposite to the winter results, with higher pH observed at high AWC values and 160 
lower pH at low AWC values (Fig. S3). This is because summer months are typically cleaner, 
with AWC predominantly influenced by RH. The resulting high AWC has a dilution effect on 
acidic components, leading to higher pH levels. The quantitative results for pH, pHMd, pHMo, 

pH*, and pHw
*  were 2.6, 2.7, 3.0, 2.0, and 2.4, respectively. The main reason for the lower pH in 

summer compared to winter is the difference in temperature (Text S3). While pH*  and 165 

pHw
* remained lower than pH, the difference was significantly smaller compared to winter. The 

smaller range of pH also contributed to the proximity of the three statistics. 
 
We have made several modifications in the main text to underscore that the methods employed 
in this paper are generic. However, it is essential to recognize that results may vary depending on 170 
the location and time period of the study. 
 
Page 4, Line 91: 
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The simulation period covered the winter season from December 2018 to February 2019 and the 175 
summer season from June to August 2019. 
 
Page 7, Lines 188−196: 
 
Indeed, it’s noteworthy that the aforementioned discrepancies were notably diminished during 180 

the summer season. Fig. S3 illustrates the probability distribution of aerosol pH and AWC during 

the summer season, as well as their joint probability distribution. The joint distribution in 

summer was opposite to the winter results, with higher pH observed at high AWC values and 

lower pH at low AWC values. This is because summer months are typically cleaner, with AWC 

predominantly influenced by RH. The resulting high AWC has a dilution effect on acidic 185 

components, leading to higher pH levels. The quantitative results for pH, pHMd, pHMo, pH*, and 

pHw
*  were 2.6, 2.7, 3.0, 2.0, and 2.4, respectively. The main reason for the lower pH in summer 

compared to winter is the temperature difference (Text S3). While pH* and pHw
*  remained lower 

than pH, the difference was significantly smaller compared to winter. The smaller range of pH 

also contributed to the proximity of the three statistics. 190 

 
Page 11, Lines 271−276: 
 
In the present study, we evaluated the discrepancies in the average aerosol pH arose from 

differences in the averaging metrics and temporal resolutions based on thermodynamic modeling 195 

and evaluation datasets from a chemical transport model. Among the five metrics investigated 

pH, pHMd, pHMo, pH*, and pHw
* , the former three metrics (calculated based on the pH value of 

individual samples) were found ~2 units higher than the latter two (based on the aH+  of 

individual samples) in winter, although there were only minor differences within each group. In 

summer, however, the differences were small for all five metrics. 200 
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Figure S3. Same as Fig. 1, but for summer (June, July, and August) 2019. Probability 
distributions of (a) aerosol water content (AWC, μg m−3) and (c) aerosol pH, and (b) the joint 
probability distribution of AWC and aerosol pH. The position of the blue triangle is based on the 205 
pH and the AWC, the pink inverted triangle is based on the pHMd and the AWCMd, the yellow 

diamond is based on the pHMo and the AWCMo, the green square is based on the pH* and the 

AWC, and red circle is based on pHw
*  and AWC. 

4. Fig. 1 shows several pH values above 6. Does ISORROPIA consider carbonate equilibrium in this 
case? If not, it is better not to include these values in the analysis. 210 

Response: Thank you for your comments. Several studies have demonstrated that carbonates 
exhibit a buffering effect on atmospheric acidity, particularly in cloud water (Shah et al., 2020; 
Pye et al., 2020). However, Zheng et al. (2023) has recently shown, based on multiphase 
buffering theory, that the buffering effect of carbonates on aerosol acidity is generally negligible 
compared to the multiphase buffering effect of ammonia. Their study demonstrated that within 215 
the range of aerosol liquid water content variation (from 10–6

 to 5×10–4 g m–3), the corresponding 
pKa* of CO2/HCO3

– at 298 K was 15.8–18.4 (Fig. R1a, gray line), and this value was minimally 
affected by temperature. Based on the method, the pKa* consistent with the present study 
(aerosol water content from 10–7 to 10–2 g m–3) was calculated to be 14.4–19.4 at 298 K. 
Essentially, the buffering effect of carbonates becomes significant only when the aerosol pH 220 
exceeds 14 in the North China Plain, which is much higher than typical aerosol pH ranges. 
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Figure R1. Importance of inorganic carbon systems in buffering the atmospheric water. Here, we 
assume a constant CO2 of 410 ppm. (a) Variation of the pKa* of H2CO3/HCO3

–, HCO3
–/CO3

2– in 225 
comparison with that of NH4

+/NH3 with liquid water content Lw at 298 K. This figure was taken 
from Zheng et al. (2023). 
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