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Abstract. The Model for Prediction Across Scales-Ocean (MPAS-Ocean) is an open-source, global ocean model and is one

component of a family of climate models within the MPAS framework, including atmosphere, sea-ice, and land-ice models.

In this work, a new formulation for the ocean model is presented that solves the nonhydrostatic, incompressible Boussinesq

equations on an unstructured, staggered, z-level grid. The introduction of this nonhydrostatic capability is necessary for the

resolution of internal wave dynamics and large eddy simulations. Compared to the standard, hydrostatic formulation, a non-5

hydrostatic pressure solver and a vertical momentum equation are added, where the PETSc (Portable Extensible Toolkit for

Scientific Computation) library is used for the inversion of a large sparse system for the nonhydrostatic pressure. Numeri-

cal results on a stratified seiche, internal solitary wave, overflow and lock-exchange test cases are presented, and the parallel

efficiency of the code is evaluated using up to 128 processors.

1 Introduction10

Most modern ocean circulation models adopt the hydrostatic pressure assumption, i.e. they assume that the pressure at any

point in the ocean is due to the weight of the water above it. For global ocean simulations, where the horizontal scale is

considerably larger than the vertical, such an assumption is legitimate since the variability in pressure is due primarily to the

hydrostatic pressure arising from the weight of the fluid above a point beneath the water surface. Mathematically, the hydrostatic

approximation consists in (i) a simplification of the equation governing the vertical component of velocity, by neglecting terms15

associated with large and fast vertical motion, and (ii) the elimination of the nonhydrostatic pressure contribution from the

pressure term. When moving from global ocean simulations to smaller scaled oceanic phenomena, such as the breaking of

internal waves, convection, and shear-induced overturning, the missing piece of physics comes into account, as hydrostatic

models don’t do a good job in simulating processes over shorter horizontal scales relative to the depth. For such regional,

smaller scaled processes nonhydrostatic effects become important, creating the need to include the nonhydrostatic pressure.20

Nowadays, nonhydrostatic models have been developed for both structured grid, as MITgcm [Marshall et al. (1997)],

CROCO [Auclair et al. (2018)], GETM [Klingbeil and Burchard (2013)], and unstructured grid, like UnTRIM [Casulli (1999)],

and SUNTANS [Fringer et al. (2006); Vitousek and Fringer (2014)]. SUNTANS and MITgcm use a pressure-correcting pro-

jection method to extend their hydrostatic model to a nonhydrostatic one, splitting the pressure into its hydrostatic and non-

hydrostatic components. The hydrostatic velocity field that satisfies the depth-averaged continuity equation is computed first,25

and then it is corrected with the nonhydrostatic pressure field. This approach requires the solution of a 3D Poisson equation
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for the nonhydrostatic pressure, which accounts for a bulk of the workload for nonhydrostatic codes using pressure-correcting

projection methods. In MITgcm, a quasi-hydrostatic option is also present where cosine-of-latitude Coriolis terms neglected in

hydrostatic primitive equation models are included. The GETM model adopts a straight-forward inclusion of the missing non-

hydrostatic pressure contribution, that is it performs an explicit vertical integration of the additional nonhydrostatic terms within30

the balance of vertical momentum to then include them in the horizontal pressure gradient. The advantage of this approach

is that it does not require the inversion of a Poisson equation. The CROCO model presents a three-mode time-split algorithm

to simulate nonhydrostatic ocean processes, including compressible, acoustic effects. Most ocean models use a barotropic /

baroclinic time-splitting [Higdon (2005)], where the 2D fast, barotropic mode is embedded in the slow, baroclinic mode. In the

three-mode time-split algorithm one further, compressible (non-Boussinesq) mode is implemented within the barotropic mode.35

Hence, together with the barotropic and baroclinic time-steps, a third splitting is employed, and is dedicated to the "very fast"

time scales associated to compressible nonhydrostatic effects.

In this work, we present a new formulation for MPAS-Ocean [Ringler et al. (2013); Petersen et al. (2015); Calandrini

et al. (2021)] that solves the nonhydrostatic, incompressible Boussinesq equations on an unstructured, staggered, z-level grid.

