Highlights on mantle deformation beneath the Western Alps with seismic anisotropy using CIFALPS2 data

Pondrelli Silvia¹, Salimbeni Simone¹, Confal Judith M.¹, Malusà Marco G.², Paul Anne³, Guillot
4 | Stephane³, Solarino Stefano⁴, Eva Elena⁴, Aubert Coralie³², Zhao Liang⁵

- ⁵ ¹Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
- 6 ² Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 4, 20126 Milan, Italy
- 7 ³Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, UGE, ISTerre, Grenoble, France
- 8⁴ Istituto Nazionale di Geofisica e Vulcanologia, ONT, Genova, Italy
- ⁵ State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences,
 Beijing, China
- 11

1

12 Correspondence to: Silvia Pondrelli (silvia.pondrelli@ingv.it)

13 Abstract. There are still open questions about the deep structure beneath the Western Alps. Seismic velocity tomographies 14 show the European slab subducting beneath the Adria plate, but all these images did not clarify completely the possible 15 presence of tears, slab windows, or detachments. Seismic anisotropy, considered as an indicator of mantle deformation and studied using data recorded by dense networks, allows a better understanding of mantle flows in terms of location and 16 orientation at depth. Using the large amount of shear wave splitting and splitting intensity measurements available in the 17 Western Alps, collected through the CIFALPS2 temporary seismic network, together with already available data, some new 18 patterns can be highlighted and gaps left by previous studies can be filled. Instead of the typical seismic anisotropy pattern 19 20 parallel to the entire arc of the Western Alps, this study supports the presence of a differential contribution along the belt, only partly related to the European slab steepening. A nearly NS anisotropy pattern beneath the external Western Alps, a 21 22 direction that cuts the morphological features of the belt, is clearly found with the new CIFALPS2 measurements. It is however confirmed that the asthenospheric flow from Central France towards about the possible presence of tears, slab 23 windows or detachments. Seismic anisotropy, addressed as an indicator of mantle deformation and studied using data 24 recorded by dense networks, may shed some light about the location and orientation of mantle flow at depth. Using the large 25 amount of shear wave splitting and splitting intensity measurements available in the Western Alps, collected through the 26 27 CIFALPS2 temporary seismic network, together with already available data, highlight some new patterns, filling the gaps left by previous studies. Instead of the typical seismic anisotropy pattern parallel to the entire are of the Western Alps, this 28 29 study supports the presence of a differential contribution along the belt, only partly related to the European slab retreat. A 30 nearly NS anisotropy pattern beneath the external Alps, direction that cuts the morphological features of the belt, is clearly

31 found with the new CIFALPS2 measurements. It is however confirmed that the asthenospheric flow from Central France

32 toward the Tyrrhenian Sea, is turning around the southern tip of the European slab.

33 1 Introduction

34 Seismic anisotropy has become a convincing study tool, mainly in the areas where recent and past geodynamic evolution 35 have left their marks in the mantle deformation and its patterns (e.g. Long and Silver, 2009; Long, 2013 for a complete 36 review). Several methods exist to measure seismic anisotropy. Depending on the used seismic phase, signal, and frequency, 37 it is possible to measure seismic anisotropy at different depths and relate it to different parts of the Earth's structure, last but 38 not least with seismic anisotropy tomography (e.g. Zhao et al., 2023). Local seismicity and surface waves are used to 39 measure crustal seismic anisotropy, usually attributed to fractures or/and the state of stress of crustal depths (i.e. Crampin 40 and Peacock, 2008; Okaya et al., 2018). Using seismic signals that travel deeper, it is possible to sample the deformation at lithospheric-asthenospheric depths. For instance, Pn phases record the seismic anisotropy immediately below the Moho in 41 42 the lithospheric mantle (i.e. Diaz et al., 2013). On the other hand, using core phases (SKS, SKKS, etc) that record information on the receiver branch of their path, we can samplareas where recent and past geodynamic evolution have left 43 their marks in the mantle deformation and its patterns (e.g. Long and Silver, 2009; Long, 2013 for a complete review). 44 45 Several methods exist to measure seismic anisotropy. Depending on the used seismic phase, the kind of signal and frequency, it is possible to measure seismic anisotropy at different depths and relate it to different parts of the Earth's 46 47 structure, last but not least with seismic anisotropy tomography (e.g. Zhao et al., 2023). Local seismicity and surface waves are used to measure crustal seismic anisotropy, usually attributed to fractures or/and the state of stress of crustal depths (i.e. 48 49 Crampin and Peacock, 2008; Okaya et al., 2018). Using seismic signals that travel deeper, it is possible to sample the 50 deformation at the lithospheric-asthenospheric depths. For instance, Pn phases record the seismic anisotropy immediately below the Moho in the lithospheric mantle (i.e. Diaz et al., 2013). On the other hand, using core phases (SKS, SKKS, etc) 51 52 that record information on the receiver branch of their path, we can sample the seismic anisotropy that is thought to be 53 mainly concentrated in the upper mantle.

igure 1 - a) Map of the study region, focusing on the Western Alps. In red are indicated the CIFALPS2 stations, while in blue are
 permanent and previous temporary stations (i.e. CIFALPS and AlpArray). FPF = Frontal Pennine Fault, BG = Bresse Graben, PP
 = Po Plain, LM = Ligurian Mountains; b) the red square is the study area reported in a); c) map of all seismic events used in this
 study, with the star centered in the study region.

The azimuth of the fast velocity direction and the delay time, the two parameters that commonly result from shear wave splitting analysis of core phases, are interpreted respectively as the direction assumed by olivine crystals, the principal mineral component of the upper mantle when mantle undergoes deformation, and the amount of anisotropy crossed by a seismic ray. Azimuth of the fast velocity direction and delay time, the two parameters that commonly result from shear wave splitting analysis of core phases, are interpreted respectively as the direction assumed by olivine crystals, the principal mineral component of the upper mantle, when mantle undergoes deformation, and the amount of anisotropy crossed by a seismic ray.

68	In the Alps these kinds of measurements improved immensely with recent temporary experiments such
69	as AlpArray (Hetényi et al., 2018) or CIFALPS and CIFALPS2 in the western sector of the chain (Zhao
70	et al., 2015; 2016: 2018), which complemented the permanent seismic networks operating in the region.
71	
72	The European Alps originated in the late Cretaceous from the oblique subduction of the Alpine Tethys
73	under the Adria microplate. The subduction evolved in a continental collision during the late Cenozoic
74	(e.g., Handy et al., 2010, 2013 and references therein). In the Western Alps, the tectonic lineament that
75	worked as the suture accommodating the shortening between the two plates is the Frontal Penninc Fault
76	(FPF, Fig. 1). Even though the geological history of this belt is one of the best studied and well known
77	in the world, the geodynamic evolution of the European slab, in terms of position and possible presence
78	of slab break off, is still poorly understoodFigure 1 - a) Map of the study region, focusing on the
79	Western Alps. In red are indicated the CIFALPS2 stations, while in blue are permanent and previous
80	temporary stations (i.e. CIFALPS and AlpArray). FPF = Frontal Pennine Fault; b) the red square is the
81	study area reported in a); c) map of all seismic events used in this study, with the star centered in the
82	study region.
83	

84 All travel time tomographic studies identified at mantle depth the presence of seismic velocity heterogeneities interpreted 85 as the European slab subducting beneath the Adria plate (e.g. Piromallo and Morelli, 2003; Lippitsch et al., 2003; Kissling et 86 al., 2006; Giacomuzzi et al., 2011; Paffrath et al., 2021; Rappisi et al., 2022). However, the existence of possible slab 87 detachments, windows or tears is debated, for instance beneath the Western Alps (e.g., Zhao et al., 2016). The first CIFALPS 88 experiment (see Malusà et al., 2021 and references therein) clarified several points, starting from the first seismic evidence 89 of subducted European continental lithosphere beneath the Adria lithosphere (Zhao et al., 2015), to a tomographic model 90 with a continuous slab beneath this region (Zhao et al., 2016). In addition, recent seismic anisotropy analyses of the Western 91 to the Central Alps shed additional light on potential discontinuities of the slabs, thanks to the possible mapping of mantle 92 flows that would occur through them (Petrescu et al., 2020; Salimbeni et al., 2018). 93 The additional contribution of CIFALPS2, a temporary experiment deployed for 14 months from 2018 to 2019 (Zhao et al., 94 2018), on mantle seismic anisotropy mapping and interpretation, was expected to fill a gap in the northwestern part of the

Alpine arc (red dots in Figure 1). Receiver function and ambient-noise tomography studies have underlined the north-south
 differences in the lithospheric structure along the belt strike (Paul et al., 2022). Therefore, there is a need for measuring

anterences in the htmospheric structure along the belt strike (Paul et al., 2022). Therefore, there is a need for measuring

97 additional seismic anisotropy in the mantle from CIFALPS2 data and to compare them to previous results.

In the Alps these kinds of measurements had a large improvement with recent temporary experiments such as AlpArray
 (Hetényi et al., 2018) or CIFALPS and CIFALPS2 in the western sector of the chain (Zhao et al., 2015; 2016: 2018), that
 complemented the permanent seismic networks operating in the region. The main interest in the Alps is related to the still
 open questions concerning the deep structure and geodynamic evolution of this orogenic belt.

- All travel time tomographic studies identified the presence at mantle depth of seismic velocity heterogeneities interpreted as
 the European slab subducting beneath the Adria plate (e.g. Piromallo and Morelli, 2003; Lippitsch et al., 2003; Kissling et
- 104 al., 2006; Giacomuzzi et al., 2011; Paffrath et al., 2021; Rappisi et al., 2022). However, the existence of possible slab
- 105 detachments, windows or tears is still debated, for instance beneath the Western Alps (e.g., Zhao et al., 2016). The first
- 106 CIFALPS experiment (see Malusà et al., 2021 and references therein) clarified several points, starting from the first seismie
- 107 evidence of subducted European continental lithosphere beneath the Adria lithosphere (Zhao et al., 2015) to a tomographic
- 108 model with a continuous slab beneath this region (Zhao et al., 2016). In addition, recent seismic anisotropy analyses of the
- 109 Western to the Central Alps shed additional light on potential discontinuities of the slabs, thanks to the possible mapping of
- 110 mantle flows that would occur through them (Petrescu et al., 2020; Salimbeni et al., 2018).

111 The additional contribution of CIFALPS2, the temporary experiment deployed for 14 months from 2018 to 2019 (Zhao et

- 112 al., 2018), on mantle seismic anisotropy mapping and interpretation, was expected to fill a gap in the northwestern part of the
- 113 Alpine arc (red dots in Figure 1). Receiver function and ambient-noise tomography studies have underlined the north-south
- 114 differences in the lithospheric structure along the belt strike (Paul et al., 2022). Therefore, there is a need for measuring
- 115 seismic anisotropy in the mantle from CIFALPS2 data and compare it to previous results.
- 116

117 | In this study, we present the results of the analysis of data recorded by CIFALPS2, -describing them in an integrated view
with previous shear wave splitting measurements (SWS) to identify new features in the mantle and draw hypotheses on their
origin.

120 2 Data and Methods

Data used for the analysis are the recordings at CIFALPS2 stations (Figure 1; Zhao et al., 2018; doi: 10.15778/RESIF.XT2018) of teleseismic earthquakes with a magnitude M>6.0, that occurred between June 2018 and December 2019 and <u>are located at a distance interval from the network between 88° and 120°, typical to guarantee well</u> isolated SKS phases in the waveforms. 80 to 150 events for each of the 56 temporary stations have been <u>analyz</u>located at a distance interval from the network between 88° and 120°, typical to guarantee well isolated SKS phases in the waveforms. 80 to 150 events for each of the 56 temporary stations have been selected (Figure 1).

129 The entire SWS analysis has been conducted using the code SplitRacer (Reiss and Rümpker, 2017), based on the Silver and 130 Chan (1991) method and thus on the minimization of the energy on the transverse component. Different filters have been 131 applied according to the amount of noise at the various sites. For most of them, located in the Alps or Ligurian mountains, a 132 bandpass filter between 7 and 20 s worked well, while for instance sites in the Po Plain needed different choices, i.e. 5-30 s. 133 The signal to noise ratio (SNR) was also used to avoid noisy waveforms; initially, the threshold was 3, but where the amount 134 of events to be analyzed was scarce we decreased it down to 1.5, again mainly for sites located in or close to the Po Plain. It 135 is worth noticing that SWS analysis recovers fast-velocity directions, assuming a single layer of horizontal anisotropy. Moreover, the depth at which this anisotropy is located is difficult to define that a single layer is anisotropic, and 136 137 eharacterized by horizontal anisotropy. Moreover, the depth at which this anisotropy is located is difficult to define but it is 138 classically assumed that most measured anisotropy is in the upper mantle (Savage, 1999). Thus, it is common to visualize 139 any lateral variation by plotting results at the piercing point of the incident ray at 150 km depth (Figure 2a).

 ¹⁴² depth. In red and orange are good and fair measurements from CIFALPS2 stations (red circles) respectively. In the bac
 143 in light blue, previous SWS measurements and stations; b) histogram of back azimuths of events used in the analysis.

To improve the resolution of the data to be discussed and interpreted, splitting intensity (SI) measurements have been performed on the same CIFALPS2 recordings used for SWS measures (Table

F

140

146 S2 in Supplementary Material). Splitting intensity is measured by projecting the transverse component 147 on the radial component derivative: it is related to the variations of the amplitude of the transverse component with the back azimuth (Chevrot, 2000; Monteiller and Chevrot, 2010). A routine based on 148 149 Kong et al. (2015) and Confal et al. (2023) was used to calculate splitting intensity values from waveforms with a cut-off of 15 s before and 30 s after the supposed SKS arrival. A dominant period of 150 12 s is used for the Wiener filtering. To filter out low quality waveforms in this automatic process a 151 cross-correlation coefficient of |0.7| and splitting intensities values and error threshold of |2.0| and 0.5152 respectively were used (Baccheschi et al., under revision). With splitting measurements from at least 153 four different 10° bins of back azimuths, the classical evaluation of the anisotropy parameters, i.e. the 154 azimuth of the fast direction phi and the delay time dt, is obtained by fitting a sinusoid to the back 155 azimuthal dependence of splitting intensity values (Chevrot, 2000). In particular, the sinusoid amplitude 156 and phase give dt and phi respectively (see Figure S1 in Supplementary M1 in Supplementary 157 Material). Splitting intensity is measured by projecting the transverse component on the radial 158 component derivative; it is related to the variations of the amplitude of the transverse component with 159 the back azimuth (Chevrot, 2000; Monteiller and Chevrot, 2010). A routine based on Kong et al. (2015) 160 and Confal et al. (2023) was used to calculate splitting intensity values from the waveform with a cut-161 162 off of 15 s before and 30 s after the supposed SKS arrival. A dominant period of 12 s is used for the Wiener filtering. To filter out low quality waveforms in this automatic process a cross-correlation 163 coefficient of |0.7| and splitting intensities values and error threshold of |2.0| and 0.5 respectively were 164 used (Baccheschi et al., under revision). With splitting measurements from at least four different 10° 165 bins of back azimuths, the classical evaluation of the anisotropy parameters, i.e. the azimuth of the fast 166 direction phi and the delay time dt, is obtained by fitting a sinusoid to the back azimuthal dependence of 167 splitting intensity values (Chevrot, 2000). In particular, the sinusoid amplitude and phase give dt and 168 phi respectively (see Figure S2 in supplementary material as an example). 169

170 | Figure 2 - a) Map of single SWS measurements for the study region, plotted at the location of the piercing point of the ray at 150

171 km depth. In red and orange are good and fair measurements from CIFALPS2 stations (red circles) respectively. In the

172 background, in light blue, previous SWS measurements and stations; b) histogram of back azimuths of events used in the analysis.

