
This paper investigated post-fire thaw depth and its driving factors in East Siberian employing both field 
measurement and remote sensing proxies. Their findings indicate that: 1) fire exacerbates thaw depth, 
particularly when compared to unburned regions; 2) a combination of site moisture, forest composition, and 
fire severity accounts for 73.4% of thaw depth variability based on field investigations, while remote sensing 
proxies such as albedo, differenced Normalized Burn Ratio, land surface temperature, and NDVI contribute to 
explaining 66.3% of the variability. 

The research explored topographical, vegetative, and burning effects on post-fire thaw depth in permafrost soil 
and mapped thaw depth with remote sensing data. Although the framework looks promising, some 
clarifications and elucidations are necessary to bolster more convincing findings. There are some limitations 
that I believe require further investigation. 

We thank the reviewer for the constructive and valuable assessment of our paper. A point-by-point response is 
provided below. The original reviewer comments are in bold, author comments in italic, and manuscript 
amendments are given in green. 

 

My major comments are: 

1. The manual selection process of driving factors for the MLR model appears insufficiently rigorous. 
Despite burn depth showing the highest correlation with thaw depth, it's omitted from the regression 
model. Do you have any thoughts on this selection? 

We thank the reviewer for pointing this out and we agree that the manual selection of the variables may have 
been somewhat subjective. Following your comment, we tested an automatic selection using a stepwise regression 
and we plan to include this revised regression in the revised manuscript.  

We will adjust the ‘2.4 Statistical approach’ section as follows: 

2.4 Statistical approach 

Our statistical analysis consisted of two major components. First, we assessed the environmental drivers of post-fire thaw 

depth using our field observations. Second, we evaluated how remote sensing variables can be used to predict field-measured 

thaw depth. For both analyses, we used an ordinary least squares (OLS) multiple linear regression (MLR) model with thaw 

depth as the response variable using the “statsmodels” Python module (Seabold and Perktold, 2010). We hypothesized that 

post-fire thaw depth relates to variables associated with topographic position (topographic position, site moisture, slope, and 

elevation), vegetation (stand age, basal area, vegetation density, and larch proportion), and fire severity (GeoCBI and burn 

depth). The selection of the environmental variables for the MLR model was based on a stepwise regression approach testing 

both forward selection and backward elimination. We calculated the relative importance of the retained variables to the MLR 

model explanatory power using the “pingouin” Python module (Vallat, 2018), which is based on the R package “relaimpo” 

(Grömping, 2006). The R2 from the MLR model is partitioned by averaging over orderings among regressors using simple 

unweighted averages as proposed by Lindeman et al. (1980), providing a decomposition of the explained variance into non-

negative contributions. Finally, we developed a MLR model using the remote sensing metrics (post-fire albedo, dNBR, LST, 

and pre-fire NDVI) as potential predictor variables to assess their capacity as proxies for post-fire thaw depth. The resultant 

obtained MLR was then spatially extrapolated to derive a continuous map of post-fire thaw depth over the study area. 

In addition to these statistical analyses, which included all field plots, we also focused separately on two burned-unburned plot 

pairs. While our study area captured a large variability in landscape position, vegetation characteristics, and fire severity, these 

plots had the advantage of being spatially adjacent with a road acting as the fire barrier. Because of this, the landscape and 



vegetation characteristics of these plots were very similar. As a result, these plot pairs represent interesting study cases in 

which the fire effect on thaw depth can be unequivocally separated from the landscape and vegetation influences. 

The selection of the environmental variables based on the stepwise regression approach testing both forward 
selection and backward elimination resulted in the selection of the following variables: basal area, vegetation 
density and burn depth. Please find below the proposed new ‘3 Results’ section: 

3 Results 

3.1 Environmental drivers of post-fire thaw depth 

On average, summer thaw was deeper in burned (mean = 127.3 cm, standard deviation (sd) = 27.7 cm) than in unburned (98.1 

cm, sd = 26.9 cm) plots (Fig. R1). An independent t-test indicated that this difference is statistically significant (p = 0.04). 