MPAS-Ocean is the ocean component of the U.S. Department of Energy Exascale Earth System Model (E3SM) [Petersen40

et al. (2019); Golaz et al. (2019)]. The introduction of this nonhydrostatic capability is necessary for the resolution of internal

wave dynamics, as well as high-resolution submesoscale eddy processes important for coastal modelling applications. The

nonhydrostatic version of MPAS-Ocean (MPAS-Ocean NH) is the first global nonhydrostatic model at variable resolution,

(other codes are either regional nonhydrostatic models, as CROCO and SUNTANS, or global models at fixed resolution, as

MITgcm) and is the first nonhydrostatic ocean model to be fully coupled in a climate model. The variable resolution mesh45

allows us to have appropriate high resolution in defined regions and much coarser regions elsewhere, so that MPAS-Ocean

NH can be used only where we expect strong vertical motions, and the hydrostatic model would be use in the majority of

the domain. This makes global ocean runs with the nonhydrostatic model possible, since the more expensive nonhydrostatic

solution would be computed only where needed, without dragging down the total computational time. In this paper, we present

the nonhydrostatic formulation for MPAS-Ocean and show its correctness on idealized benchmark test cases. As SUNTANS50

and MITgcm, we use a pressure-correcting projection method to extend the MPAS-Ocean hydrostatic model to a nonhydrostatic

one. A vertical momentum equation is added to the classical primitive equations (3D Boussinesq equations in hydrostatic

balance), together with a nonhydrostatic pressure term in the horizontal momentum equation. The 3D Poisson equation for

the nonhydrostatic pressure is solved with a preconditioned conjugate gradient algorithm using the external PETSc (Portable

Extensible Toolkit for Scientific Computation) library [Balay et al. (2021a)], which provides data structures and routines for55

the parallel solution of many scientific applications modeled by partial differential equations. All MPAS-Ocean time-stepping

schemes (RK4, split-explicit [Ringler et al. (2013)] and semi-implicit [Kang et al. (2021)]) have been adapted for solving the

new nonhydrostatic model. In all three schemes, an implicit Euler step is performed for the treatment of the vertical diffusion

present in the horizontal and vertical momentum and in the tracer equations. For all the results reported in this paper the RK4

time-stepping scheme has been used. We will show numerically that the presented nonhydrostatic formulation is second-order60

accurate in time, because the update of the nonhydrostatic pressure is second-order accurate. Similar to Fringer et al. (2006),
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an extrapolation technique is used for the nonhydrostatic pressure since it is staggered in time with respect to the velocity. The

new nonhydrostatic capability of MPAS-Ocean is assessed by different benchmark test cases consisting in: (1) a continuously

stratified seiche in an enclosed domain, (2) the formation of internal solitary waves, (3) the generation of a plume in an overflow

scenario and (4) the formation of Kelvin–Helmholtz billows at the shear interface between two fluids of different densities. All65

four tests show that MPAS-Ocean NH correctly describes the behavior of highly convective flows.

This paper is organized as follows. Section 2 describes the 3D Boussinesq nonhydrostatic equations highlighting the dif-

ferences with their hydrostatic counterpart. Section 3 describes the computational grid used by MPAS-Ocean, and section 4

illustrated the spatial discretization on such a grid. In section 5 the new nonhydrostatic capability is tested on four benchmark

test cases, and details about the code performance are given in section 6. Finally, conclusions are drawn in section 7.70

2 Formulation

The dynamics of a Boussinesq, three-dimensional, nonhydrostatic fluid in a rotating frame can be expressed in terms of the

following augmented primitive equation set, in which π = π(x, t) denotes a general space- and time-dependent nonhydrostatic

contribution to the total fluid pressure

∂tuh + (u · ∇)uh + fu⊥h =− 1
ρ0
∇h (ph +π) +Su , (1)75

∂tw+ (u · ∇)w =− 1
ρ0
∂z π+Sw , (2)

∇ ·u = 0 , ph = ρ0g(η− z) + g

η∫

z

ρ(T,S,ph)− ρ0 dz′ , (3)

∂tψ+∇ · (uψ) = Sψ . (4)

Here, uh and w denote the horizontal and vertical components of the fluid velocity, u = (uh,w) is the full three-dimensional

velocity field, and ∇h, ∂z are horizontal and vertical gradient operators, such that ∇= (∇h,∂z). The density of the fluid is80

characterised by a general temperature- and salinity-dependent equation of state ρ(T,S,ph), with ρ0 a constant reference value

associated with the Boussinesq approximation. The full fluid pressure p= ph +π is composed as the sum of the resulting

hydrostatic pressure ph and the nonhydrostatic component π. The system is closed noting that g is the gravitational accelera-

tion, f is the Coriolis parameter acting on the tangential velocity field u⊥h = (v,u), and the tendencies Su, Sw, Sψ represent

all remaining source, forcing, mixing and dissipative terms associated with the fluid momentum and conservative tracer vari-85

ables. Such terms do not feature directly within the nonhydrostatic formulation presented here, and the reader is referred to,

e.g. Ringler et al. (2013) for additional details regarding the specific implementation of these tendencies that is employed in

MPAS-Ocean.