173

174 **3** Shear wave splitting results

175 From SWS analysis we obtained more than 400 pairs of splitting parameters (phi and dt) if we consider together good (170) 176 and fair (241) results (Figure 2a, good in red, fair in orange; all results are available at https://osf.io/ngxk4, Pondrelli et al., 177 2023). The quality assignment is given following the SplitRacer criteria (Reiss and Rümpker, 2017), considering the visibility of the phase, the ellipticity of the initial particle motion and its linearity in the final stage, and the errors associated 178 179 with phi and dt values. In Figure S2 of the Supplementary Material some measurement examples are shown. In addition, 180 nearly 600 null measurements have been obtained (Figure S3 in Supplementary Material), where a null is considered when no split appears in the signal (i.e. no energy in the transversal component). This is due either to the absence of anisotropy or 181 182 to the initial polarization being parallel to the fast or slow anisotropic direction. A high percentage of good and fair results 183 were obtained for events with a NE back azimuth, so it should be taken into account that this direction is oversampled 184 (Figure 2b), fast polarization direction phi and delay time dt) if we consider together good and fair results (Figure 2a, good in 185 red, fair in orange; all results are available at https://osf.io/ngxk4, Pondrelli et al., 2023). The quality assignment is given following the SplitRacer criteria (Reiss and Rümpker, 2017), considering the visibility of the phase, the ellipticity of the 186 187 initial particle motion and its linearity in the final stage, and the errors associated with phi and dt values,-

More than 600 null measurements have been obtained (Figure S1 in Supplementary Material), where a null is considered when no split appears in the signal (i.e. no energy in the transversal component). This is due either to the absence of anisotropy or to the initial polarization being parallel to the fast or slow anisotropic direction. A high percentage of good and fair results were obtained for events with a NE back azimuth, so it should be taken into account that this direction is oversampled.

193

194 This new dataset fills the region between the north-western external Alps and the Ligurian Sea. The anisotropy directions of no-nulls and nulls mostly agree with previous measurements (Figures 2 and 3, Figure S3 in Suppl. Material). Along the 195 part of the transect crossing the Alps (transect AA' in Figure 3), NE-SW direction dominates in the internal part of the belt, 196 197 between the FPF and the boundary of the Po Plain (see average values, red dots in Figure 3). In the western part of the AA' transect, measurements are more scattered, with a coexistence of NE-SW and NS to NNE-SSW directions. In the 198 199 outer part of the Alpine belt and in the Bresse Graben, the prevailing directions are NS to NNE-SSW. Anisotropy in this 200 region is weaker, but fast velocity directions remain constant toward the NW end of the transect, confirmed also by null 201 measurements (Fig.S3 in Supplementary Material). These two patterns, one NE-SW parallel to the Alps strike and the other 202 nearly NS, and their location along the transect are well visible in Figure 3, mainly following average values (reddish dots)mostly agree with previous measurements (Figures 2 and 3). Along the part of the transect crossing 203

204	the Alps (transect AB in Figure 3), NE-SW direction dominates in the internal part of the belt, between
205	the Frontal Penninic Fault (FPF) and the western boundary of the Po Plain. In the western part of the
206	transect, measurements are more scattered, with a coexistence of NE-SW and NS to NNE-SSW
207	directions. In the outer part of the Alpine belt and in the Bresse Graben, NW of the FPF, the prevailing
208	directions are NS to NNE-SSW. Anisotropy in this region is weak, but fast velocity directions remain
209	constant toward the NW end of the transect. These two patterns, one NE-SW parallel to the Alps strike
210	and the other nearly NS, and their location along the transect are well visible in Figure 3, mainly
211	following average values of transect AB.

212 213 214

igure 3 - Distribution of splitting parameters along the two sections of the CIFALPS2 region. For each section topography (upper), fast axes direction (middle) and delay time (lower) distributions along a swath box of 30 km are displayed. In the fast axes and 215 delay time panels, every single measurement is represented by a square; the results of CIFALPS2 are blueish and color coded in 216 agreement with the back azimuth of the events analyzed, while the results of previous works are represented by smaller empty 217 squares. In the fast axes panel, circles represent the average values calculated using a basic circular arithmetic mean inside the 218 swath box with 30-km-step increment; they are coloured in agreement with the spreading distribution around the mean value 219 (R=0 distribution completely scattered, R=1 distribution completely aligned with the mean direction). In the delay time panels, red 220 dots are the average value and its error, calculated with arithmetic mean and standard deviation. FPF = Frontal Penninic Fault; 221 **BG = Bresse Graben; PP = Po Plain.**

In the Po Plain, measurements appear scattered, similar to previous studies (e.g. Salimbeni et al., 2018; 223 Petrescu et al., 2020; Figures 2 and 3). In the transition between the belt and the plain, the typical NE-224

225	SW Alpine direction prevails. Even if measurements are scarce, this direction appears also in the center
226	of the Po Plain, together with a few NW-SE directions located southeast, close to the Ligurian Alps.
227	However section BB' in Figure 3 shows that anisotropy directions are diverse, resulting in a strong
228	dispersion of average values computed along the section. In the Ligurian part of the transect, several
229	directions are detected, ENE-SSW and NW-SE (Apenninic) on the eastern side with a few weaker
230	(lower dt) NNE-SSW measurements in the western side. Apenninic directions located southeast, close
231	to Ligurian Alps. However section CD in Figure 3 shows that anisotropy directions are diverse,
232	resulting in a strong dispersion of average values computed along the section (dark green symbols, i.e.
233	low R).
234	In general, we do not find any particular pattern in the delay time measurements. Average values
235	computed along the sections (Figure 3) are mostly constant, around 1.5 s with a large range in single
236	measurement values.

237 |

- Figure 4 Maps of average SWS measurements (red, yellow and blue) and anisotropy parameters obtained using SI measurements
 (green). In red average values for CIFALPS2 stations obtained with more than 3 measurements, in yellow averages obtained with
 less than 3 values; in light blue, average measurements from previous works. Dots represent stations.
- 242 | In the Ligurian part of the transect, several directions are detected, ENE-SSW and NW-SE (Apenninic) on the eastern side
- 243 with a few weaker (lower dt) NNE-SSW measurements in the western side.
- 244 | In general, we do not find any particular pattern in the delay time measurements. Average values computed along the
- 245 sections (Figure 3) are mostly constant, around 1.5 s.
- 246
- 247
- 248 In Figure 4, average SWS values for each station are mapped together with anisotropy values obtained by splitting intensity
- 249 (SI) measurements (Table S1 in Supplementary Material). The first observation is that average SWS and SI data are very
- 250 similar, mainly at sites where the single measurement_results are more homogeneous, while differences are present where
- 251 back azimuthal variations in fast direction are more evident, for instance in the southernmost part of the transect, in the
- 252 Ligurian MountainsFigure 3 Distribution of splitting parameters along the two sections of the

CIFALPS2 region. For each section topography (upper), fast axes (middle) and delay time (lower) 251 distributions along a swath box of 30 km are displayed. In the fast axes and delay time panels, every 252 single measurement is represented by a square; the results of CIFALPS2 are blueish and color coded in 253 agreement with the back azimuth of the events analyzed, while the results of previous works are 254 255 represented by empty squares. In the fast axes panel, circles represent the average values calculated inside the swath box with 30-km-step increment and are coloured in agreement with the spreading 256 distribution around the mean value (R=0 mean distribution completely scattered, R=1 distribution 257 completely aligned with the mean direction). In the delay time panels, the average value and its error are 258 calculated with arithmetic mean and standard deviation 259

260

261 In general, it is clear that CIFALPS2 results are coherent with the average distribution of the anisotropy from previous measurements. The main Alpine pattern that follows the belt arc, here NE-SW, is represented in most of the averaged values 262 for sites located in the transition between the Po Plain and the FPF. From the FPF to the NW endpoint of the 263 transect, the main direction is close to NS, a direction that does not find an agreement with the orogen 264 trend, still NE-SW.Figure 4, average SWS values for each station are mapped together with anisotropy 265 values obtained by splitting intensity (SI) measurements (Table S2 in Supplementary Material). The 266 first observation is that average SWS and SI data are very similar, mainly at sites where the results are 267 more homogeneous, while differences are present where detections at the east and the west of the 268 transect are more evident, for instance in the southernmost part of the transect, close to the Ligurian 269 Sea. In general, it is clear that CIFALPS2 results are coherent with the average distribution of the 270 anisotropy from previous measurements. The main Alpine pattern that follows the belt arc, here NE-271 SW, is represented in most of the averaged values for sites in the transition between the Po-272

Figure 4 - Maps of average SWS measurements (red, yellow and blue) and anisotropy parameters obtained using SI measurements
 (green). In red average values from CIFALPS2 stations obtained with more than 3 measurements, in yellow averages obtained
 with less than 3 values and in light blue averaged measurements from previous works.

- 29
- In order to extract as much information as possible, we split the dataset into groups according to the 277 main morphological features: a) External zone to the west of the FPF; b) Internal zone between the FPF 278 and the western boundary of the Po plain, c) the Po Plain, and d) the Ligurian Alps. By plotting a rose 279 diagram for all good and fair measurements obtained for the stations of each group, taking into account 280 the influence of back azimuths, we get an overview of the main features and lateral changes of the 281 282 anisotropy detected through these SWS measurements. 283 Plain and the FPF thrust. From the FPF to the NW endpoint of the transect, the main direction is close to NS, a direction that 284 does not find an agreement with the orogen trend, still NE-SW.
- 285

286 In Figure 5, the rose diagrams show evident differences along the CIFALPS2 transect, somewhere underlined by different patterns with respect to back azimuths. Only in group a), in the External zone, the N-S dominant direction remains, 287 regardless of the amount of measurements or separation into opposite back azimuths (red and blue rose diagrams). For all 288 289 other groups, there is a clear difference depending on the back azimuth. In group b) the entire dataset shows a main trend in a 290 NE-SW direction, in agreement with the Alps strike in this region; the same direction is observed for events coming from 291 NE (blue rose diagram). On the contrary, measurements obtained from events with a SW back azimuth are dominated by a nearly NS direction, guite similar to that shown by group a). The entire dataset for the Po Plain (c) and the subgroup with 292 293 east back azimuths show a clear bimodal distribution, with both the Alpine NE-SW and the Apenninic NW-SE typical directions; west back azimuth events show instead N to NNW directions, very similar to those obtained in previous work at 294 295 the first CIFALPS transect (e.g. Salimbeni et al., 2018) and again similar to group a) and SW back azimuth measurements of 296 group b). In the Ligurian Alps, in the group d), opposite back azimuths show different results. It is worth noticing that in the 297 group d) the ENE-WSW direction is dominant both in the all data plot and in the east back azimuth plot, while the west 298 back azimuth plot shows a wide dispersion with a NW-SE direction prevailing order to extract as much information as possible, we split the dataset into groups according to the main morphological features: a) External zone to the west of the 299 300 FPF: b) Internal zone between the FPF and the western boundary of the Po plain, c) the Po Plain part and d) the Ligurian 301 Alps. By plotting a rose diagram for all good and fair measurements obtained for the stations of each group, taking into 302 account the influence of back azimuths, we get an overview of the main features and lateral changes of the anisotropy 303 detected through these SWS measurements. 304 Figure 5 - Normalised rose diagrams produced for groups of stations along the profile, a) External zone with respect to FPF; b)

Internal zone with respect to FPF; c) Po Plain; d) the Ligurian Alps. Grey rose diagrams: all data; Red: events with SW (a,b) or W
 (c,d) back azimuths, blue: events with NE (a,b) or E (c,d) back azimuths.

Figure 5 - Normalised rose diagrams produced for groups of stations along the profile , a) External zone with respect to FPF; b)
 Internal zone with respect to FPF; c) Po Plain; d) the Ligurian Alps. Grey rose diagrams: all data; Red: events with SW (a,b) or W
 (c,d) back azimuths, blue: events with NE (a,b) or E (c,d) back azimuths.

323 4 Discussion and hypotheses

CIFALPS2 SWS measurements clearly provide new information since they cover large areas where no seismic station is currently deployed or has been operating in the past. They allow us or has been operating in the past. They allow to fill data gaps and draw conclusions on the seismic anisotropy pattern and mantle deformation beneath the Western Alps.

327

328 A large-scale summary, prepared using the average values to avoid the scatter of single SWS measurements, is shown in 329 Figure 6. ENE-WSW fast velocity directions, parallel to the strike of the Alps, are present from the Central to the Western 330 Alps, in the transition between Po Plain and the belt, and terminate where the European slab and the belt are bending (double 331 headed arrows in the inset sketch of Figure 6). At this point anisotropy directions do not strictly follow the chain strike, as 332 they rather cut the main tectonic and morphological features. In the same zone (highlighted by the green circle A, Figure 6) 333 converges a mantle flow that strikes from NE-SW to NS, in a coherent direction that however cuts the arcuate shape of the 334 belt (yellow lines in the northern part of study region, Figure 6); this pattern is different from those described in previous 335 anisotropy studies of the Western Alps (Barruol et al., 2004; Lucente et al., 2006; Barruol et al., 2011; Salimbeni et al., 336 2018) where anisotropy has always been described as rotating with the belt direction. The discrepancy between the direction 337 of tectonic lines and the nearly NS fast velocity is in agreement with a deep source of the anisotropy, in the mantle. Link and 338 Rumpker (2023) in a recent analysis found that a similar nearly NS pattern would be mostly located in a shallower part of the 339 mantle, and in part also present in a lower layer. They consider it as a shallow asthenospheric contribution. Link and