Thaw was deeper in uplands (Figs. R2, R3a, and R3d) and well-drained (Figs. R2 and R3b) landscape positions; in open (Figs. 

R2 and R4b), mature (R2 and R3e), and mixed forests which included tree species other than Cajander larch (Figs. R2 and 

R3f); and in high severity burns (Figs. R2, R3g, and R4c). 

Based on the results of the stepwise regression, both forward selection and backward elimination, we retained basal area, 

vegetation density, and burn depth as predictor variables for the MLR (Fig. R4). The multiple linear regression results indicated 

that the selected environmental drivers together explained 73.3 % of the thaw depth variability. Burn depth was the main 

contributor for the MLR model explanatory power (Table R1).  

3.2 Remote sensing proxies of thaw depth 

Within the fire perimeter, there was considerable spatial variability in albedo, dNBR, LST, and pre-fire NDVI (Figs. R5 and 

R6). Albedo values inside the fire perimeter had a mean of 0.10 (sd = 0.02), compared to mean of 0.12 (sd = 0.02) outside the 

perimeter (Figs. R5a and R6a). The dNBR values from our 13 burned field plots ranged between 0.34 and 0.85, with a mean 

of 0.57, while for the entire fire perimeter the mean was 0.41 (sd = 0.27, Fig. R5b and R6b). In addition, LST values inside the 

fire scar were on average 5.24 K higher than the LST values outside the fire scar (Figs. R5c and R6c). However, for some parts 

of the fire scar, LST values exceeded the surrounding unburned pixels by approximately 20 K. For the pre-fire NDVI, the 

distributions of values inside and outside the fire perimeter were similar (Figs. R5d and R6d) with a mean NDVI value of 0.78 

(sd = 0.08) inside the perimeter and and a mean NDVI value of 0.79 (sd = 0.07) outside the perimeter. 

Thaw tended to be deeper in the plots with lower summer albedo (Fig. R7a), higher dNBR, (Fig. R7b), higher LST (Fig. R7c) 

and lower pre-fire NDVI (Fig. R7d). The correlation with LST was the strongest, while the correlations between thaw depth 

and dNBR, albedo and pre-fire NDVI were not statistically significant at p < 0.05 (Fig. R8).  

Stepwise forward selection indicated that LST was the only variable to be selected for the linear regression, capturing 42.9 % 

of the variability in field-measured thaw depth. By contrast, stepwise backward elimination pointed dNBR, albedo, and pre-

fire NDVI as the variables to be retained in the MLR model. Taken together, these three remote sensing proxies explained 

66.3% of field-measured thaw depth variability. dNBR was the most important predictor in this model configuration (Table 

R2).  

The MLR model for thaw depth based on dNBR, albedo, and pre-fire NDVI enabled spatially continuous thaw depth estimates 

over the study area, including uncertainty estimates (Fig. R9). We chose this MRL configuration due to the higher R2, when 

compared to LST alone. Post-fire thaw depth varied largely within the fire scar, for example between 83.49 cm (5th percentile) 

and 226.42 cm (95th percentile), with a mean of 139.72 cm (sd = 43.76 cm). In contrast, for the pixels outside the fire perimeter, 

the estimated thaw depth varied between 66.59 cm (5th percentile) and 237.99 cm (95th percentile), with a mean of 125.08 cm 



(sd = 52.15 cm) (Fig. R9c). On average, burned areas thus experienced 14.64 cm deeper summer thaw depth one year after the 

fire than unburned areas.  

 

2. Could you provide the significance for all the correlation matrices in Figures A1 and B1? Burn depth 
exhibits a positive correlation to thaw depth (0.53) and soil moisture (0.04), respectively, however, the 
thaw depth has a negative correlation (-0.53) to site moisture. This raises questions. 

We plan to add the significance of the correlations in the matrices in new figure versions of the revised manuscript. 
Below you can find these revised figures (Figs. R2 and R8). 