Anticipating an extension to general unstructured meshes on the sphere, we recast the horizontal momentum equation into

a flexible, vector-invariant form; exploiting the identity (uh ·∇h)uh = (∇×uh)×uh+∇h 1
2∥uh∥2 to express the horizontal90
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components of nonlinear momentum advection in terms of the equivalent kinetic-energy Kh = 1
2∥uh∥2 and relative-vorticity

ξh =∇h×uh tendencies. To further aid exposition on unstructured meshes, the advective tendencies in the vertical momentum

and tracer transport equations are also decomposed into horizontal and vertical components, leading to

∂tuh + (ξh + f)u⊥h +w∂zuh =− 1
ρ0
∇h (ph +π)−∇hKh +Su , (5)

∂tw+ (uh · ∇h)w+w∂zw =− 1
ρ0
∂z π+Sw , (6)95

∇ ·u = 0 , ph = ρ0g(η− z) + g

η∫

z

ρ(T,S,ph)− ρ0 dz′ , (7)

∂tψ+∇h · (uhψ) + ∂z(wψ) = Sψ . (8)

Compared to the Boussinesq hydrostatic system conventionally solved in MPAS-Ocean (see e.g. Ringler et al. (2013)), equa-

tions (5–8) contain a number of important differences, namely: (i) an explicit expression of vertical momentum balance, and

(ii) additional acceleration tendencies, via the nonhydrostatic contributions to the horizontal and vertical pressure gradients in100

∇hπ and ∂zπ. As will be explored in subsequent sections, the presence of these additional nonhydrostatic contributions have

important consequences both for the dynamics resolved by the model, as well as the numerical methods required to integrate

the model forward in time.

3 Computational grid

MPAS-Ocean is based on an unstructured C-grid finite-volume/difference discretization, in which the horizontal domain is105

subdivided into a complex of polygonal control-volumes, with the vertical domain consisting of quasi-structured vertical layers.

Consistent with structured-grid models, numerical degrees-of-freedom are distributed at staggered locations throughout the

mesh, with fluid height and conserved tracer variables positioned at the centres of polygonal control-volumes/fluid layers, and

normally-oriented velocity components placed at horizontal cell edges and vertical layer interfaces. See Figure 1 for additional

detail.110

The unstructured meshes used in MPAS-Ocean are a class of orthogonal grids known as Centroidal Voronoi Tessellations

(CVTs). The mathematical properties of CVTs are well known (see e.g. Du et al. (1999)), so our purpose here is only to review

their salient aspects and to describe our C-grid staggering procedure. The reader is referred to, e.g. Ringler et al. (2008); Hoch

et al. (2020) for additional details regarding the use of CVTs in ocean modelling. A Voronoi tessellation on a generic surface

S, can be created by picking {xi}ni=1 distinct grid points and then assigning every point on S to whichever xi it is closest to.115

This results in a set of Voronoi regions, {Vi}ni=1, that can be expressed as

Vi = {y ∈ S s.t. ||xi− y||< ||xj − y|| for j = 1, . . . ,n and j ̸= i} , (9)
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Figure 1. Collocation points for the unstructured C-grid scheme on (a) CVT meshes and (b) z∗-type vertical layering.

such that each Vi is uniquely associated with a single grid point xi. In a CVT, the points {xi}ni=1 are also approximations of the

centroids (mass centers) of the Voronoi cells. A Voronoi tessellation is the dual-mesh of a Delaunay triangulation; specifying

either uniquely determines the other. The meshes are dual in the sense that the vertices of one mesh are the centers of the other120

mesh, as per Fig. 1. Another important feature of these grids is orthogonality, i.e. the edges of the primal (Voronoi) mesh cells

are exactly orthogonal to the dual (Delaunay) triangle edges. The JIGSAW library [Engwirda (2017)] was used to generate

the various CVT meshes used throughout this study. Each Voronoi cell Vi in the horizontal mesh is associated with a vertical

column of fluid layers that discretize the vertical domain from sea-surface height η(x, t) to the bottom bathymetry b(x).

MPAS-Ocean’s unstructured C-grid discretization associates fluid height, temperature, salinity and any other conserved trac-125

ers with the prismatic polygonal volumes formed by extruding the Voronoi cells in the horizontal mesh in the vertical direction.

These variables reside within the ‘full’ vertical layers k = 1,2, . . . ,Nz . Normally-oriented horizontal velocity components are

positioned at the midpoints of the dual Delaunay edges xe and sit on the midplane of each full vertical layer k. The vertical ve-

locity components are staggered at the centres of the Voronoi polygons xi and the half-level vertical layer interfaces l = k± 1
2 .