340 Rumpker (2023) in a recent analysis found that this pattern is mostly located in a shallower layer, but being also present in the lower layer and being close to the tectonic sutures, they consider it as a shallow asthenospheric contribution. The NW-SE 341 asthenospheric flow identified from SE France toward the Ligurian Sea, which culminates in a flow around the southern tip 342 343 of the European slab, is instead in agreement with previous studies. This flow apparently originates beneath Central France, 344 in the Massif Central region (Barruol et al., 2004), and it seems that the NS mantle flow merges with it (left green circle, 345 Figure 6) and then, flowing around the southern tip of the European slab, moves to the Tyrrhenian Sea. 346 On the contrary, the NW-SE asthenospheric flow identified from SE France toward the Ligurian Sea, which culminates in a flow around the southern tip of the European slab, is in agreement with previous studies. This flow apparently originates 347 348 beneath Central France, in the Massif Central region (Barruol et al., 2004), and it seems that the NS mantle flow merges with 349 it (left green circle, Figure 6) and then, flowing around the southern tip of the European slab, moves to the Tyrrhenian Sea. 350 351 The overlap with the teleseismic travel time tomographic image at 150 km depth by Zhao et al. (2016) indicates that all these 352 fast velocity directions correspond to mantle deformation below the European slab. The mantle close to the slab has a NE-353 SW seismic anisotropy direction because it is deformed by the slab steepening. This feature is visible only in a narrow 354 stripe, in the transition between Western and Central Alps, probably because in this place the slab steepening was favored 355 by the plate motion direction (e.g. Adria anticlockwise rotation, Figure 6). Moving north, in the outer part of the belt, the 356 anisotropy directions are those of an undeformed mantle, substantially parallel to the APM direction (orange arrows in 357 Figure 6). Moving (south)westward, the deflection from NE-SW to NS may be related to the mantle being squeezed by the 358 retreating European slab and moved toward the south where the retreat process was weakening or probably already ended. 359 Indeed, in the Western Alps, the arcuate shape of the trench and slab, together with the (upper) Adria plate rotating in 360 anticlockwise direction with a rotation pole more or less located in the western Po Plain (e.g. Serpelloni et al., 2016; Le 361 Breton et al., 2017), may have been less favorable to the retreat of the slab. Such differences between the northern and southern Western Alps, in particular in the European Moho geometry, have been also identified by comparing CIFALPS and 362 363 CIFALPS2 receiver function sections (Paul et al., 2022). The European Moho is strongly dipping downdeformed by the slab retreat. This feature is visible only in a narrow stripe, in the transition between Western and Central Alps, probably because 364 365 in this place the slab retreat was favored by the plate motion direction (e.g. Adria anticlockwise rotation, Figure 6). Moving 366 north, in the outer part of the belt, the anisotropy directions are those of an undeformed mantle, substantially parallel to the APM direction (orange arrows in Figure 6). Moving (south)westward, the deflection from NE-SW to NS may be related to 367 368 the mantle being squeezed by the retreating European slab that moved toward the south where however the retreat process was weakening or probably already ended. Indeed, in the Western Alps, the arcuate shape of the trench and slab, together 369 370 with the (upper) Adria plate rotating in anticlockwise direction with a rotation pole more or less located in the western Po 371 Plain (e.g. Serpelloni et al., 2016; Le Breton et al., 2017), may have been less favorable to the retreat of the slab, which was 372 less effective with respect to other locations. Such differences between the northern and southern Western Alps, in particular 19 38

in the European Moho geometry, have been also identified by comparing CIFALPS and CIFALPS2 receiver function
sections (Paul et al., 2022). The European Moho is strongly dipping to ~75 km depth along CIFALPS section, while its dip is
much weaker in CIFALPS2 section. Moreover, the absence of slab retreat in the Western Alps has been described also by
Malusà et al. (2015), studying the mechanisms for exhumation of (U)HP terranes along the Cenozoic Adria-Europe plate
boundary.

The mantle flow from beneath the Central Alps converges with the asthenospheric flow coming from SE France where Western Alps subduction, precisely a continental subduction (Malusà et al., 2021; Paul et al., 2022) runs out. In the region, the European slab is almost vertical (Zhao et al., 2016) and is no more affected by slab retreat. Substantially a differential behaviour of slab movement along the chain is at the base of the anisotropy pattern variation from Central to the entire Western Alps.

383 In the Po Plain, the image is patchy and complex, with very few good quality measurements and some

384 really low values of dt. This does not necessarily mean that the mantle is isotropic, but that anisotropy

may be multilayered or fast velocity directions are vertical Figure 6 - Top left: Zhao et al. (2016) 385 tomography (dVp in %) - layer at 150 km depth - overlapped with average SWS measurements: results 386 from CIFALPS2 data in light grev and from previous studies in black. Orange arrows on top represent 387 the absolute European plate motion from GSRM v2.1 model (calculated from Plate Motion Calculator | 388 Software | GAGE). Yellow traces simulate average mantle deformation directions and green areas A 389 390 and B highlight points where directions converge. Bottom right: a sketch of this part of alpine subduction, where, in light yellow is the European plate, the double-headed arrows represent the only 391 anisotropy of the study region related to European slab retreat (whose direction is represented by the red 392 arrows), thin black lines are the anisotropy parallel to the APM, the thick black arrow represents the SE 393 394 France asthenospheric mantle flow, the purple circular arrow represents the Adria plate rotation.

395

396 Figure 6 - Left: Zhao et al. (2016) tomography (dVp in %) - layer at 150 km depth - overlapped with average SWS measurements: 397 results from CIFALPS2 data in light grey and from previous studies in black. Orange arrows on top represent the absolute 398 European plate motion from GSRM v2.1 model (calculated from Plate Motion Calculator | Software | GAGE). Yellow traces 399 simulate average mantle deformation directions and green areas A and B highlight points where directions converge. Right: a 400 sketch of this part of alpine subduction, where, in light vellow is the European plate, the double-headed arrows represent the only 401 anisotropy of the study region related to European slab retreat (whose direction is represented by the red arrows), thin black lines 402 are the anisotropy parallel to the APM, the thick black arrow represents the SE France asthenospheric mantle flow, the purple 403 circular arrow represents the Adria plate rotation.

405 In the Po Plain, the image is patchy and complex, with very few good quality measurements and some really low values of 406 dt. This does not necessarily mean that the mantle is isotropic, but that anisotropy may be multilayered or fast velocity 407 directions vertical. It is worth noting that beneath the Po basin, the European slab is nearly vertical (e.g., Zhao et al. 2016; 408 Paffrath et al., 2021) and the space for the mantle above is really narrow. With such a complex mantle structure, it is not 409 surprising that a unique and significant pattern of anisotropy cannot be identified. In the Ligurian Alps, our measurements 410 show different orientations east and west of the transect with, in general, a prevailing EW direction (Figure 5d), but a minor 411 NNE-SSW set of measurements from the western back azimuths. These results are certainly intriguing but not sufficient to 412 support any new hypothesis.

413 5 Conclusions

414 New data collected by the CIFALPS2 project clearly fills the gap that has forced the interpolation between more sparse 415 information in the past. The pattern of seismic anisotropy shown here, is not entirely parallel to the belt, as it is in the Central 416 Alps and in the transition to the Western Alps, up to the point this portion of belt is arcuate. Indeed, in the central part of the 417 study region, a nearly NS pattern coming from central Europe cuts all principal morphologic features of the belt. It 418 converges with the part of the mantle deformed by the retreating slab in the point where the retreat is less favored or ended. 419 The arcuate shape of the belt and of the slab, added to the Adria plate rotation with respect to Eurasia around a pole here 420 particularly close to the boundary, reduce the effectiveness of a slab retreat. The NS mantle flow is then interpreted as the

- 421 European mantle moving south to merge with the large asthenospheric flow that from beneath Central France moves toward
- 422 the Tyrrhenian Sea turning around the southern tip of the European slab.

423 Data availability

- 424 All shear wave splitting measurements from this work have been included and are available in the Italian shear wave
- 425 splitting collection https://osf.io/nqxk4 (Pondrelli et al., 2023).

426 Author contribution

- 427 PS, SS and CJM made measurements and analyses. PS prepared the manuscript with the contribution of all co-authors. All
- 428 authors designed the <u>CIFALPS2 experimentexperiments CIFALPS2</u> and carried it out.

429 Competing interests

430 The authors declare that they have no conflict of interest.

431 Acknowledgements

This research is funded by the National Natural Science Foundation of China and by NEWTON (NEw Window inTO Earth's
iNterior), ERC StG funded project (grant ID:758199).

434

435

436

437 |

438

439

440 **References**

- Barruol, G., Bonnin, M., Pedersen, H., Bokelmann, G., Tiberi, C.: Belt-parallel mantle flow beneath a halted continental
 collision: the Western Alps, Earth Planet. Sci. Lett. 302, 429–438, 2011.
- 443 Barruol, G., Deschamps, A., Coutant, O.: Mapping upper mantle anisotropy beneath SE France by SKS splitting indicates a
- 444 Neogene asthenospheric flow induced by the Apenninic slab rollback and deflected by the deep Alpine roots, Tectonophys.,
- 445 394, 125–138, 2004.

- 446 Barruol, G. and M. Granet: A Tertiary asthenospheric flow beneath the southern FrenchMassif Central related to the west
- 447 Mediterranean extension evidenced by upper mantle seismic anisotropy, Earth Plan. Sci. Lett., 202, 31-47, 10.1016/S0012-
- 448 821X(02)00752-5, 2002.
- 449 Chevrot, S.: Multichannel analysis of shear wave splitting, J. Geophys. Res. Solid Earth, 105(B9), 21579-21590, 2000.
- 450 Confal, J. M., Baccheschi, P., Pondrelli, S., Karakostas, F., VanderBeek, B. P., Huang, Z., Faccenda, M.: Reproducing
- 451 Complex Anisotropy Patterns at Subduction Zones from Splitting Intensity Analysis and Anisotropy Tomography, Geophys.
- 452 J. Int., 235, 1725–1735, https://doi.org/10.1093/gji/ggad329, 2023.
- 453 Crampin, S. and Peacock S.: A review of the current understanding of seismic shear-wave splitting in the Earth's crust and
- 454 common fallacies in interpretation, Wave Mot., 45 (2008), pp. 675-722, 10.1016/j.wavemoti.2008.01.003, 2008.
- 455 Díaz, J., Gil, A., and Gallart, J.: Uppermost mantle seismic velocity and anisotropy in the Euro-Mediterranean region from
- 456 Pn and Sn tomography, Geophys. J. Int., 192(1), 310-325, 2013.

457 Monteiller, V., and Chevrot, S.: How to make robust splitting measurements for single-station analysis and three-458 dimensional imaging of seismic anisotropy, Geophys. J. Int., 182(1), 311-328, 2010.

- Giacomuzzi, G., Chiarabba, C., and De Gori, P.: Linking the Alps and Apennines subduction systems: New constraints
 revealed by high-resolution teleseismic tomography, Earth and Plan. Science Lett., 301(3–4), 531–543, 2011.
- Hetényi G., I. Molinari, J. Clinton et al.: The AlpArray Seismic Network: a large-scale European experiment to image the
 Alpine orogeny, Surv. Geophysics, 39, 1009-1033. doi:10.1007/s10712-018-9472-4, 2018.
- 463 Kissling, E., Schmid, S. M., Lippitsch, R., Ansorge, J., and Fügenschuh, B.: Lithosphere structure and tectonic evolution of
- the Alpine arc: New evidence from high-resolution teleseismic tomography, Geological Society, London, Memoirs, 32, 129–
 145, 2006.
- Kong, F., Gao, S. S., and Liu, K. H.: Applicability of the multiple-event stacking technique for shear-wave splitting analysis,
 Bull. Seism. Soc. Am., 105(6), 3156-3166, 2015.
- 468 Le Breton, E., Handy, M. R., Molli, G., and Ustaszewski, K.: Post-20 Ma motion of the Adriatic plate: New constraints from
- surrounding Orogens and implications for crust-mantle decoupling, Tectonics, 36, 3135–3154. doi:10.1002/2016TC004443,
 2017.
- Lippitsch, R., Kissling, E., and Ansorge, J.: Upper mantle structure beneath the Alpine orogen from high-resolution
 teleseismic tomography, J. Geophys. Res.: Solid Earth, 108(B8). https://doi.org/10.1029/2002JB002016, 2003.
- 473 Long, M.: Constraints on subduction geodynamics from seismic anisotropy. Rev. Geophys., 51, 76–112,
 474 https://doi.org/10.1002/rog.20008, 2013.
- Long, M.D., and Silver, P. G.: Shear Wave Splitting and Mantle Anisotropy: Measurements, Interpretations, and New
 Directions, Surv Geophys 30, 407–461, https://doi.org/10.1007/s10712-009-9075-1, 2009.
- 477 Malusà, M. G., C. Faccenna, S. L. Baldwin, P. G. Fitzgerald, F. Rossetti, M. L. Balestrieri, M. Danišík, A. Ellero, G. Ottria,
- 478 and C. Piromallo: Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western
- 479 Alps, Calabria, Corsica), Geochem. Geophys. Geosyst., 16, 1786–1824, doi:10.1002/2015GC005767, 2015.

- 480 Malusà, M. G., Guillot, S., Zhao, L., Paul, A., Solarino, S., Dumont, T., Schwartz, S., Aubert, C., Baccheschi, P., Eva, E.,
- Lu, Y., Lyu, C., Pondrelli, S., Salimbeni, S., Sun, W., & Yuan, H.: The deep structure of the Alps based on the CIFALPS
 seismic experiment: A synthesis, Geochem. Geophys. Geosyst., 22(3), e2020GC009466, 2021.
- 483 Okaya, D., S.S. Vel, W.J. Song, S.E. Johnson: Modification of crustal seismic anisotropy by geological structures
 484 ("structural geometric anisotropy"), Geosphere, 15, pp. 146-170, 10.1130/GES01655, 2018.
- Paffrath, M., Friederich, W., Schmid, S. M., Handy, M. R., and AlpArray and AlpArray-Swath D Working Group: Imaging
 structure and geometry of slabs in the greater Alpine area–A P-wave travel-time tomography using AlpArray Seismic
 Network data, Solid Earth, 12, 2671-2702, doi: 10.5194/se-12-2671-2021, 2021.
- 488 Paul, A., M.G. Malusà, S. Solarino, S. Salimbeni, E. Eva, A. Nouibat, S. Pondrelli, C. Aubert, T. Dumont, S. Guillot, S.
- 489 Schwartz, L. Zhao: Along-strike variations in the fossil subduction zone of the Western Alps revealed by the CIFALPS
- 490 seismic experiments and their implications for exhumation of (ultra-) high-pressure rocks, Earth Plan. Science Lett., 598,
- 491 117843, https://doi.org/10.1016/j.epsl.2022.117843, 2022.
- 492 Piromallo, C., and Morelli, A.: P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res.:
 493 Solid Earth, 108(B2). https://doi.org/10.1029/2002JB001757, 2003.
- 494 Pondrelli S., S. Salimbeni, P. Baccheschi, J. M. Confal, L. Margheriti (2023). Peeking inside the mantle structure beneath the
- 495 Italian region through SKS shear wave splitting anisotropy: a review, Ann. Geophys., 66, 2, doi:1044.01/ag-8872.
- 496 Rappisi, F., VanderBeek, B. P., Faccenda, M., Morelli, A., Molinari, I.: Slab geometry and upper mantle flow patterns in the
- 497 Central Mediterranean from 3D anisotropic P-wave tomography, J. Geophys. Res.: Solid Earth, 127, e2021JB023488. doi:
 498 10.1029/2021JB023488, 2022.
- Reiss, M. C. and G. Rümpker: SplitRacer: MATLAB Code and GUI for Semiautomated Analysis and Interpretation of
 Teleseismic Shear-Wave Splitting, Seism. Res. Lett., 88, 2A, 392-409, doi: https://doi.org/10.1785/0220160191, 2017.
- 501 Salimbeni, S., M. G. Malusà, L. Zhao, S. Guillot, S. Pondrelli, L. Margheriti, A. Paul, S. Solarino, C. Aubert, T. Dumont, S.
- Schwartz, Q. Wang, X. Xu, T. Zheng and R. Zhu: Active and fossil mantle flows in the western Alpine region unravelled by
 seismic anisotropy analysis and high-resolution P wave tomography, Tectonophys., 731-732, 35-47,
 doi:10.1016/j.tecto.2018.03.002, 2018.
- Serpelloni, E., G. Vannucci, L. Anderlini, and R.A. Bennett: Kinematics, seismotectonics and seismic potential of the eastern
 sector of the European Alps from GPS and seismic deformation data, Tectonophys.,
 https://doi.org/10.1016/j.tecto.2016.09.026, 2016.
- Silver, P. G. and W. W. Chan: Shear wave splitting and subcontinental mantle deformation, J. Geophys. Res.: Solid Earth,
 96, B10, 16429-16454, 1991.
- 510 Zhao, L., Paul, A., Guillot, S., Solarino, S., Malusà, M.G., Zheng, T.Y., Aubert, C., Salimbeni, S., Dumont, T., Schwartz, S.,
- 511 Zhu, R.X., Wang, Q.C.: First seismic evidence for continental subduction beneath the Western Alps, Geology 43, 815–818,
 512 2015.