Site moisture is a plot-level site moisture classification (Johnstone et al., 2008), defined as the “potential moisture 
available for plant growth”. This classification assesses the site moisture based on local topographic drainage and 
also accounts for permafrost presence and soil texture. It results in a six-point scale (xeric, subxeric, subxeric to 
mesic, mesic, mesic to subhygric, and subhygric) ranging between dry and wet. As site moisture is a categorical 
variable, we ranked it on ordinal scale to include this variable in our linear analysis. Thus, when thaw depth shows 
a negative correlation with site moisture, that is indicative that drier (well-drained) plots tended to have deeper 
thaw. We will clarify this information in revision. 

2.2 Field data 

[...] 

We also assigned the topographic position of the plot in relation to its surroundings (upland, midslope, lowland) and plot-level 

site moisture classes following Johnstone et al. (2008). This approach assesses site moisture based on local topographic 

drainage thereby accounting for soil texture and permafrost presence. The resulting ordinal scale consists of six site moisture 

classes ranging between dry and wet (xeric, subxeric, subxeric to mesic, mesic, mesic to subhygric, and subhygric). The six 

classes represent the potential moisture availability for plant growth and should not be confused with temporally explicit soil 

moisture measurements. This site moisture classification has been used extensively in fire studies in boreal North America 

(Walker et al., 2020). 

4 Discussion 

4.1 Environmental drivers of post-fire thaw depth 

[...] 

Increasing fire severity tends to increase thaw depth (Alexander et al., 2018; Holloway et al., 2020; Jafarov et al., 2013; Jiang 

et al., 2015; Li et al., 2019). The positive correlations between the fire severity proxies burn depth and GeoCBI, and thaw 

depth found in our study is consistent with these previous results. In addition, fire severity is often influenced by vegetation 

and topographic conditions. In our study for example, the well-drained upland plots were characterized by deeper thaw , while 

lowland areas are usually wetter with limited drainage and shallow thaw (Figs. R2 and R3). These wet lowland ecosystems 

also tend to burn with lower severity  (Benscoter et al., 2011; Dillon et al., 2011; Holloway et al., 2020; Turetsky et al., 2011). 

 

3. Regarding the application of multi-linear regression, are you utilizing the original data or standardized 
data? Expanding on this in section 2.4 Statistical Approach would enhance clarity. 

We used the original data. We will expand the statistical approach to include this information as suggested. A 
proposed new version of the ‘2.4 Statistical approach’ section can be found in the answer to comment 1. 



4. Are the environmental factors and remote sensing proxies of thaw depth consistent between burned 
and unburned plots if you explore the data separately? How does the correlation coefficient fluctuate 
between burned and unburned regions? 

We acknowledge that our field dataset is somewhat limited in size. As a result, we feel that we cannot confidently 
infer any statistically relevant information by analyzing only 6 unburned plots. However, we would like to point out 
that the variables related to landscape position do not change in their definition between burned and unburned 
sites. The vegetation characteristics were based on a reconstruction of the pre-fire situation. Finally, for the fire 
severity measurements (namely burn depth and GeoCBI, where the unburned plots receive the values of 0) the 
correlation information when considering only the burned plots is shown in Fig. R10. When considering only burned 
plots, burn depth, the fire severity variable retained in the revised model, has a correlation coefficient of 0.55 with 
thaw depth, compared to 0.53 when all plots were analyzed. 

5. According to the MLR model, site moisture seems to play a more significant role in driving variations in 
thaw depth than fire severity. However, thaw depth in burned areas typically surpasses that of 
unburned areas on average. How do you consider the relative contributing importance of site moisture 
and burning severity? What are your thoughts on the potential driving mechanism of thaw depth by a 
comprehensive interpretation of the statistical model in this study? Furthermore, given the potential 
contribution of site moisture to thaw depth, why wasn't soil moisture remote sensing data considered? 