The length of an edge e in the polygonal mesh is denoted le, the length of its orthogonal dual de and the areas of the cells and130

dual triangles Ai and Av , respectively. These quantities are computed with respect to the geometry the flow is embedded in —

Euclidean measures for planar problems, and spherical metrics for flows on the sphere. See Figure 1 for additional description

of MPAS-Ocean’s staggered mesh configuration.
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4 Spatial discretization

Integrating the continuous equations (5–8) over the layered, unstructured polygonal mesh defined previously leads to a discrete135

finite-volume type discretization, in terms of a layerwise continuity equation

∂t

∫∫
dAdz′+

∫∫

Ω

∇ ·udAdz′ =
∫∫

Ω

shdAdz′ , (10)

∂thi,k + Dhhue,k +
[
żi,k

∣∣∣
k− 1

2

k+ 1
2

= Shi,k , (11)

a discrete horizontal and vertical momentum

∂tue,k + qhu
⊥
e,k +

[
żi,kGz ue,k

∣∣∣
k− 1

2

k+ 1
2

=− 1
ρ0

Gh
(
p′i,k +πi,k

)
−GhKi,k +Sue,k , (12)140

q =
ξ+ f

h
, ξ =∇×uh , (13)

∂twi,k + Dhwue,k +
[
żi,kGzwi,k

∣∣∣
k− 1

2

k+ 1
2

=− 1
ρ0

Gz πi,k +Swi,k , (14)

and a discrete tracer equation

∂thi,kψi,k + Dψψhue,k +
[
ψi,kżi,k

∣∣∣
k− 1

2

k+ 1
2

= Sψi,k . (15)

The subscripts i and e indicate the discretized variables through cell centers and edges, respectively, the x symbol represents145

the averaging of a variable from its native location to an edge or vertex, and D and G are the divergence and gradient operator,

respectively. The subscript k indicates the vertical layer, where k = 1 is the top layer, and k increases downward. żi,k represents

the vertical transport through the layer interface, and an Arbitrary Lagrangian–Eulerian (ALE) algorithm is implemented for

its computation. ALE offers a great deal of freedom to choose among vertical grid types. For z-level vertical coordinates, żi,k is

computed so that layer thicknesses remain constant for k > 1. In z-star coordinates, żi,k is computed so that sea surface height150

(SSH) perturbations are distributed throughout the column. For more details regarding the spacial discretization please refer to

Ringler et al. (2013); Petersen et al. (2015).

4.1 Nonhydrostatic pressure field

At every instant in time, the nonhydrostatic pressure field is updated with

πn+1
i,k = πni,k + δπi,k (16)155

where δπ is the nonhydrostatic pressure-correction. This method is termed the pressure-correction algorithm and it is second-

order accurate in time, as demonstrated in section 6.2. The horizontal and vertical velocity fields are corrected with the nonhy-
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drostatic pressure-correction as

un+1
e,k = u∗e,k −∆t

1
ρ0

Gh δπi,k (17)

wn+1
i,k = w∗i,k −∆t

1
ρ0

Gz δπi,k (18)160

where u∗ and w∗ are the predicted velocity fields, which do not satisfy local continuity. The pressure-correction is computed

solving a Poisson system and assuming that the velocity field is divergence-free at time step n+ 1, i.e.

Dun+1 = 0 . (19)

Adding (17) and (18) up and applying (19) yields to

− 1
∆t

(
Dhu∗i,k + Dzw∗i,k

)
=− 1

ρ0

(
Dh(Gh δπi,k) +Dz(Gz δπi,k)

)
(20)165

which can be re-written as

G2δπ = ρ0
1

∆t
Du∗ , (21)

where G2x= D(Gx). We solve eq. (21) with the preconditioned conjugate gradient algorithm with the preconditioner de-

scribed in Section 6.1. If the pressure field is hydrostatic, then δπ = 0 and un+1 = u∗. Boundary conditions on the nonhydro-

static pressure-correction are gradient-free at solid boundaries and δπ = 0 at the free surface. At open boundaries, a no-gradient170

condition on the nonhydrostatic pressure is imposed. To handle bathymetry in our implementation, the matrix is expanded to

include ‘null rows’ to represent land-masked layers, see Figure 2. This assures the matrix to be non-singular and allows to

support dynamic-in-time vertical layering, that is cells can shift between masked and active throughout the simulation.