- 513 Zhao, L., Paul, A., Malusà, M. G., Xu, X., Zheng, T., Solarino, S., Guillot, S. Schwartz, S., Dumont, T., Salimbeni, S.,
- 514 Aubert, C., Pondrelli, S., Wang, Q., and Zhu, R.: Continuity of the Alpine slab unraveled by high-resolution P wave
- 515 tomography, J. Geophys. Res., 121, 8720–8737, 2016.
- 516 Zhao, L., Paul, A., Solarino, S., RESIF: Seismic network YP: CIFALPS temporary experiment (China-Italy-France Alps
- 517 | seismic transect) [Data set]. RESIF Réseau Sismologique et géodésique Françe, ais.
- 518 https://doi.org/10.15778/RESIF.YP2012, 2016.
- 519 Zhao, L., Paul, A., Solarino, S., RESIF: Seismic network XT: CIFALPS-2 temporary experiment (China-Italy-France Alps
- 520 <u>seismic transect #2 [Data set]. RESIF Réseau Sismologique et G- rary experiment (China-Italy-France Alps</u>
- 521 seismic transect #2 [Data set]. RESIF Réseau Sismologique et géodésique Franc, ais.
- 522 https://doi.org/10.15778/RESIF. XT2018, 2018.
- 523 Zhao D., Liu X., Wang Z. and Gou T.: Seismic Anisotropy Tomography and Mantle Dynamics, Surv. Geophys., 44, 947-
- 524 982, https://doi.org/10.1007/s10712-022-09764-71, 2023.

525 Supplementary Material

measurements that fit the criteria and the sinusoidal curve (fast polarization direction and time delay written below).

Figure

- Figure S2 Examples of measurements. Upper panel: a good shear wave splitting measurement at station CI23. Lower panel: a null measurement at station CI21.

igure S3 – Map of null measurements plotted at the piercing point of 150 km depth, marked with
crosses rotated in the back azimuth direction and coloured following the color scale on the right,
depending on the back azimuth; in light blue all previous data.

- Table S1 - Good single Splitting Intensity (SI) measurements. Header: Station | Station latitude | Station
- longitude | Earthquake ID (YYMMDDhhmm) | back-azimuth | SI |SI error

Station	Lat	Lon	EQ ID	BAZ	<u>SI</u>	<u>SI</u> <u>error</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1809281002</u>	<u>73.70</u>	<u>0.56</u>	<u>0.04</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1812290339</u>	<u>64.00</u>	<u>0.06</u>	<u>0.09</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1901061727</u>	<u>66.54</u>	<u>0.65</u>	<u>0.04</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1901171506</u>	<u>52.65</u>	<u>0.75</u>	<u>0.26</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1901260812</u>	<u>66.06</u>	<u>-0.16</u>	<u>0.18</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1903150503</u>	<u>245.84</u>	<u>0.39</u>	<u>0.15</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1904121140</u>	<u>72.66</u>	<u>0.44</u>	<u>0.07</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1904230537</u>	<u>61.60</u>	<u>0.43</u>	<u>0.06</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1905141258</u>	<u>46.67</u>	<u>1.24</u>	<u>0.09</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1905311012</u>	<u>64.11</u>	<u>0.31</u>	<u>0.13</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1907071508</u>	<u>68.18</u>	<u>0.24</u>	<u>0.23</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1907140943</u>	<u>67.84</u>	<u>-0.40</u>	<u>0.38</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1909190706</u>	<u>83.83</u>	<u>0.62</u>	<u>0.06</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1909211953</u>	<u>69.62</u>	<u>0.01</u>	<u>0.17</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1909252346</u>	<u>69.16</u>	<u>0.32</u>	<u>0.17</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1910290104</u>	<u>64.96</u>	<u>1.83</u>	<u>0.16</u>
<u>CE01</u>	<u>45.85</u>	<u>7.38</u>	<u>1911141617</u>	<u>67.24</u>	<u>1.11</u>	<u>0.06</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1809281025</u>	<u>74.30</u>	<u>1.92</u>	<u>0.28</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1901212359</u>	<u>81.62</u>	<u>-0.54</u>	<u>0.23</u>

<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1902121234</u>	<u>40.73</u>	<u>-0.08</u>	<u>0.28</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1904121140</u>	<u>72.78</u>	<u>0.74</u>	<u>0.36</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1906240253</u>	<u>70.77</u>	<u>0.85</u>	<u>0.03</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1907140539</u>	<u>86.98</u>	<u>0.35</u>	<u>0.35</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1907140943</u>	<u>67.97</u>	<u>-0.62</u>	<u>0.27</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1908021203</u>	<u>89.90</u>	<u>0.01</u>	<u>0.12</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1909190706</u>	<u>83.94</u>	<u>1.09</u>	<u>0.06</u>
<u>CE02</u>	<u>45.81</u>	<u>7.52</u>	<u>1910290104</u>	<u>65.08</u>	<u>1.86</u>	<u>0.18</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1809281002</u>	<u>73.89</u>	<u>0.44</u>	<u>0.04</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1812290339</u>	<u>64.19</u>	<u>0.65</u>	<u>0.03</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1901181640</u>	<u>290.91</u>	<u>-0.85</u>	<u>0.17</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1902020927</u>	<u>90.21</u>	<u>0.02</u>	<u>0.18</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1902021059</u>	<u>90.19</u>	<u>0.02</u>	<u>0.22</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1902021101</u>	<u>89.97</u>	<u>0.02</u>	<u>0.20</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1903150503</u>	<u>246.00</u>	<u>-0.95</u>	<u>0.19</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1904121140</u>	<u>72.86</u>	<u>0.65</u>	<u>0.23</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1904230537</u>	<u>61.78</u>	<u>0.51</u>	<u>0.07</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1905062119</u>	<u>55.46</u>	<u>1.18</u>	<u>0.17</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1905311012</u>	<u>64.30</u>	<u>0.04</u>	<u>0.08</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1906140019</u>	<u>241.68</u>	<u>0.82</u>	<u>0.17</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1906240253</u>	<u>70.85</u>	<u>0.49</u>	<u>0.06</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1907071508</u>	<u>68.38</u>	<u>0.53</u>	<u>0.04</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1909141621</u>	<u>67.50</u>	<u>-0.01</u>	<u>0.18</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1909290202</u>	<u>64.64</u>	<u>0.81</u>	<u>0.09</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1910161137</u>	<u>65.18</u>	<u>0.02</u>	<u>0.13</u>

<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>1911141617</u>	<u>67.44</u>	<u>0.54</u>	<u>0.06</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1809281002</u>	<u>74.01</u>	<u>0.90</u>	<u>0.08</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1812290339</u>	<u>64.32</u>	<u>0.49</u>	<u>0.04</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1901061727</u>	<u>66.87</u>	<u>1.22</u>	<u>0.13</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1904220911</u>	<u>63.38</u>	<u>-0.06</u>	<u>0.13</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1904230537</u>	<u>61.90</u>	<u>0.66</u>	<u>0.04</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1905311012</u>	<u>64.42</u>	<u>0.62</u>	<u>0.04</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1906240253</u>	<u>70.99</u>	<u>0.49</u>	<u>0.03</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1907071508</u>	<u>68.51</u>	<u>0.82</u>	<u>0.08</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1909190706</u>	<u>84.12</u>	<u>0.48</u>	<u>0.06</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1909290202</u>	<u>64.76</u>	<u>1.31</u>	<u>0.12</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1910290104</u>	<u>65.27</u>	<u>0.73</u>	<u>0.08</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1910310111</u>	<u>65.04</u>	<u>-0.39</u>	<u>0.24</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1911052052</u>	<u>189.30</u>	<u>0.79</u>	<u>0.21</u>
<u>CE04</u>	<u>45.74</u>	<u>7.75</u>	<u>1911150117</u>	<u>67.63</u>	<u>1.83</u>	<u>0.26</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1810292017</u>	<u>216.72</u>	<u>0.37</u>	<u>0.12</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1811040755</u>	<u>65.60</u>	<u>0.10</u>	<u>0.18</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1812290339</u>	<u>64.42</u>	<u>0.34</u>	<u>0.05</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1902081155</u>	<u>62.14</u>	<u>0.41</u>	<u>0.21</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1903240437</u>	<u>67.67</u>	<u>0.50</u>	<u>0.31</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1904121140</u>	<u>73.09</u>	<u>1.03</u>	<u>0.06</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1904230537</u>	<u>61.99</u>	<u>1.00</u>	<u>0.05</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1905311012</u>	<u>64.52</u>	<u>0.77</u>	<u>0.27</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1906240253</u>	<u>71.10</u>	<u>0.75</u>	<u>0.04</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1907071508</u>	<u>68.61</u>	<u>1.37</u>	<u>0.08</u>

<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1909290202</u>	<u>64.86</u>	<u>1.55</u>	<u>0.14</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1910310111</u>	<u>65.14</u>	<u>1.42</u>	<u>0.09</u>
<u>CE05</u>	<u>45.68</u>	<u>7.86</u>	<u>1911141617</u>	<u>67.68</u>	<u>0.28</u>	<u>0.15</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1812290339</u>	<u>64.54</u>	<u>0.58</u>	<u>0.08</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1901171506</u>	<u>53.37</u>	<u>1.42</u>	<u>0.22</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1903010850</u>	<u>251.39</u>	<u>1.21</u>	<u>0.10</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1904062155</u>	<u>74.88</u>	<u>-0.16</u>	<u>0.07</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1904121140</u>	<u>73.20</u>	<u>0.68</u>	<u>0.06</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1904230537</u>	<u>62.10</u>	<u>0.66</u>	<u>0.08</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1906240253</u>	<u>71.23</u>	<u>1.27</u>	<u>0.03</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1907011659</u>	<u>64.54</u>	<u>1.01</u>	<u>0.20</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1907071508</u>	<u>68.73</u>	<u>1.48</u>	<u>0.05</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1907081852</u>	<u>68.65</u>	<u>0.96</u>	<u>0.09</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1907140943</u>	<u>68.41</u>	<u>1.43</u>	<u>0.37</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1907141026</u>	<u>68.08</u>	<u>-1.18</u>	<u>0.07</u>
<u>CE06</u>	<u>45.63</u>	<u>7.98</u>	<u>1911141617</u>	<u>67.79</u>	<u>1.26</u>	<u>0.05</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1809281002</u>	<u>74.38</u>	<u>0.77</u>	<u>0.11</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1812110226</u>	<u>198.19</u>	<u>-0.23</u>	<u>0.06</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1812290339</u>	<u>64.70</u>	<u>0.95</u>	<u>0.08</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1904050956</u>	<u>41.09</u>	<u>0.61</u>	<u>0.26</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1904230537</u>	<u>62.25</u>	<u>0.35</u>	<u>0.07</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1906040439</u>	<u>41.36</u>	<u>-0.27</u>	<u>0.10</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1907011659</u>	<u>64.70</u>	<u>0.20</u>	<u>0.44</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1907071508</u>	<u>68.91</u>	<u>0.78</u>	<u>0.09</u>
<u>CE07</u>	<u>45.57</u>	<u>8.17</u>	<u>1907141026</u>	<u>68.25</u>	<u>1.83</u>	<u>0.13</u>

<u>CI01</u>	<u>46.50</u>	<u>4.72</u>	<u>1809281014</u>	<u>71.35</u>	<u>-1.19</u>	<u>0.12</u>
<u>CI01</u>	<u>46.50</u>	<u>4.72</u>	<u>1901221901</u>	<u>153.32</u>	<u>0.65</u>	<u>0.11</u>
<u>CI01</u>	<u>46.50</u>	<u>4.72</u>	<u>1902020927</u>	<u>88.08</u>	<u>0.90</u>	<u>0.14</u>
<u>CI02</u>	<u>46.44</u>	<u>4.82</u>	<u>1809181157</u>	<u>40.67</u>	<u>0.00</u>	<u>0.09</u>
<u>CI02</u>	<u>46.44</u>	<u>4.82</u>	<u>1809281014</u>	<u>71.45</u>	<u>-1.35</u>	<u>0.08</u>
<u>CI02</u>	<u>46.44</u>	<u>4.82</u>	<u>1810260905</u>	<u>37.16</u>	<u>1.27</u>	<u>0.46</u>
<u>CI02</u>	<u>46.44</u>	<u>4.82</u>	<u>1812011327</u>	<u>69.30</u>	<u>0.00</u>	<u>0.05</u>
<u>CI02</u>	<u>46.44</u>	<u>4.82</u>	<u>1812192137</u>	<u>47.80</u>	<u>0.46</u>	<u>0.12</u>
<u>CI02</u>	<u>46.44</u>	<u>4.82</u>	<u>1901221901</u>	<u>153.39</u>	<u>1.11</u>	<u>0.09</u>
<u>CI03</u>	<u>46.42</u>	<u>4.95</u>	<u>1809281002</u>	<u>71.64</u>	<u>0.28</u>	<u>0.04</u>
<u>CI03</u>	<u>46.42</u>	<u>4.95</u>	<u>1809281014</u>	<u>71.55</u>	<u>-1.57</u>	<u>0.22</u>
<u>CI03</u>	<u>46.42</u>	<u>4.95</u>	<u>1809281025</u>	<u>72.11</u>	<u>-1.37</u>	<u>0.18</u>
<u>CI03</u>	<u>46.42</u>	<u>4.95</u>	<u>1904091753</u>	<u>196.05</u>	<u>1.38</u>	<u>0.07</u>
<u>CI03</u>	<u>46.42</u>	<u>4.95</u>	<u>1904220911</u>	<u>61.24</u>	<u>-0.06</u>	<u>0.12</u>
<u>CI04</u>	<u>46.40</u>	<u>5.07</u>	<u>1901221901</u>	<u>153.56</u>	<u>-0.52</u>	<u>0.16</u>
<u>CI04</u>	<u>46.40</u>	<u>5.07</u>	<u>1902121234</u>	<u>38.50</u>	<u>1.47</u>	<u>0.24</u>
<u>CI05</u>	<u>46.28</u>	<u>5.33</u>	<u>1809281025</u>	<u>72.46</u>	<u>1.21</u>	<u>0.16</u>
<u>CI05</u>	<u>46.28</u>	<u>5.33</u>	<u>1903240437</u>	<u>65.43</u>	<u>0.03</u>	<u>0.12</u>
<u>CI05</u>	<u>46.28</u>	<u>5.33</u>	<u>1908272355</u>	<u>196.24</u>	<u>0.27</u>	<u>0.08</u>
<u>CI05</u>	<u>46.28</u>	<u>5.33</u>	<u>1910290242</u>	<u>63.18</u>	<u>-0.02</u>	<u>0.11</u>
<u>CI05</u>	<u>46.28</u>	<u>5.33</u>	<u>1911231211</u>	<u>60.00</u>	<u>0.24</u>	<u>0.13</u>
<u>CI06</u>	<u>46.28</u>	<u>5.45</u>	<u>1901212359</u>	<u>79.84</u>	<u>0.40</u>	<u>0.08</u>
<u>CI06</u>	<u>46.28</u>	<u>5.45</u>	<u>1906040439</u>	<u>39.28</u>	<u>0.34</u>	<u>0.05</u>
<u>CI06</u>	<u>46.28</u>	<u>5.45</u>	<u>1907141026</u>	<u>65.75</u>	<u>-0.92</u>	<u>0.42</u>
<u>CI06</u>	<u>46.28</u>	<u>5.45</u>	<u>1911042153</u>	<u>238.70</u>	<u>0.03</u>	<u>0.15</u>