First, as showed in our answer to comment 1, with the revised stepwise selection of variables, site moisture is no 
longer retained in the MLR model. We appreciate the good suggestion of including the relative importance of the 
variables in the model. The inclusion of this metric is presented in the answer to comment 1. We have also 
discussed the relation between site moisture and fire severity in our answer to comment 2 

Other small comments: 

6. Line 118: The reference for Johnstone et al. (2008) is missing. 

We thank the reviewer for the comment. However, we have checked and the reference is there in the list (line 528, 
in the first version of the manuscript). 

Johnstone, J. F., Hollingsworth, T. N., and Chapin, F. S.: A key for predicting postfire successional trajectories in 
black spruce stands of interior Alaska., https://doi.org/10.2737/PNW-GTR-767, 2008. 

7. Line 234: Does the larch tree play a certain function in inducing boreal fires? What is the reason for 
retaining the larch proportion? 

8. Lines 280 – 282: why do plots with fewer larch trees thaw deeper? You may expand some discussion 
here on larch proportion. 

Thanks for the comments, after the new selection of field variables, larch proportion is no longer retained in the 
MLR model. Regardless, we will expand this discussion about the role of  larch trees on permafrost dynamics in 
the revised version of the manuscript. 

Moreover, the presence of Cajander larch trees is closely coupled with permafrost (Herzschuh, 2020), as they maintain 

permafrost by controlling its seasonal thawing. In turn, the permafrost helps to provide sufficient water to the trees by 

preventing it from draining away quickly (Zhang et al., 2011). Our results reflect this vegetation-permafrost interaction, where 

plots with fewer larch trees showed a more pronounced thaw. Our observations in the field also revealed that larch trees were 

prevalent and tend to dominate in mesic and hygric parts of the landscape, including the lowlands with shallower permafrost 

thaw. Conversely, Scots pine was more prevalent in the drier upland areas, which showed deeper thaw (Fig. R2). Scots pine 

trees in the region are found on moderately warm and dry locations, for example on hilltops and well-drained summits of 

watersheds with sandy soils and deeper permafrost thaw. In contrast, larch trees are dominant in wide depressions with often 

cool waterlogged soils with shallower permafrost thaw (Isaev et al., 2010). Eastern Siberian larch trees are some of the only 



tree species that can successfully grow on permafrost soils with very shallow thaw. This is due to their ability to develop the 

adventitious rooting system (Herzschuh, 2020; Kajimoto, 2010). Larch and also Scots pine have evolved under periodic fire 

conditions, with the capacity to regenerate and grow after fire (Kharuk et al., 2021). The competitive advantages have led to 

the establishment of larch dominance in Siberian permafrost environments. However, increasing permafrost degradation could 

lead to a shift in the dominant species, with larch being replaced by pine and other species (Zhang et al., 2011). 

9. Figures A1 & B1: please add significance to the correlation matrix. 

We will add significance to the correlation matrices as suggested (Figs. R2 and R8). 

10. Figures A2 & 3: For unburned areas where burn depth and GeoCBI are 0, it’s worth showing what drives 
the thaw depth when there is no fire rather than explaining everything by one statistic model. 

Thanks for the comments. We have already addressed them in our response to comment 4. 

11. Line 405: please double-check all the references. 

Thanks for pointing this out, we have double-checked all references. 

12. Figure 4 (b) & (d): The fire scar wasn’t fully covered. 
13. Figure 8 (a) & (b): The fire scar wasn’t fully covered. 

Unfortunately, there is no pre-fire image available that covers the northwestern tip of the fire scar. Figure 4b and 
d (in the first version of the manuscript) show that there is no data for that small portion. We will clarify this further 
in the caption (Fig. R5). 
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Figure R1: One year post-fire summer thaw was deeper in burned plots compared to unburned plots. Each box ranges from the first 
to the third quartile. Whiskers extend to points that lie within 1.5 times the interquartile range. The median is indicated by the 
horizontal line and the mean by the black triangle.  

 
Figure R2: Correlation matrix between field-measured environmental variables representing landscape, vegetation and fire severity 
characteristics, and thaw depth. GeoCBI is the Geometrically structured Composite Burn Index. 