5 Numerical results

In this section the nonhydrostatic capability of MPAS-Ocean is assessed by different nonhydrostatic benchmark test cases. The175

test cases employed here are all 2D, and the RK4 time-stepping scheme has been used for their solution. The tests consists of:

(1) a continuously stratified seiche in an enclosed domain, (2) the formation of internal solitary waves, (3) the generation of a

plume in an overflow scenario, and (4) the formation of Kelvin–Helmholtz billows at the shear interface between two fluids of

different densities.

5.1 Continuously-stratified internal seiche180

In this test case we reproduce the behavior of an internal seiche following Vitousek and Fringer (2014). The domain has length

L= 10m and depth D = 16m, and we discretize it using 64 grid points in the horizontal and 100 layers in the vertical. The

initial horizontal velocity is zero, and the initial density stratification is given by

ρ(x,z, t= 0) = ρ0 +
1
2
∆ρ

[
1− tanh

(2tanh−1(αs)
δp

(z+H/2− ξ)
)]
, (22)
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Figure 2. Sparsity pattern of nonhydrostatic elliptic operator, including land-masked block.

where αs = 0.99, δp = 1m, ρ0 = 1000kg m3, and the density difference is given by ∆ρ/ρ0 = 0.01. For the interface height we185

use ξ = ai cos(kx) where ai = 0.1m. The hydrostatic and nonhydrostatic simulations are run without Coriolis force or vertical

mixing for a total of 48s, which represents one period of oscillation. The RK4 time-step used is ∆t= 0.01s, and the viscosity

values in the horizontal and vertical momentum equations are νh = νv = 0.01 m2 s−1. To validate the new nonhydrostatic

capability, we compare depth-profiles of the horizontal and vertical velocity in the nonhydrostatic and hydrostatic model. As

described in Fringer et al. (2006), the velocity profiles are expected to resemble first-mode profiles computed with a linearized190

eigenfunction analysis (see Fringer and Street (2003)), specifically they are expected to decay exponentially with distance from

the interface. This linear, nonhydrostatic effect, is correctly represented by the nonhydrostatic MPAS-Ocean simulation. Fig.

3 shows the horizontal and vertical velocity profiles normalized by their respective maxima at locations x= L/2 and x= 0,

respectively. The plotted time is t= T/4, with T being the period of oscillation. As expected, the nonhydrostatic profiles

decay with distance from the interface and so are in agreement with the first-mode velocity profiles. On the other hand, the195

hydrostatic solution approximates the seiche as a shallow water wave, and hence the velocity fields have a smooth variation

near the stratified interface.

5.2 Internal solitary wave train

This test case approximates the evolution of solitary waves in the South China Sea following Vitousek and Fringer (2014);

Zhang et al. (2011); Vitousek and Fringer (2011). The simulations are performed in a domain of length L= 300km and depth200

H = 2000m discretized with 1200 cells in the horizontal and 100 vertical layers. The initial horizontal velocity is zero, and the
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Figure 3. Horizontal and vertical velocity profiles of the internal seiche calculations at t = T/4 using the hydrostatic and nonhydrostatic

solvers.

density stratification is given by

ρ(x,z, t= 0) = ρ0−
1
2
∆ρtanh

[2tanh−1(αs)
δp

(z− ξ(x,t= 0) +h1)
)]
, (23)

where α= 0.99, δp = 200m, the upper-layer depth is h1 = 250m, and the density difference is given by ∆ρ/ρ0 = 0.001 with

ρ0 = 1000kg m3. The initial Gaussian depression that evolves into a train of solitary waves is given by205

ξ(x,t= 0) =−ai exp
[
−

( x

Lp

)2]
, (24)

with ai = 250m and Lp = 15km. Figures 4 and 5 show the evolution of the solitary wave train for the hydrostatic and non-

hydrostatic case, respectively. Both simulations are run without Coriolis force or vertical mixing for a total of 40 hours, with

a time-step for the RK4 scheme of 1s. For the nonhydrostatic simulation we used νh = 0.1 m2 s−1 and νv = 0.01 m2 s−1,

whereas for the hydrostatic model a larger value of νh was needed to ensure stability, and we used νh = 10.0 m2 s−1. In both210

cases, a wave is fully developed around 6 hours, and from that time the differences between the two models start to have an

effect. The nonhydrostatic MPAS-Ocean simulation correctly shows that the single wave has broken into rank-ordered solitons

at 24 hours, with the number of solitons increasing going further in time. As expected, the hydrostatic model fails to capture

the correct physics, with the formation of a steep wave at 24 hours caused by a lack of dispersion in the hydrostatic model.