<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1810020016</u>	<u>79.26</u>	<u>-0.42</u>	<u>0.17</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1810292326</u>	<u>282.59</u>	<u>-0.02</u>	<u>0.20</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1812160942</u>	<u>57.14</u>	<u>0.55</u>	<u>0.10</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901181640</u>	<u>289.41</u>	<u>0.00</u>	<u>0.04</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901200132</u>	<u>240.02</u>	<u>0.03</u>	<u>0.33</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901212359</u>	<u>79.92</u>	<u>0.01</u>	<u>0.18</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901220510</u>	<u>80.09</u>	<u>0.01</u>	<u>0.18</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901221901</u>	<u>153.87</u>	<u>0.00</u>	<u>0.06</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901260812</u>	<u>64.23</u>	<u>0.03</u>	<u>0.34</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1901301531</u>	<u>282.22</u>	<u>0.01</u>	<u>0.06</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1902020927</u>	<u>88.69</u>	<u>0.01</u>	<u>0.13</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1902021059</u>	<u>88.67</u>	<u>0.01</u>	<u>0.13</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1902021101</u>	<u>88.44</u>	<u>0.01</u>	<u>0.13</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1902081155</u>	<u>60.18</u>	<u>0.04</u>	<u>0.43</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1904062155</u>	<u>72.64</u>	<u>0.20</u>	<u>0.05</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1907141026</u>	<u>65.84</u>	<u>-0.70</u>	<u>0.24</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>1911042153</u>	<u>238.74</u>	<u>1.88</u>	<u>0.45</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1810260905</u>	<u>38.00</u>	<u>0.47</u>	<u>0.08</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1811011930</u>	<u>196.58</u>	<u>1.32</u>	<u>0.12</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1901220510</u>	<u>80.24</u>	<u>-0.66</u>	<u>0.08</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1901260351</u>	<u>42.14</u>	<u>0.83</u>	<u>0.30</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1907141026</u>	<u>65.99</u>	<u>-0.54</u>	<u>0.29</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1909290202</u>	<u>62.99</u>	<u>1.21</u>	<u>0.32</u>
<u>CI08</u>	<u>46.18</u>	<u>5.68</u>	<u>1911161019</u>	<u>65.86</u>	<u>0.26</u>	<u>0.19</u>
<u>CI09</u>	<u>46.19</u>	<u>5.82</u>	<u>1809230552</u>	<u>42.15</u>	<u>-0.47</u>	<u>0.19</u>

<u>CI09</u>	<u>46.19</u>	<u>5.82</u>	<u>1812011327</u>	<u>70.27</u>	<u>-0.60</u>	<u>0.10</u>
<u>CI09</u>	<u>46.19</u>	<u>5.82</u>	<u>1901220510</u>	<u>80.34</u>	<u>-0.85</u>	<u>0.08</u>
<u>CI09</u>	<u>46.19</u>	<u>5.82</u>	<u>1903060013</u>	<u>60.97</u>	<u>0.69</u>	<u>0.13</u>
<u>CI09</u>	<u>46.19</u>	<u>5.82</u>	<u>1904051614</u>	<u>198.90</u>	<u>-0.01</u>	<u>0.12</u>
<u>CI09</u>	<u>46.19</u>	<u>5.82</u>	<u>1911141845</u>	<u>66.04</u>	<u>-1.48</u>	<u>0.33</u>
<u>CI10</u>	<u>46.11</u>	<u>5.92</u>	<u>1809281002</u>	<u>72.50</u>	<u>0.17</u>	<u>0.04</u>
<u>CI10</u>	<u>46.11</u>	<u>5.92</u>	<u>1812110226</u>	<u>197.10</u>	<u>1.31</u>	<u>0.07</u>
<u>CI10</u>	<u>46.11</u>	<u>5.92</u>	<u>1812280303</u>	<u>61.53</u>	<u>0.21</u>	<u>0.15</u>
<u>CI10</u>	<u>46.11</u>	<u>5.92</u>	<u>1901200132</u>	<u>240.25</u>	<u>0.02</u>	<u>0.25</u>
<u>CI10</u>	<u>46.11</u>	<u>5.92</u>	<u>1909190732</u>	<u>82.63</u>	<u>-0.44</u>	<u>0.04</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1809181157</u>	<u>42.41</u>	<u>0.02</u>	<u>0.10</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1810292326</u>	<u>282.94</u>	<u>0.24</u>	<u>0.31</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1811011930</u>	<u>196.75</u>	<u>0.75</u>	<u>0.30</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1812110226</u>	<u>197.16</u>	<u>1.04</u>	<u>0.09</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1901212359</u>	<u>80.37</u>	<u>0.09</u>	<u>0.07</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1902021059</u>	<u>89.05</u>	<u>-0.90</u>	<u>0.19</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1905162252</u>	<u>282.79</u>	<u>0.54</u>	<u>0.17</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1906040439</u>	<u>39.73</u>	<u>0.68</u>	<u>0.24</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>1907071508</u>	<u>67.01</u>	<u>0.69</u>	<u>0.03</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1812110226</u>	<u>197.23</u>	<u>1.06</u>	<u>0.11</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1812290339</u>	<u>62.97</u>	<u>0.03</u>	<u>0.04</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1901260351</u>	<u>42.81</u>	<u>0.93</u>	<u>0.17</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1905162252</u>	<u>282.89</u>	<u>1.74</u>	<u>0.33</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1906040439</u>	<u>39.84</u>	<u>0.67</u>	<u>0.07</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1906240253</u>	<u>69.53</u>	<u>0.50</u>	<u>0.05</u>

<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1907071508</u>	<u>67.13</u>	<u>0.70</u>	<u>0.03</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1910290104</u>	<u>63.96</u>	<u>0.44</u>	<u>0.06</u>
<u>CI12</u>	<u>46.05</u>	<u>6.17</u>	<u>1910310111</u>	<u>63.72</u>	<u>1.00</u>	<u>0.13</u>
<u>CI13</u>	<u>45.99</u>	<u>6.26</u>	<u>1809281014</u>	<u>72.70</u>	<u>1.80</u>	<u>0.17</u>
<u>CI13</u>	<u>45.99</u>	<u>6.26</u>	<u>1810102200</u>	<u>46.90</u>	<u>-0.34</u>	<u>0.24</u>
<u>CI13</u>	<u>45.99</u>	<u>6.26</u>	<u>1812290339</u>	<u>63.06</u>	<u>0.01</u>	<u>0.09</u>
<u>CI13</u>	<u>45.99</u>	<u>6.26</u>	<u>1901260351</u>	<u>42.95</u>	<u>0.80</u>	<u>0.10</u>
<u>CI13</u>	<u>45.99</u>	<u>6.26</u>	<u>1906040439</u>	<u>39.90</u>	<u>1.02</u>	<u>0.08</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1809281025</u>	<u>73.37</u>	<u>1.72</u>	<u>0.49</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1811040755</u>	<u>64.40</u>	<u>0.89</u>	<u>0.18</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1901061727</u>	<u>65.69</u>	<u>1.04</u>	<u>0.11</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1901221901</u>	<u>154.45</u>	<u>-0.78</u>	<u>0.08</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1904051614</u>	<u>199.19</u>	<u>-0.05</u>	<u>0.21</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1904221449</u>	<u>198.79</u>	<u>0.10</u>	<u>0.17</u>
<u>CI14</u>	<u>46.00</u>	<u>6.39</u>	<u>1911141845</u>	<u>66.57</u>	<u>-0.04</u>	<u>0.20</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1809281002</u>	<u>73.01</u>	<u>0.35</u>	<u>0.03</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1810102200</u>	<u>47.20</u>	<u>-0.91</u>	<u>0.21</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1810290654</u>	<u>216.44</u>	<u>0.07</u>	<u>0.15</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1812290339</u>	<u>63.28</u>	<u>0.02</u>	<u>0.08</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1901260812</u>	<u>65.24</u>	<u>0.46</u>	<u>0.12</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1902081155</u>	<u>61.04</u>	<u>-0.48</u>	<u>0.21</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1905062119</u>	<u>54.23</u>	<u>1.04</u>	<u>0.07</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1905162252</u>	<u>283.15</u>	<u>0.81</u>	<u>0.20</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1906191724</u>	<u>58.74</u>	<u>0.45</u>	<u>0.09</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1906281551</u>	<u>40.68</u>	<u>1.15</u>	<u>0.03</u>

<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1907071508</u>	<u>67.44</u>	<u>0.68</u>	<u>0.06</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1908272355</u>	<u>196.79</u>	<u>0.85</u>	<u>0.03</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>1911141617</u>	<u>66.51</u>	<u>0.80</u>	<u>0.04</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1809281002</u>	<u>73.09</u>	<u>0.62</u>	<u>0.04</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1809281025</u>	<u>73.57</u>	<u>-0.49</u>	<u>0.16</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1812190137</u>	<u>253.14</u>	<u>-0.03</u>	<u>0.25</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1901221901</u>	<u>154.61</u>	<u>-0.01</u>	<u>0.06</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1901260812</u>	<u>65.35</u>	<u>0.03</u>	<u>0.32</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1901301531</u>	<u>282.96</u>	<u>0.01</u>	<u>0.06</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1902020927</u>	<u>89.50</u>	<u>0.01</u>	<u>0.13</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1902021059</u>	<u>89.48</u>	<u>0.01</u>	<u>0.13</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1902021101</u>	<u>89.26</u>	<u>0.01</u>	<u>0.13</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1902081155</u>	<u>61.11</u>	<u>0.05</u>	<u>0.40</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1903081506</u>	<u>61.23</u>	<u>1.55</u>	<u>0.19</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1904230537</u>	<u>60.99</u>	<u>1.01</u>	<u>0.05</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1905062119</u>	<u>54.37</u>	<u>0.99</u>	<u>0.07</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1905141258</u>	<u>45.78</u>	<u>0.87</u>	<u>0.19</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1906040439</u>	<u>40.18</u>	<u>0.97</u>	<u>0.07</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1906191724</u>	<u>58.85</u>	<u>1.38</u>	<u>0.11</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1906240253</u>	<u>69.96</u>	<u>0.59</u>	<u>0.06</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1906281551</u>	<u>40.76</u>	<u>1.33</u>	<u>0.05</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1907071508</u>	<u>67.54</u>	<u>0.87</u>	<u>0.04</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1907140910</u>	<u>66.78</u>	<u>1.30</u>	<u>0.11</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1907141026</u>	<u>66.86</u>	<u>1.09</u>	<u>0.21</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1908272355</u>	<u>196.83</u>	<u>1.32</u>	<u>0.05</u>