 



 
Figure R3: Relationships between (a) topographic position, (b) site moisture, (c) slope, (d) elevation, (e) stand age, (f) larch 
proportion, (g) Geometrically structured Composite Burn Index, and thaw depth. In (a) and (b), each box ranges from the first to 
the third quartile. Whiskers extend to points that lie within 1.5 times the interquartile range. The median is indicated by the 
horizontal line and the mean by the black triangle. For site moisture, classes were grouped together for better visualization. 

 
Figure R4: Relationships between field-measured thaw depth and (a) basal area, (b) vegetation density, and (c) burn depth. 

 



 
Figure R5: Maps showing (a) albedo, (b) differenced Normalized Burn Ratio, (c) land surface temperature, and (c) pre-fire 
Normalized Difference Vegetation Index derived from Landsat 8 imagery. In (b) and (c), the northwestern tip with “no data” 
indicates a portion that was not covered by the Landsat 8 pre-fire scenes.   



 
Figure R6: Relative frequency distributions of remote sensing proxies derived from Landsat 8 imagery inside and outside the fire 
perimeters:(a) albedo, (b) differenced Normalized Burn Ratio, (c) land surface temperature, and (d) pre-fire Normalized Difference 
Vegetation Index. The pixels outside the fire perimeter were within 2 km from the fire perimeter. 



 
Figure R7: Scatter plots and linear regression lines between field-measured thaw depth and remotely sensed (a) albedo, (b) 
differenced Normalized Burn Ratio, (c) land surface temperature, (d) pre-fire Normalized Difference Vegetation Index. 



 
Figure R8: Correlation matrix of selected environmental drivers, remote sensing proxies, and thaw depth. GeoCBI is the 
Geometrically structured Composite Burn Index. LST is the land surface temperature. dNBR refers to the differenced Normalized 
Burn Ratio and NDVI to the Normalized Difference Vegetation Index.  

 
Figure R9: Maps of (a) estimated thaw depth, (b) its standard error, and the (c) relative frequency distribution for the pixels inside 
and outside the fire perimeter. The pixels outside the fire perimeter are within 2 km from the fire’s edge.  



 
Figure R10. Correlation matrix between field-measured environmental variables representing landscape, vegetation and fire severity 
characteristics, and thaw depth, including only burned plots. 

 

 

Table R1: Summary of the multiple linear regression for the environmental drivers of thaw depth. SE is the standard error of the 
corresponding variable’s coefficient. The R2 column displays the coefficient of determination of each predictor variable separately 
as well as for the multiple linear regression model. The relative importance indicates the contribution of each independent variable 
to the multiple linear regression model R2. 

Independent variables Coefficient SE t p > |t| R2 Relative  

importance (%) 

Basal area 1.51 0.51 2.96 <0.001 0.07 14.7 

Vegetation density -10.47 2.24 -4.68 0.009 0.20 38.4 

Burn depth 3.88 0.78 4.96 <0.001 0.28 46.9 

Constant 82.36 13.32 6.18 <0.001   

Multiple linear regression model     0.73  

 

 

 

 

 

 

 



Table R2: Summary of the multiple linear regression for the remote sensing proxies of thaw depth. SE is the standard error of the 
corresponding variable’s coefficient. The R2 column displays the coefficient of determination of each predictor variable separately 
as well as for the multiple linear regression model. The relative importance indicates the contribution of each independent variable 
to the multiple linear regression model R2. 

Independent variables Coefficient SE t p > |t| R2 Relative  

importance (%) 

Albedo 2807.88 674.09 4.16 0.001 0.03 24.0 

differenced Normalized Burn Ratio 167.89 33.01 5.08 <0.001 0.17 47.7 

Pre-fire Normalized Difference Vegetation Index -399.24 97.12 -4.11 0.001 0.10 28.3 

Constant 99.64 77.27 1.29 0.216   

Multiple linear regression model     0.66  
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