This weak dispersion results in excessive numerical diffusion which leads to amplitude loss in the leading solitary-like wave215

as well as a thickening of the stratification in the lee of the wave train. The rapid oscillations that the hydrostatic case exhibits

before the formation of the steep wave caused the need of a higher viscosity value as mentioned above.

By changing time-stepping scheme, the accuracy of the models is impacted. As shown in Figure 6, if we use a barotrop-

ic/baroclinic splitting scheme with a baroclinic time-step of 1m and a barotropic of 1s, the amplitude of the hydrostatic wave
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Figure 4. Evolution of the internal solitary wave train for the hydrostatic case. Density countours ploted at 6, 24 and 40 hours.

Figure 5. Evolution of the internal solitary wave train for the nonhydrostatic case. Density countours ploted at 6, 24 and 40 hours.
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Figure 6. Evolution of the internal solitary wave train for the hydrostatic case using the split-implicit time-stepping scheme.

Figure 7. Evolution of the internal solitary wave train for the nonhydrostatic case using the split-implicit time-stepping scheme.
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drastically enlarges. In the nonhydrostatic case, the amplitude of the solitions is affected in a similar way (Figure 7). The rea-220

son is the underlining order of the time-stepping scheme, which is one for both split-explicit and split-implicit. Using a shorter

baroclinic time-step of 15s, the solution obtained with the higher order RK4 is recovered with the splitting schemes as well.

It is important to notice that the leptic ratio ∆x/∆z plays a major role in the formation of the solitary waves for the non-

hydrostatic case. As shown in Fig. 7 in Vitousek and Fringer (2011), for a large leptic ratio the nonhydrostatic and hydrostatic

results are nearly identical. This is because increasing the grid lepticity causes the width of the leading solitary-like waves to225

grow in both the hydrostatic and nonhydrostatic solutions. With (horizontal) grid refinement, the width of the nonhydrostatic

wave converges to the correct solution, whereas for the hydrostatic case the width continues to decrease because of a lack of

dispersion. Therefore, high resolution grids are very important for the representation of the correct physics in nonhydrostatic

simulations.

5.3 Nonhydrostaic overflow230

This test case represents the flow of dense fluid down a slope. It is similar to the Gravity Plume On a Continental Slope test

from MITgcm [plu], but we do not include any surface heat flux, instead our initial temperature field is a step function to induce

convection. The domain has length L= 6.4km and depth H = 200m, and it is discretized with 320 cells in the horizontal and

60 layers in the vertical. The topography is given by

H(x) =−H0 +
1
2
(H0−hs)

(
1 + tanh

(x−xs
Ls

))
, (25)235

where s= 0.15 is the maximum slope, H0 = 200m is the maximum depth, hs = 40m is the shelf depth, xs = 4700m is the

lateral position of the shelf-break, and Ls =
H0−hs

2s
is the length-scale of the slope. The initial temperature profile is

Θ(x,z) =





10 x≤ 1km,

20 x > 1km,
(26)

so a denser fluid is initially present at the top of the slope. Both the hydrostatic and nonhydrostatic model are run without

Coriolis force or vertical mixing for a total of 3 hours, with a time-step for the RK4 scheme of 0.5s. The viscosity values in240

the horizontal and vertical momentum equations are νh = νv = 1 m2 s−1. We compare the performance of the two models by

looking at the temperature profiles over time. Figure 8 shows the dense fluid on the slope at times 20, 40, 60, 100, 140 and 180

minutes. At 20 min, the fluid is moving down the slope and we can see a plume forming in the nonhydrostatic case. At 40 min,

the front is half way down the slope and the plume is fully developed. Its formation was possible because of the better physics

representation in the nonhydrostatic model which allowed a Kelvin-Helmholtz instability to occur on the slope, leading to245

entrainment of ambient fluid into a plume. In the hydrostatic case, a steep wave has formed, similarly to the internal wave test

case. After an hour, the fluid has reached the bottom of the slope, with the plume reaching its maximum amplitude. As the fluid

moves away from the slope, we approach the shallow-water limit, meaning the horizontal scale becomes considerably larger

than the vertical, and consequently the nonhydrostatic result starts to approach the hydrostatic one. As the fluid acceleration

decreases so does the amplitude of the plume until, as we go further in time, the plume will resemble a steep wave.250
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Figure 8. Nonhydrostatic overflow test case: temperature profiles for the hydrostatic (top) and nonhydrostatic (bottom) model at times 20,

40, 60, 100, 140 and 180 min.
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For all instants of time considered, the speed of the front is greater with the nonhydrostatic simulation, resulting in fluid

locations that slightly vary for the two models. This is because a larger acceleration down the slope was possible in the

nonhydrostatic case since vertical motions are better resolved.