C116 45.92 6.62 1910290844 44.71 -0.28 0.10 C117 45.95 6.72 1809281002 73.16 0.45 0.07 C117 45.95 6.72 1810020016 80.31 1.45 0.23 C117 45.95 6.72 181001844 82.37 -0.09 0.11 C117 45.95 6.72 181220339 63.44 0.03 0.14 C117 45.95 6.72 190120132 240.73 0.38 0.11 C117 45.95 6.72 190120131 283.04 0.80 0.11 C117 45.95 6.72 19012133 283.04 0.80 0.11 C117 45.95 6.72 19012134 40.02 0.45 0.26 C117 45.95 6.72 190308156 61.30 0.65 0.09 C117 45.95 6.72 190308156 61.30 0.62 0.03 C117 45.95							
CI17 45.95 6.72 1809281002 73.16 0.45 0.07 CI17 45.95 6.72 181002016 80.31 1.45 0.23 CI17 45.95 6.72 181011844 82.37 -0.09 0.11 CI17 45.95 6.72 1812290339 63.44 0.03 0.14 CI17 45.95 6.72 190120132 240.73 0.38 0.11 CI17 45.95 6.72 190120132 240.73 0.38 0.11 CI17 45.95 6.72 190120131 283.04 0.80 0.11 CI17 45.95 6.72 1901301531 283.04 0.80 0.11 CI17 45.95 6.72 190304106 53.47 1.24 0.44 CI17 45.95 6.72 190308150 61.30 0.65 0.09 CI17 45.95 6.72 1904091753 196.91 0.41 0.10 CI17 45.95	<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>1910290844</u>	<u>44.71</u>	<u>-0.28</u>	<u>0.10</u>
CI17 45.95 6.72 1810020016 80.31 1.45 0.23 CI17 45.95 6.72 1810101844 82.37 -0.09 0.11 CI17 45.95 6.72 1812290339 63.44 0.03 0.14 CI17 45.95 6.72 1901181640 290.27 -0.68 0.13 CI17 45.95 6.72 1901201012 240.73 0.38 0.11 CI17 45.95 6.72 1901201013 283.04 0.80 0.11 CI17 45.95 6.72 1901301531 283.04 0.80 0.11 CI17 45.95 6.72 1901301531 283.04 0.80 0.11 CI17 45.95 6.72 1903041006 53.47 1.24 0.44 CI17 45.95 6.72 1903081506 61.30 0.65 0.09 CI17 45.95 6.72 1906040439 40.25 0.73 0.07 CI17 45.	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1809281002</u>	<u>73.16</u>	<u>0.45</u>	<u>0.07</u>
CI1745.956.72181010184482.37-0.090.11CI1745.956.72181229033963.440.030.14CI1745.956.721901181640290.27-0.680.13CI1745.956.72190120132240.730.380.11CI1745.956.72190121901154.67-0.920.10CI1745.956.721901301531283.040.800.11CI1745.956.72190301531283.040.800.11CI1745.956.72190304100653.471.240.44CI1745.956.72190308150661.300.650.09CI1745.956.721904091753196.910.410.10CI1745.956.7219064043940.250.730.07CI1745.956.7219064043940.250.730.07CI1745.956.7219070150867.610.700.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.7219016113764.440.370.08CI1845.906.77181001235980.360.5550.15CI1845.906.7718101236197.510.190.08CI1845.906.77190121001154.71-1.29<	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1810020016</u>	<u>80.31</u>	<u>1.45</u>	<u>0.23</u>
CI1745.956.72181229033963.440.030.14CI1745.956.721901181640290.27-0.680.13CI1745.956.721901200132240.730.380.11CI1745.956.7219012101154.67-0.920.10CI1745.956.721901301531283.040.800.11CI1745.956.72190301531283.040.800.11CI1745.956.72190301531283.040.800.16CI1745.956.72190304100653.471.240.44CI1745.956.72190308150661.300.650.09CI1745.956.721904091753196.910.410.10CI1745.956.7219064043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.7219016113764.440.370.08CI1745.956.77181001235980.360.550.15CI1845.906.77181210226197.510.190.08CI1845.906.7719012603143.62-0.010.15CI1845.906.7719012603165.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1810101844</u>	<u>82.37</u>	<u>-0.09</u>	<u>0.11</u>
CI1745.956.721901181640290.27-0.680.13CI1745.956.72190120132240.730.380.11CI1745.956.72190121901154.67-0.920.10CI1745.956.721901301531283.040.800.11CI1745.956.72190212123440.020.450.26CI1745.956.72190304100653.471.240.44CI1745.956.72190308150661.300.6550.09CI1745.956.72190604043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.7219016113764.440.370.08CI1745.956.7219016113764.440.370.08CI1745.956.7219016113764.440.370.08CI1745.956.77180928100273.220.540.07CI1845.906.7718102125980.360.550.15CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126035143.62-0.030.35CI1845.906.77190126035165.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1812290339</u>	<u>63.44</u>	<u>0.03</u>	<u>0.14</u>
C11745.956.721901200132240.730.380.11C11745.956.72190121901154.67-0.920.10C11745.956.721901301531283.040.800.11C11745.956.72190212123440.020.450.26C11745.956.72190304100653.471.240.44C11745.956.72190308150661.300.650.09C11745.956.721904091753196.910.410.10C11745.956.72190604043940.250.730.07C11745.956.72190628155140.850.820.03C11745.956.72190707150867.610.700.03C11745.956.7219019070683.310.840.05C11745.956.721901917364.440.370.08C11745.956.721901210273.220.540.07C11745.956.77180928100273.220.540.07C11845.906.771812110226197.510.190.08C11845.906.77190126035143.62-0.010.15C11845.906.77190126035143.62-0.030.35C11845.906.77190126035143.62-0.030.35C11845.906.77190126035143.62-0.03	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1901181640</u>	<u>290.27</u>	<u>-0.68</u>	<u>0.13</u>
C11745.956.721901221901154.67-0.920.10C11745.956.721901301531283.040.800.11C11745.956.72190212123440.020.450.26C11745.956.72190304100653.471.240.44C11745.956.72190308150661.300.650.09C11745.956.721904091753196.910.410.10C11745.956.72190604043940.250.730.07C11745.956.72190628155140.850.820.03C11745.956.72190707150867.610.700.03C11745.956.72190919070683.310.840.05C11745.956.7219016113764.440.370.08C11745.956.72191016113764.440.370.08C11745.956.7219101613764.440.370.08C11845.906.7718101235980.360.550.15C11845.906.771812110226197.510.190.08C11845.906.77190126035143.62-0.010.15C11845.906.77190126035143.62-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1901200132</u>	<u>240.73</u>	<u>0.38</u>	<u>0.11</u>
C11745.956.721901301531283.040.800.11C11745.956.72190212123440.020.450.26C11745.956.72190304100653.471.240.44C11745.956.72190308150661.300.650.09C11745.956.721904091753196.910.410.10C11745.956.72190604043940.250.730.07C11745.956.72190628155140.850.820.03C11745.956.72190707150867.610.700.03C11745.956.72190919070683.310.840.05C11745.956.72190919070683.310.840.05C11745.956.72190919070683.310.840.05C11745.956.72190919070683.310.840.05C11745.956.7219016113764.440.370.08C11845.906.7718101235980.360.550.15C11845.906.771901221901154.71-1.290.14C11845.906.77190126035143.62-0.010.15C11845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1901221901</u>	<u>154.67</u>	<u>-0.92</u>	<u>0.10</u>
CI1745.956.72190212123440.020.450.26CI1745.956.72190304100653.471.240.44CI1745.956.72190308150661.300.650.09CI1745.956.721904091753196.910.410.10CI1745.956.72190604043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.7219016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.7718101235980.360.550.15CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1901301531</u>	<u>283.04</u>	<u>0.80</u>	<u>0.11</u>
CI1745.956.72190304100653.471.240.44CI1745.956.72190308150661.300.650.09CI1745.956.721904091753196.910.410.10CI1745.956.72190604043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1745.956.72191016113764.440.370.08CI1845.906.77181021235980.360.550.15CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1902121234</u>	<u>40.02</u>	<u>0.45</u>	<u>0.26</u>
CI1745.956.72190308150661.300.650.09CI1745.956.721904091753196.910.410.10CI1745.956.72190604043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1903041006</u>	<u>53.47</u>	<u>1.24</u>	<u>0.44</u>
CI1745.956.721904091753196.910.410.10CI1745.956.72190604043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.7718101235980.360.550.15CI1845.906.771901221901154.711.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1903081506</u>	<u>61.30</u>	<u>0.65</u>	<u>0.09</u>
CI1745.956.72190604043940.250.730.07CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.7718101235980.360.550.15CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1904091753</u>	<u>196.91</u>	<u>0.41</u>	<u>0.10</u>
CI1745.956.72190628155140.850.820.03CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.7718101235980.360.550.15CI1845.906.771812110226197.510.190.08CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1906040439</u>	<u>40.25</u>	<u>0.73</u>	<u>0.07</u>
CI1745.956.72190707150867.610.700.03CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.77181001235980.360.550.15CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1906281551</u>	<u>40.85</u>	<u>0.82</u>	<u>0.03</u>
CI1745.956.72190919070683.310.840.05CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.77181001235980.360.550.15CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1907071508</u>	<u>67.61</u>	<u>0.70</u>	<u>0.03</u>
CI1745.956.72191016113764.440.370.08CI1845.906.77180928100273.220.540.07CI1845.906.77181001235980.360.550.15CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1909190706</u>	<u>83.31</u>	<u>0.84</u>	<u>0.05</u>
CI1845.906.77180928100273.220.540.07CI1845.906.77181001235980.360.550.15CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>1910161137</u>	<u>64.44</u>	<u>0.37</u>	<u>0.08</u>
CI1845.906.77181001235980.360.550.15CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1809281002</u>	<u>73.22</u>	<u>0.54</u>	<u>0.07</u>
CI1845.906.771812110226197.510.190.08CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1810012359</u>	<u>80.36</u>	<u>0.55</u>	<u>0.15</u>
CI1845.906.771901221901154.71-1.290.14CI1845.906.77190126035143.62-0.010.15CI1845.906.77190126081265.50-0.030.35	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1812110226</u>	<u>197.51</u>	<u>0.19</u>	<u>0.08</u>
CI18 45.90 6.77 1901260351 43.62 -0.01 0.15 CI18 45.90 6.77 1901260812 65.50 -0.03 0.35	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1901221901</u>	<u>154.71</u>	<u>-1.29</u>	<u>0.14</u>
<u>CI18</u> 45.90 6.77 1901260812 65.50 -0.03 0.35	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1901260351</u>	<u>43.62</u>	<u>-0.01</u>	<u>0.15</u>
	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1901260812</u>	<u>65.50</u>	<u>-0.03</u>	<u>0.35</u>
<u>CI18</u> 45.90 6.77 1901301531 283.07 0.03 0.47	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1901301531</u>	<u>283.07</u>	<u>0.03</u>	<u>0.47</u>

I	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1902121234</u>	<u>40.07</u>	<u>0.74</u>	<u>0.17</u>
I	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1902171435</u>	<u>46.02</u>	<u>0.20</u>	<u>0.31</u>
1	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1906191724</u>	<u>59.00</u>	<u>0.42</u>	<u>0.09</u>
I	<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>1907140910</u>	<u>66.91</u>	<u>1.34</u>	<u>0.18</u>
I	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1812192137</u>	<u>50.38</u>	<u>-0.86</u>	<u>0.19</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1903010850</u>	<u>250.64</u>	<u>0.52</u>	<u>0.05</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1904051614</u>	<u>199.46</u>	<u>1.10</u>	<u>0.08</u>
I	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1904062155</u>	<u>73.88</u>	<u>1.87</u>	<u>0.14</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1904091753</u>	<u>197.00</u>	<u>0.26</u>	<u>0.20</u>
1	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1904121140</u>	<u>72.25</u>	<u>0.77</u>	<u>0.06</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1906040439</u>	<u>40.39</u>	<u>1.24</u>	<u>0.13</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1906191724</u>	<u>59.10</u>	<u>1.39</u>	<u>0.08</u>
1	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1907071508</u>	<u>67.76</u>	<u>0.94</u>	<u>0.04</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1908272355</u>	<u>196.96</u>	<u>0.72</u>	<u>0.04</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1909291557</u>	<u>237.91</u>	<u>0.79</u>	<u>0.07</u>
l	<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>1911141617</u>	<u>66.82</u>	<u>1.58</u>	<u>0.05</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1809280659</u>	<u>73.71</u>	<u>0.41</u>	<u>0.34</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1809281002</u>	<u>73.55</u>	<u>1.08</u>	<u>0.10</u>
1	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1809281014</u>	<u>73.46</u>	<u>1.54</u>	<u>0.09</u>
1	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1810141241</u>	<u>126.72</u>	<u>0.04</u>	<u>0.17</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1812290339</u>	<u>63.84</u>	<u>0.84</u>	<u>0.08</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1901181640</u>	<u>290.55</u>	<u>0.07</u>	<u>0.38</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1901212359</u>	<u>81.37</u>	<u>0.15</u>	<u>0.23</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1901220510</u>	<u>81.54</u>	<u>0.26</u>	<u>0.19</u>
l	<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1901260351</u>	<u>44.17</u>	<u>0.94</u>	<u>0.26</u>

<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1906240253</u>	<u>70.49</u>	<u>0.97</u>	<u>0.04</u>
<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1907071508</u>	<u>68.03</u>	<u>1.11</u>	<u>0.05</u>
<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1907140539</u>	<u>86.75</u>	<u>1.16</u>	<u>0.12</u>
<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1909141621</u>	<u>67.14</u>	<u>-0.09</u>	<u>0.16</u>
<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1909190732</u>	<u>83.64</u>	<u>1.50</u>	<u>0.26</u>
<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>1911150117</u>	<u>67.15</u>	<u>-1.21</u>	<u>0.14</u>
<u>CI22</u>	<u>45.68</u>	<u>7.14</u>	<u>1809281002</u>	<u>73.56</u>	<u>0.80</u>	<u>0.07</u>
<u>CI22</u>	<u>45.68</u>	<u>7.14</u>	<u>1809281014</u>	<u>73.47</u>	<u>1.94</u>	<u>0.20</u>
<u>CI22</u>	<u>45.68</u>	<u>7.14</u>	<u>1905162252</u>	<u>283.51</u>	<u>-0.04</u>	<u>0.16</u>
<u>CI22</u>	<u>45.68</u>	<u>7.14</u>	<u>1907011659</u>	<u>63.88</u>	<u>1.96</u>	<u>0.14</u>
<u>CI22</u>	<u>45.68</u>	<u>7.14</u>	<u>1907071508</u>	<u>68.04</u>	<u>0.97</u>	<u>0.09</u>
<u>CI22</u>	<u>45.68</u>	<u>7.14</u>	<u>1907140539</u>	<u>86.77</u>	<u>0.92</u>	<u>0.16</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1809281002</u>	<u>73.64</u>	<u>1.07</u>	<u>0.07</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1810020016</u>	<u>80.83</u>	<u>-0.37</u>	<u>0.17</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1810141241</u>	<u>126.79</u>	<u>-1.21</u>	<u>0.16</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1812160942</u>	<u>59.06</u>	<u>-0.01</u>	<u>0.06</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1812161426</u>	<u>96.66</u>	<u>-0.02</u>	<u>0.25</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1812290339</u>	<u>63.93</u>	<u>0.39</u>	<u>0.06</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1901061727</u>	<u>66.48</u>	<u>0.46</u>	<u>0.10</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1901181640</u>	<u>290.62</u>	<u>-0.91</u>	<u>0.21</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1903060013</u>	<u>62.22</u>	<u>0.48</u>	<u>0.08</u>
<u>CI23</u>	<u>45.68</u>	7.24	<u>1904051614</u>	<u>199.61</u>	<u>0.04</u>	<u>0.14</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1904230537</u>	<u>61.52</u>	<u>0.86</u>	<u>0.06</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1905030725</u>	<u>39.67</u>	<u>1.39</u>	<u>0.16</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1905311012</u>	<u>64.03</u>	<u>0.60</u>	<u>0.07</u>

<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1906240253</u>	<u>70.60</u>	<u>0.95</u>	<u>0.04</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1907071508</u>	<u>68.12</u>	<u>0.90</u>	<u>0.05</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1910290104</u>	<u>64.89</u>	<u>0.79</u>	<u>0.08</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	<u>1911141617</u>	<u>67.18</u>	<u>1.19</u>	<u>0.13</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1809281002</u>	<u>73.66</u>	<u>1.07</u>	<u>0.09</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1812290339</u>	<u>63.95</u>	<u>0.31</u>	<u>0.05</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1902021101</u>	<u>89.73</u>	<u>-0.33</u>	<u>0.24</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1904062155</u>	<u>74.29</u>	<u>0.19</u>	<u>0.09</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1904230537</u>	<u>61.53</u>	<u>0.86</u>	<u>0.05</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1905062119</u>	<u>55.19</u>	<u>0.07</u>	<u>0.30</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1906240253</u>	<u>70.62</u>	<u>1.03</u>	<u>0.05</u>
<u>CI24</u>	<u>45.65</u>	7.25	<u>1907071508</u>	<u>68.14</u>	<u>0.90</u>	<u>0.05</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1910142223</u>	<u>90.32</u>	<u>1.03</u>	<u>0.06</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1910290104</u>	<u>64.90</u>	<u>0.92</u>	<u>0.06</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1911052052</u>	<u>189.03</u>	<u>-0.24</u>	<u>0.25</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>1911231211</u>	<u>61.89</u>	<u>0.55</u>	<u>0.07</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1809281002</u>	<u>73.72</u>	<u>0.97</u>	<u>0.07</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1809281025</u>	<u>74.20</u>	<u>0.64</u>	<u>0.14</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1812290339</u>	<u>64.01</u>	<u>0.44</u>	<u>0.04</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1901220510</u>	<u>81.72</u>	<u>0.98</u>	<u>0.08</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1902121234</u>	<u>40.60</u>	<u>-0.19</u>	<u>0.13</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1903041006</u>	<u>54.27</u>	<u>-0.55</u>	<u>0.14</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1904230537</u>	<u>61.59</u>	<u>0.57</u>	<u>0.05</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1905311012</u>	<u>64.11</u>	<u>-1.80</u>	<u>0.38</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1906240253</u>	<u>70.69</u>	<u>1.04</u>	<u>0.06</u>

<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1907071508</u>	<u>68.21</u>	<u>0.91</u>	<u>0.10</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1907141026</u>	<u>67.54</u>	<u>-0.92</u>	<u>0.19</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1910290104</u>	<u>64.96</u>	<u>1.17</u>	<u>0.13</u>
<u>CI25</u>	<u>45.63</u>	<u>7.32</u>	<u>1911141617</u>	<u>67.27</u>	<u>0.27</u>	<u>0.08</u>
<u>CI26</u>	<u>45.60</u>	<u>7.39</u>	<u>1901220510</u>	<u>81.78</u>	<u>1.15</u>	<u>0.21</u>
<u>CI26</u>	<u>45.60</u>	<u>7.39</u>	<u>1903101248</u>	<u>51.72</u>	<u>0.71</u>	<u>0.28</u>
<u>CI26</u>	<u>45.60</u>	<u>7.39</u>	<u>1907071508</u>	<u>68.27</u>	<u>1.17</u>	<u>0.08</u>
<u>CI26</u>	<u>45.60</u>	<u>7.39</u>	<u>1907141026</u>	<u>67.61</u>	<u>1.75</u>	<u>0.45</u>
<u>CI27</u>	<u>45.60</u>	<u>7.49</u>	<u>1810020016</u>	<u>81.05</u>	<u>0.39</u>	<u>0.48</u>
<u>CI28</u>	<u>45.56</u>	<u>7.57</u>	<u>1904230537</u>	<u>61.79</u>	<u>0.45</u>	<u>0.11</u>
<u>CI28</u>	<u>45.56</u>	<u>7.57</u>	<u>1907140943</u>	<u>68.10</u>	<u>1.42</u>	<u>0.38</u>
<u>CI29</u>	<u>45.54</u>	<u>7.66</u>	<u>1905311012</u>	<u>64.41</u>	<u>0.44</u>	<u>0.24</u>
<u>CI29</u>	<u>45.54</u>	<u>7.66</u>	<u>1906240253</u>	<u>71.01</u>	<u>1.09</u>	<u>0.15</u>
<u>CI29</u>	<u>45.54</u>	<u>7.66</u>	<u>1907071508</u>	<u>68.51</u>	<u>0.79</u>	<u>0.39</u>
<u>CI29</u>	<u>45.54</u>	<u>7.66</u>	<u>1905311012</u>	<u>64.41</u>	<u>0.44</u>	<u>0.24</u>
<u>CI29</u>	<u>45.54</u>	<u>7.66</u>	<u>1906240253</u>	<u>71.01</u>	<u>1.09</u>	<u>0.15</u>
<u>CI29</u>	<u>45.54</u>	<u>7.66</u>	<u>1907071508</u>	<u>68.51</u>	<u>0.79</u>	<u>0.39</u>
<u>CI30</u>	<u>45.52</u>	<u>7.71</u>	<u>1812192137</u>	<u>51.51</u>	<u>-1.19</u>	<u>0.25</u>
<u>CI30</u>	<u>45.52</u>	<u>7.71</u>	<u>1902121234</u>	<u>40.95</u>	<u>-1.45</u>	<u>0.16</u>
<u>CI30</u>	<u>45.52</u>	<u>7.71</u>	<u>1907071508</u>	<u>68.55</u>	<u>1.23</u>	<u>0.11</u>
<u>CI30</u>	<u>45.52</u>	<u>7.71</u>	<u>1909141621</u>	<u>67.68</u>	<u>0.49</u>	<u>0.29</u>
<u>CI31</u>	<u>45.44</u>	<u>7.81</u>	<u>1903010850</u>	<u>251.27</u>	<u>0.58</u>	<u>0.05</u>
<u>CI31</u>	<u>45.44</u>	<u>7.81</u>	<u>1904220911</u>	<u>63.45</u>	<u>0.23</u>	<u>0.11</u>
<u>CI31</u>	<u>45.44</u>	<u>7.81</u>	<u>1906040439</u>	<u>41.09</u>	<u>-0.65</u>	<u>0.15</u>
<u>CI31</u>	<u>45.44</u>	<u>7.81</u>	<u>1910161137</u>	<u>65.42</u>	<u>0.49</u>	<u>0.08</u>

<u>CI32</u>	<u>45.36</u>	<u>7.91</u>	<u>1810102113</u>	<u>50.39</u>	<u>-0.81</u>	<u>0.23</u>
<u>CI32</u>	<u>45.36</u>	<u>7.91</u>	<u>1905311012</u>	<u>64.64</u>	<u>0.74</u>	<u>0.20</u>
<u>CI32</u>	<u>45.36</u>	<u>7.91</u>	<u>1907011659</u>	<u>64.53</u>	<u>-1.09</u>	<u>0.26</u>
<u>CI32</u>	<u>45.36</u>	<u>7.91</u>	<u>1910290104</u>	<u>65.48</u>	<u>0.46</u>	<u>0.14</u>
<u>CI33</u>	<u>45.29</u>	<u>7.94</u>	<u>1812161426</u>	<u>97.32</u>	<u>-0.93</u>	<u>0.12</u>
<u>CI33</u>	<u>45.29</u>	<u>7.94</u>	<u>1901200132</u>	<u>241.36</u>	<u>0.65</u>	<u>0.14</u>
<u>CI33</u>	<u>45.29</u>	<u>7.94</u>	<u>1902021101</u>	<u>90.25</u>	<u>1.85</u>	<u>0.19</u>
<u>CI33</u>	<u>45.29</u>	<u>7.94</u>	<u>1902081155</u>	<u>62.28</u>	<u>0.27</u>	<u>0.09</u>
<u>CI33</u>	<u>45.29</u>	<u>7.94</u>	<u>1906281551</u>	<u>41.99</u>	<u>-1.47</u>	<u>0.07</u>
<u>CI33</u>	<u>45.29</u>	<u>7.94</u>	<u>1907141026</u>	<u>68.17</u>	<u>0.08</u>	<u>0.40</u>
<u>CI34</u>	<u>45.19</u>	<u>8.02</u>	<u>1810102045</u>	<u>50.26</u>	<u>1.44</u>	<u>0.13</u>
<u>CI34</u>	<u>45.19</u>	<u>8.02</u>	<u>1901301531</u>	<u>283.79</u>	<u>0.19</u>	<u>0.18</u>
<u>CI34</u>	<u>45.19</u>	<u>8.02</u>	<u>1906040439</u>	<u>41.26</u>	<u>-0.86</u>	<u>0.13</u>
<u>CI35</u>	<u>45.11</u>	<u>8.11</u>	<u>1811040755</u>	<u>65.91</u>	<u>-0.89</u>	<u>0.11</u>
<u>CI35</u>	<u>45.11</u>	<u>8.11</u>	<u>1911021808</u>	<u>199.25</u>	<u>-0.63</u>	<u>0.14</u>
<u>CI36</u>	<u>45.03</u>	<u>8.18</u>	<u>1810020016</u>	<u>81.81</u>	<u>-1.17</u>	<u>0.24</u>
<u>CI36</u>	<u>45.03</u>	<u>8.18</u>	<u>1901220510</u>	<u>82.60</u>	<u>-0.71</u>	<u>0.07</u>
<u>CI36</u>	<u>45.03</u>	<u>8.18</u>	<u>1902020927</u>	<u>90.67</u>	<u>-0.09</u>	<u>0.23</u>
<u>CI36</u>	<u>45.03</u>	<u>8.18</u>	<u>1904230537</u>	<u>62.34</u>	<u>0.38</u>	<u>0.07</u>
<u>CI36</u>	<u>45.03</u>	<u>8.18</u>	<u>1905311012</u>	<u>64.94</u>	<u>0.82</u>	<u>0.12</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1812161426</u>	<u>97.69</u>	<u>-1.46</u>	<u>0.41</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1902121234</u>	<u>41.51</u>	<u>0.00</u>	<u>0.13</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1903150503</u>	<u>246.43</u>	<u>-0.63</u>	<u>0.14</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1905311012</u>	<u>65.01</u>	<u>0.37</u>	<u>0.18</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1907150821</u>	<u>52.80</u>	<u>-0.92</u>	<u>0.11</u>

<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1909141621</u>	<u>68.34</u>	<u>0.77</u>	<u>0.30</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>1910161137</u>	<u>65.87</u>	<u>0.04</u>	<u>0.09</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1810290654</u>	<u>216.76</u>	<u>0.00</u>	<u>0.02</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1810292017</u>	<u>216.62</u>	<u>0.00</u>	<u>0.02</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1810292326</u>	<u>284.31</u>	<u>-0.02</u>	<u>0.16</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1903010850</u>	<u>251.66</u>	<u>-0.51</u>	<u>0.05</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1904230537</u>	<u>62.56</u>	<u>0.04</u>	<u>0.11</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1905311012</u>	<u>65.18</u>	<u>-1.31</u>	<u>0.20</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1906250601</u>	<u>127.59</u>	<u>0.01</u>	<u>0.06</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1906281551</u>	<u>42.47</u>	<u>-0.01</u>	<u>0.09</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907011659</u>	<u>65.02</u>	<u>-0.02</u>	<u>0.24</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907071508</u>	<u>69.35</u>	<u>-0.02</u>	<u>0.24</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907081852</u>	<u>69.27</u>	<u>-0.02</u>	<u>0.23</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907122042</u>	<u>63.50</u>	<u>-0.02</u>	<u>0.18</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907140910</u>	<u>68.66</u>	<u>-0.02</u>	<u>0.23</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907140943</u>	<u>69.06</u>	<u>-0.02</u>	<u>0.23</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907141026</u>	<u>68.73</u>	<u>-0.02</u>	<u>0.23</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1907150821</u>	<u>53.09</u>	<u>-0.01</u>	<u>0.12</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1910290104</u>	<u>66.01</u>	<u>-0.06</u>	<u>0.37</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1910290242</u>	<u>65.95</u>	<u>-0.03</u>	<u>0.37</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1910310111</u>	<u>65.77</u>	<u>-0.02</u>	<u>0.36</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911021808</u>	<u>199.38</u>	<u>0.00</u>	<u>0.04</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911042153</u>	<u>240.19</u>	<u>-0.02</u>	<u>0.21</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911052052</u>	<u>189.62</u>	<u>0.00</u>	<u>0.03</u>
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911141845</u>	<u>68.58</u>	<u>-0.03</u>	<u>0.42</u>

Г							
	<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911142112</u>	<u>68.46</u>	<u>-0.38</u>	<u>0.41</u>
	<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911150117</u>	<u>68.46</u>	<u>-0.03</u>	<u>0.43</u>
	<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911161019</u>	<u>68.50</u>	<u>-0.02</u>	<u>0.42</u>
	<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1911231211</u>	<u>63.20</u>	<u>-0.03</u>	<u>0.31</u>
	<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>1912030846</u>	<u>249.30</u>	<u>-0.03</u>	<u>0.34</u>
	<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	<u>1810290654</u>	<u>216.75</u>	<u>-1.12</u>	<u>0.15</u>
	<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	<u>1810292326</u>	<u>284.33</u>	<u>1.74</u>	<u>0.24</u>
	<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	<u>1902020927</u>	<u>90.90</u>	<u>0.09</u>	<u>0.30</u>
	<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	<u>1907140943</u>	<u>69.14</u>	<u>1.87</u>	<u>0.44</u>
	<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	<u>1908272355</u>	<u>197.59</u>	<u>0.92</u>	<u>0.03</u>
	<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	<u>1911231211</u>	<u>63.28</u>	<u>-0.20</u>	<u>0.15</u>
	<u>CI40</u>	<u>44.60</u>	<u>8.52</u>	<u>1902020927</u>	<u>90.94</u>	<u>-1.97</u>	<u>0.25</u>
	<u>CI40</u>	<u>44.60</u>	<u>8.52</u>	<u>1904221449</u>	<u>199.78</u>	<u>0.30</u>	<u>0.38</u>
	<u>CI40</u>	<u>44.60</u>	<u>8.52</u>	<u>1906191724</u>	<u>61.22</u>	<u>-0.75</u>	<u>0.07</u>
	<u>CI40</u>	<u>44.60</u>	<u>8.52</u>	<u>1907140539</u>	<u>88.35</u>	<u>-0.78</u>	<u>0.23</u>
	<u>CI40</u>	<u>44.60</u>	<u>8.52</u>	<u>1909141621</u>	<u>68.68</u>	<u>0.27</u>	<u>0.22</u>
	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1903010850</u>	<u>251.73</u>	<u>-1.10</u>	<u>0.07</u>
	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1904062155</u>	<u>75.78</u>	<u>-0.43</u>	<u>0.06</u>
	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1906140019</u>	<u>241.98</u>	<u>-0.57</u>	<u>0.04</u>
	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1906240253</u>	<u>72.19</u>	<u>-0.45</u>	<u>0.08</u>
	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1906281551</u>	<u>42.61</u>	<u>-0.73</u>	<u>0.04</u>
l	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1908272355</u>	<u>197.60</u>	<u>0.78</u>	<u>0.02</u>
l	<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>1909291557</u>	<u>238.46</u>	<u>-0.77</u>	<u>0.04</u>
l	<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>1901220510</u>	<u>83.12</u>	<u>1.14</u>	<u>0.23</u>
	<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>1901221901</u>	<u>155.96</u>	<u>0.87</u>	<u>0.05</u>