5.4 Nonhydrostaic lock-exchange

This test may be thought of as two basins of water with different densities that are allowed to interact at time zero, producing255

an exchange flow. The domain is a rectangular tank with an horizontal length L of 0.5 m and a depth D of 0.1 m. We assume

the bottom of the tank to be flat. The horizontal and vertical resolution are both 0.001 m. The initial density profile is

ρ(x,z) =





1023.05 kg m−3 x≤ 0.25 m,

1026.95 kg m−3 x > 0.25 m .
(27)

The viscosity values in the horizontal and vertical momentum equations are νh = νv = 2e−6 m2 s−1. This is the only test case

where Coriolis force and vertical mixing are active. Vertical background diffusion and viscosity are set to 1e−6 m2 s−1. For the260

tracer equation, horizontal diffusion is set to 2e−6 m2 s−1. We run the hydrostatic and nonhydrostatic model for 5s using the

RK4 time-stepper with ∆t= 0.001s. Figure 9 shows the density contours for the two runs, where we plotted ρ′ = ρ− 1000 kg

m−3. As for the overflow case, a Kelvin-Helmholtz instability generates with the nonhydrostatic model which causes vigorous

turbulent mixing to develop on the interface between high and low-density water. On the other hand, the hydrostatic simulation

does not capture the generation of the Kelvin–Helmholtz billows. Because of the hydrostatic assumption, the density fronts265

cannot develop in the upper and lower layer.

6 Parallel Implementation

In this section, details about the MPAS-Ocean code performance are given. First, different preconditioners for the 3D Poisson

equation are described and compared, all applied to a conjugate gradient algorithm. Second, the temporal accuracy of the270

nonhydrostatic formulation is investigated numerically, showing that the presented formulation is second-order accurate.

6.1 Nonhydrostatic solver

The liner system in (21) is solved with a preconditioned conjugate gradient (CG) algorithm using the external C++ library

PETSc. PETSc, the Portable Extensible Toolkit for Scientific Computation, is a suite of data structures and routines for the

parallel solution on high-performance computers of scientific applications modeled by partial differential equations [Balay275

et al. (2021a, b)]. We used the KSP package, which provides many popular Krylov subspace iterative methods, and the PC

module, which includes a variety of preconditioners. We tested four types of preconditioners for CG: Jacobi, Additive Schwarz

(AS), Block Jacobi with SOR on each block, and Block Jacobi with ILU on each bock. Jacobi uses a diagonal scaling and the
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Figure 9. Density (ρ′) contour plots at t = 5s for the lock-exchange test case.

(a) (b)

Figure 10. (a) Processor scalability for the internal solitary wave test case; (b) temporal convergence for the internal solitary wave test case

with the nonhydrostatic model.
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zero entries along the diagonal are replaced with the value 1.0. For AS we used the PETSc default, i.e. a restricted additive

Schwarz method where the number of blocks is equal to the number of processors and the amount of overlap between blocks280

is set to 1.0. ILU is used for each block with a tolerance for zero pivot of 2.22 e−14. For Block Jacobi, we tried two types of

solvers for the blocks: SOR and ILU. The PETSC option PCSOR corresponds in parallel to block Jacobi with SOR on each

block, whereas PCBJACOBI uses ILU as default for each block with a tolerance for zero pivot of 2.22 e−14. The number of

blocks corresponds once again to the number of processors. In terms of CPU time, Jacobi and AS showed the largest times

for two different reasons. Jacobi, due to its simple strategy, takes a large number of iterations to achieve convergence (an285

average of 575 for the internal wave test case), whereas AS, despite taking the smallest number of iterations among the four

preconditioning strategies, has the highest computational cost per iteration. PCSOR and PCBJACOBI perform best in terms

of CPU time, with PCBJACOBI being the fastest of the two. Figure 10(a) shows their parallel efficiency obtained running the

internal solitary wave test described in Section 5.2. The domain is discretized with 4800 cells in the horizontal, and the flow

is integrated over a time interval of 1 hour using up to 128 processors. Both preconditioners show good scalability, with an290

average speedup of 1.6 every time the number of processes doubles.

6.2 Time accuracy

Here, we demonstrate second-order temporal accuracy of the nonhydrostatic formulation by performing numerical experi-

ments. The internal wave test is simulated for 1 hour using the RK4 time-stepping scheme for the solution of the momentum

and continuity equations. The nonhydrostatic pressure is updated at every time-step using equation (16), which is second-order295

accurate in time, and so despite using a fourth-order accurate time-stepper for the other variables, the accuracy of the overall

time-stepping scheme is reduced to second-order. It is worth mentioning that if we were to use a first-order time-stepper for

the solution of the momentum and continuity equations (as the split-explicit [Ringler et al. (2013)]), than the overall order of

accuracy would drop to one, therefore it is important to use a second or higher order underling time-stepping scheme. To test

that second-order is indeed achieved numerically, the flow is integrated over a time interval of 1 hour using three different time-300

step sizes, dt = 2,1 and 0.5 s. The error is expressed as the L2 norm of the difference between these solutions and a reference

solution obtained with a time-step size of dt= 0.01 s. The error results for the horizontal velocity, fluid thickness, hydrostatic

and nonhydrostatic pressure are shown in Figure 10(b). All errors converge with second-order accuracy. As in Fringer et al.

(2006), we use the second-order Adams–Bashforth extrapolation scheme to compute the nonhydrostatic pressure at the final

time step, i.e.305

πfinal =
3
2
πlast time-step−

1
2
πsecond to last time-step . (28)

This extrapolation is needed because the nonhydrostatic pressure is staggered in time with respect to the velocity, and failure

to perform it results in a convergence rate of roughly 1.5 for the nonhydrostatic pressure term (not shown).

All benchmark tests presented in section 5 have been run successfully using the split-explicit [Ringler et al. (2013)] and semi-

implicit [Kang et al. (2021)] algorithms as well. Both schemes are based on a barotropic/baroclinic splitting of the velocity,310

and their difference consists in the way the barotropic mode is solved. At this stage, the additional vertical momentum equation
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introduced by the nonhydrostatic model is solved using a forward Euler scheme with the baroclinic time-step, but in general

nonhydrostatic effects may create fast vertical velocities that need smaller time-steps (or an implicit solver) to maintain stability.

We indeed noticed that for the horizontal mixing in the vertical momentum equation a larger viscosity value (4 m2 s−1 instead

of 1 m2 s−1) was needed in the overflow test case in order to run the simulation stably with either splitting method. Future work315

will consist of investigating other strategies for the solution of the vertical momentum equation within a barotropic/baroclinic

splitting scheme, with one possibility being the solution of the vertical momentum together with the barotropic mode. Our

interest in using a barotropic/baroclinic splitting for the velocity is based on the larger time-steps than this strategy allows over

explicit time discretizations, resulting in a significant reduction of the computational time.

7 Conclusions320

For the correct resolution of highly convecting flows and submesoscale eddy processes along coastlines, the hydrostatic as-

sumption usually adopted by ocean models does not do a good job in representing the physics of the problem, because of the

shorter horizontal scales relative to the depth. In this work, we present a new formulation for MPAS-Ocean that solves the

nonhydrostatic, incompressible Boussinesq equations, as opposed to its standard formulation that uses the hydrostatic assump-

tion. We used a pressure-correcting projection method to extend the MPAS-Ocean hydrostatic model to a nonhydrostatic one,325

with the addition of a vertical momentum equation and a nonhydrostatic pressure term. A preconditioned conjugate gradient

algorithm is employed for solving the 3D Poisson equation for the nonhydrostatic pressure using the external PETSc library.

The nonhydrostatic formulation is shown numerically to be second-order accurate in time, as the nonhydrostatic pressure

update is second-order. Four benchmark test cases are used to asses the new nonhydrostatic capability and they all show that

MPAS-Ocean NH correctly represents nonhydrostatic effects in highly convective flows, as the multiscale internal wave energy330

cascade and the plume generation in an overflow scenario.

MPAS-Ocean NH is the first global nonhydrostatic model at variable resolution, and future work will consist in taking

advantage of the variable resolution by implementing the capability of running the nonhydrostatic model only in defined

high resolution regions of the domain. High resolution is necessary for the representation of nonhydrostatic effects, and the

variable resolution mesh allows us to have appropriate high resolution in defined regions and much coarser regions elsewhere,335

making global simulations possible with a nonhydrostaic model. A nonhydrostatic model might play an important role for the

resolution of convecting flows in areas as the Gulf of Mexico and the North Atlantic, therefore appropriate high resolution for

the nonhydrostatic problem will be used on defined regions of the domain, where we expect strong vertical motions, whereas

the hydrostatic model would be used in the majority of the domain. Furthermore, we will keep investigating strategies for the

solution of the vertical momentum equation within a barotropic/baroclinic splitting scheme.340

Code availability. MPAS-Ocean is an open-source code available on GitHub as part of the E3SM project: https://github.com/E3SM-Project/E3SM.
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