C14244.468.581903150503246.65-1.350.20C14244.468.58190624025372.26-0.600.10C14244.468.581909291557238.47-1.210.07C14244.468.58191114211268.69-0.490.05C14344.408.621811011930197.91-0.010.12C14344.408.62190121901155.980.950.07C14344.408.62190217143548.88-0.700.10C14344.408.62190217143548.88-0.700.09C14344.408.62190217143548.88-0.700.09C14344.408.62190801828238.95-0.880.07C14344.408.62190919070685.08-1.420.09C14344.408.62190919070685.08-1.420.09C14344.408.62190921557238.47-1.080.32C14344.408.6219092157238.47-1.080.32C14344.408.6219092157238.47-1.080.32C14344.408.6219092157238.47-1.080.32C14344.408.6219092157238.47-1.080.32C14344.408.6219092157238.47-1.080.32C14344.408.6219092157238.47 <td< th=""><th></th><th></th><th></th><th colspan="2"></th><th></th><th></th></td<>							
Cl42 44.46 8.58 1906240253 72.26 -0.60 0.10 Cl42 44.46 8.58 1909291557 238.47 -1.21 0.07 Cl42 44.46 8.58 1911142112 68.69 -0.49 0.05 Cl43 44.40 8.62 1811011930 197.91 -0.01 0.12 Cl43 44.40 8.62 1811040755 66.44 0.03 0.27 Cl43 44.40 8.62 190121901 155.98 0.95 0.07 Cl43 44.40 8.62 1902171435 48.88 -0.70 0.09 Cl43 44.40 8.62 1903010850 251.79 -0.32 0.06 Cl43 44.40 8.62 190821053 72.32 -0.32 0.09 Cl43 44.40 8.62 190921055 238.47 -1.08 0.08 Cl43 44.40 8.62 190921557 238.47 -1.08 0.02 Cl43 <td< td=""><td><u>CI42</u></td><td><u>44.46</u></td><td><u>8.58</u></td><td><u>1903150503</u></td><td><u>246.65</u></td><td><u>-1.35</u></td><td><u>0.20</u></td></td<>	<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>1903150503</u>	<u>246.65</u>	<u>-1.35</u>	<u>0.20</u>
C14244.468.581909291557238.47-1.210.07C14244.468.58191114211268.69-0.490.05C14344.408.62181101730197.91-0.010.12C14344.408.621901221001155.980.950.07C14344.408.62190217143548.88-0.700.10C14344.408.62190217143548.88-0.700.09C14344.408.62190310850251.79-0.320.06C14344.408.62190624025372.32-0.320.06C14344.408.62190919070685.08-1.420.09C14344.408.621909190705238.47-1.080.08C14344.408.621909291557238.47-1.080.08C14344.408.621909291557238.47-1.080.08C14344.408.621909291557238.47-1.080.08CW0145.437.2618104075565.191.350.32CW0145.437.2618104075565.191.350.32CW0145.437.26190315053245.751.230.15CW0145.437.26190315053245.751.230.15CW0145.437.261907150868.220.890.05CW0145.437.261907150868.220	<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>1906240253</u>	<u>72.26</u>	<u>-0.60</u>	<u>0.10</u>
C14244.468.58191114211268.69-0.490.05C14344.408.6218110130197.91-0.010.12C14344.408.62181104075566.440.030.27C14344.408.621901221901155.980.950.07C14344.408.62190217143548.88-0.700.10C14344.408.621903010850251.79-0.700.09C14344.408.62190624025372.32-0.320.06C14344.408.62190919070685.08-1.420.09C14344.408.62190929157238.47-1.080.08C14344.408.62190929157238.47-1.080.08CW0145.437.26181104075565.191.350.32CW0145.437.26181104075565.191.350.32CW0145.437.2619030110654.320.190.27CW0145.437.2619030410654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.261907150868.220.890.05CW0145.437.261907150868.220.890.05CW0145.437.261907150868.220.890.05CW0145.437.371810290654216.581.77<	<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>1909291557</u>	<u>238.47</u>	<u>-1.21</u>	<u>0.07</u>
CI4344.408.621811011930197.91-0.010.12CI4344.408.62181104075566.440.030.27CI4344.408.621901221901155.980.950.07CI4344.408.62190217143548.88-0.700.09CI4344.408.621903010850251.79-0.320.06CI4344.408.62190624025372.32-0.320.06CI4344.408.6219091070685.08-1.420.09CI4344.408.621909291557238.47-1.080.08CW145.437.26181104075565.191.350.32CW0145.437.26181104075565.191.350.32CW0145.437.2619030410654.320.190.27CW0145.437.2619030410654.320.190.27CW0145.437.2619030410654.320.190.27CW0145.437.2619030410654.320.190.27CW0145.437.261907150868.220.890.05CW0145.437.2619070150868.220.890.05CW0145.437.261907150868.220.890.10CW0245.437.37181029017216.450.470.10CW0245.437.37190118164290.69-1.46	<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>1911142112</u>	<u>68.69</u>	<u>-0.49</u>	<u>0.05</u>
CI4344.408.621811040755666.440.030.27CI4344.408.62190121901155.980.950.07CI4344.408.62190217143548.88-0.700.10CI4344.408.621903010850251.79-0.700.09CI4344.408.62190624025372.32-0.320.06CI4344.408.621908011828238.95-0.880.07CI4344.408.62190919070685.08-1.420.09CI4344.408.621909291557238.47-1.080.08CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.26190315050245.751.230.15CW0145.437.26190315050245.751.230.15CW0145.437.261907150868.220.890.05CW0145.437.261907150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.37181029017216.451.220.10CW0245.437.37181029017216.450.420.48CW0245.437.371901181640290.69-1.460.48CW0245.437.3719021212440.67-0.78	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1811011930</u>	<u>197.91</u>	<u>-0.01</u>	<u>0.12</u>
C14344.408.621901221901155.980.950.07C14344.408.62190217143548.88-0.700.10C14344.408.621903010850251.79-0.700.09C14344.408.62190624025372.32-0.320.06C14344.408.621908011828238.95-0.880.07C14344.408.62190919070685.08-1.420.09C14344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.2619030503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.490.10CW0145.437.371810290654216.581.770.12CW0245.437.37181029017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1811040755</u>	<u>66.44</u>	<u>0.03</u>	<u>0.27</u>
CI4344.408.62190217143548.88-0.700.10CI4344.408.621903010850251.79-0.700.09CI4344.408.62190624025372.32-0.320.06CI4344.408.621908011828238.95-0.880.07CI4344.408.62190919070685.08-1.420.09CI4344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.26190304100654.320.190.27CW0145.437.2619030503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.890.05CW0145.437.371810290654216.581.770.12CW0245.437.37181029017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1901221901</u>	<u>155.98</u>	<u>0.95</u>	<u>0.07</u>
C14344.408.621903010850251.79-0.700.09C14344.408.62190624025372.32-0.320.06C14344.408.621908011828238.95-0.880.07C14344.408.62190919070685.08-1.420.09C14344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.26190304100654.320.190.27CW0145.437.2619030503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.890.05CW0145.437.371810290654216.581.770.12CW0245.437.37181029017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1902171435</u>	<u>48.88</u>	<u>-0.70</u>	<u>0.10</u>
CI4344.408.62190624025372.32-0.320.06CI4344.408.621908011828238.95-0.880.07CI4344.408.62190919070685.08-1.420.09CI4344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.26190304100654.320.190.27CW0145.437.2619030503245.751.230.15CW0145.437.261907150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1903010850</u>	<u>251.79</u>	<u>-0.70</u>	<u>0.09</u>
CI4344.408.621908011828238.95-0.880.07CI4344.408.62190919070685.08-1.420.09CI4344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.2619030503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.890.05CW0145.437.26190707150868.220.890.12CW0145.437.26190707150868.220.890.05CW0145.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1906240253</u>	<u>72.32</u>	<u>-0.32</u>	<u>0.06</u>
CI4344.408.62190919070685.08-1.420.09CI4344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190701102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1908011828</u>	<u>238.95</u>	<u>-0.88</u>	<u>0.07</u>
C14344.408.621909291557238.47-1.080.08CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.2619030503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1909190706</u>	<u>85.08</u>	<u>-1.42</u>	<u>0.09</u>
CW0145.437.261810292017216.40-0.220.40CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CI43</u>	<u>44.40</u>	<u>8.62</u>	<u>1909291557</u>	<u>238.47</u>	<u>-1.08</u>	<u>0.08</u>
CW0145.437.26181104075565.191.350.32CW0145.437.26181216142696.79-0.720.17CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1810292017</u>	<u>216.40</u>	<u>-0.22</u>	<u>0.40</u>
CW0145.437.26181216142696.79-0.720.17CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1811040755</u>	<u>65.19</u>	<u>1.35</u>	<u>0.32</u>
CW0145.437.261901221901155.050.390.12CW0145.437.26190304100654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1812161426</u>	<u>96.79</u>	<u>-0.72</u>	<u>0.17</u>
CW0145.437.26190304100654.320.190.27CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1901221901</u>	<u>155.05</u>	<u>0.39</u>	<u>0.12</u>
CW0145.437.261903150503245.751.230.15CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1903041006</u>	<u>54.32</u>	<u>0.19</u>	<u>0.27</u>
CW0145.437.26190707150868.220.890.05CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1903150503</u>	<u>245.75</u>	<u>1.23</u>	<u>0.15</u>
CW0145.437.26190714102667.560.470.10CW0245.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1907071508</u>	<u>68.22</u>	<u>0.89</u>	<u>0.05</u>
CW0245.437.371810290654216.581.770.12CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1907141026</u>	<u>67.56</u>	<u>0.47</u>	<u>0.10</u>
CW0245.437.371810292017216.45-0.220.10CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW02</u>	<u>45.43</u>	7.37	<u>1810290654</u>	<u>216.58</u>	<u>1.77</u>	<u>0.12</u>
CW0245.437.371901181640290.69-1.460.48CW0245.437.37190212123440.67-0.780.12	<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1810292017</u>	<u>216.45</u>	<u>-0.22</u>	<u>0.10</u>
<u>CW02</u> <u>45.43</u> <u>7.37</u> <u>1902121234</u> <u>40.67</u> <u>-0.78</u> <u>0.12</u>	<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1901181640</u>	<u>290.69</u>	<u>-1.46</u>	<u>0.48</u>
	<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1902121234</u>	<u>40.67</u>	<u>-0.78</u>	<u>0.12</u>

				1	Î	
<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1906250601</u>	<u>126.80</u>	<u>-1.91</u>	<u>0.19</u>
<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1907071508</u>	<u>68.31</u>	<u>1.07</u>	<u>0.09</u>
<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1908142135</u>	<u>302.99</u>	<u>-0.04</u>	<u>0.36</u>
<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	<u>1909141621</u>	<u>67.44</u>	<u>0.04</u>	<u>0.19</u>
<u>CW03</u>	<u>45.41</u>	<u>7.51</u>	<u>1901061727</u>	<u>66.77</u>	<u>1.73</u>	<u>0.20</u>
CW03	45.41	7.51	1904230537	<u>61.76</u>	0.59	0.08
CW03	45.41	7.51	1907071508	68.42	0.86	0.10
<u>CW03</u>	<u>45.41</u>	<u>7.51</u>	<u>1910290104</u>	<u>65.16</u>	<u>-0.58</u>	<u>0.20</u>
<u>CW04</u>	<u>45.37</u>	<u>7.61</u>	<u>1810292326</u>	283.91	<u>-1.01</u>	<u>0.31</u>
<u>CW04</u>	<u>45.37</u>	<u>7.61</u>	<u>1903060013</u>	<u>62.58</u>	<u>0.44</u>	<u>0.09</u>
<u>CW04</u>	<u>45.37</u>	<u>7.61</u>	<u>1907071508</u>	<u>68.52</u>	<u>1.08</u>	<u>0.09</u>
<u>CW05</u>	45.32	<u>7.73</u>	<u>1901260812</u>	<u>66.63</u>	<u>0.87</u>	<u>0.11</u>
CW05	45.32	7.73	1910290104	65.35	<u>-0.71</u>	0.09
<u>CW05</u>	45.32	7.73	1911052052	189.28	1.43	0.38

559 Supplementary Material
560
561
562
563
564
565
566 Figure S1 Map of null measurements plotted at the piercing point of 150 km depth, marked with crosses, rotated in the
567 back azimuth direction; in red from CIFALPS2 stations, in light blue all previous data.
568
569
570

Figure S2 — Splitting intensity measurements for a few example stations. Grey dots: all measurements; green circles: only
 measurements that fit the criteria and the sinusoidal curve (fast polarisation direction and time delay written below).

- 574
- 575 Table S2 Splitting parameters for stations with good SI measurements from at least four different
- 576 back-azimuthal bin directions. Header: Station | Station latitude (Lat) | Station longitude (Lon) | FPD |
- 577 FPDerr | TD | TDerr | RMS | Number of Measurements (#)1 Single Splitting Intensity (SI)
- 578 measurements
- 579

<u>Station</u>	Lat	Lon	FPD	FPDerr	<u>TD</u>	<u>TDerr</u>	<u>RMS</u>	<u>#</u>
<u>CE03</u>	<u>45.79</u>	<u>7.60</u>	<u>-0.78</u>	<u>2.35</u>	<u>0.75</u>	<u>0.06</u>	<u>12.64</u>	<u>18</u>
<u>CI07</u>	<u>46.23</u>	<u>5.52</u>	<u>11.58</u>	<u>6.57</u>	<u>0.13</u>	<u>0.04</u>	<u>8.05</u>	<u>17</u>
<u>CI11</u>	<u>46.09</u>	<u>6.03</u>	<u>-0.33</u>	<u>1.56</u>	<u>0.83</u>	<u>0.05</u>	<u>13.30</u>	<u>9</u>
<u>CI15</u>	<u>46.01</u>	<u>6.54</u>	<u>-7.45</u>	<u>0.57</u>	<u>1.08</u>	<u>0.02</u>	<u>18.86</u>	<u>13</u>
<u>CI16</u>	<u>45.92</u>	<u>6.62</u>	<u>-2.58</u>	<u>0.66</u>	<u>1.09</u>	<u>0.02</u>	<u>27.78</u>	<u>23</u>
<u>CI17</u>	<u>45.95</u>	<u>6.72</u>	<u>11.48</u>	<u>0.96</u>	<u>0.79</u>	<u>0.02</u>	<u>17.21</u>	<u>17</u>
<u>CI18</u>	<u>45.90</u>	<u>6.77</u>	<u>15.11</u>	<u>2.53</u>	<u>0.64</u>	<u>0.06</u>	<u>8.29</u>	<u>11</u>
<u>CI19</u>	<u>45.94</u>	<u>6.90</u>	<u>0.98</u>	<u>0.61</u>	<u>1.32</u>	<u>0.03</u>	<u>20.85</u>	<u>12</u>
<u>CI21</u>	<u>45.72</u>	<u>7.14</u>	<u>37.08</u>	<u>2.27</u>	<u>1.04</u>	<u>0.07</u>	<u>18.74</u>	<u>15</u>
<u>CI23</u>	<u>45.68</u>	<u>7.24</u>	22.22	<u>1.97</u>	<u>0.74</u>	<u>0.05</u>	<u>20.34</u>	<u>17</u>
<u>CI24</u>	<u>45.65</u>	<u>7.25</u>	<u>37.75</u>	<u>1.59</u>	<u>0.93</u>	<u>0.05</u>	<u>14.58</u>	<u>12</u>
<u>CI37</u>	<u>44.95</u>	<u>8.25</u>	<u>87.15</u>	<u>12.30</u>	<u>0.32</u>	<u>0.09</u>	<u>9.52</u>	7
<u>CI38</u>	<u>44.76</u>	<u>8.41</u>	<u>-59.03</u>	<u>3.69</u>	<u>0.13</u>	<u>0.02</u>	<u>10.61</u>	<u>28</u>
<u>CI39</u>	<u>44.67</u>	<u>8.47</u>	-43.54	<u>2.80</u>	<u>1.01</u>	<u>0.07</u>	<u>16.59</u>	<u>6</u>
<u>CI41</u>	<u>44.53</u>	<u>8.53</u>	<u>-53.46</u>	<u>0.62</u>	<u>0.99</u>	<u>0.02</u>	<u>19.35</u>	7
<u>CI42</u>	<u>44.46</u>	<u>8.58</u>	<u>76.64</u>	<u>1.76</u>	<u>2.18</u>	<u>0.13</u>	<u>5.75</u>	<u>6</u>
<u>CI43</u>	44.40	<u>8.62</u>	<u>-67.28</u>	<u>1.86</u>	<u>0.85</u>	<u>0.06</u>	<u>12.82</u>	<u>9</u>
<u>CW01</u>	<u>45.43</u>	<u>7.26</u>	<u>1.35</u>	<u>3.98</u>	<u>0.88</u>	<u>0.13</u>	<u>12.19</u>	<u>8</u>
<u>CW02</u>	<u>45.43</u>	<u>7.37</u>	22.80	<u>2.92</u>	<u>0.78</u>	<u>0.08</u>	<u>19.64</u>	<u>8</u>

	- STA	STA	STA	- EV	E₩	- DEP	-BAZ-	INC	- SI -	Slerr—	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CE01A	4 5.850	-7.3820	- -0.26	119.90 	<u> 19.5 </u>	73.7	7.74	-0.5633	0.0405	1809281002
	-CE01A	4 5.850	-7.3820	-5.86	126.89	-83.2	64.0	7.74	- 0.0601	0.0928	1812290339
Ι	-CE01A	4 5.850	-7.3820	-2.27	126.85	-66.8	66.5	7.38 -	-0.6501	0.0388	1901061727
	-CE01A	4 5.850	-7.3820	-3.47	146.07	-10.2	52.6	5.52	-0.7454	0.2563	1901171506
	-CE01A	4 5.850	-7.3820	- <u>5.52</u>	133.85	-9.8	66.0	6.14 -	- 0.1614	0.1787	1901260812
	-CE01A	4 5.850	-7.3820	-1.81	122.63	<u>-19.5</u>	72.6	7.34-	-0.4412	0.0684	1904121140
	-CE01A	4 5.850	-7.3820	-11.71	125.30	-84.8	61.5	8.53 -	- 0.4253	0.0563	1904230537
	-CE01A	4 5.850	-7.3820	-4.10	152.61	-19.5	4 6.6	5.11	-1.2355	0.0936	1905141258
	-CE01A	4 5.850	-7.3820	-6.26	126.61	-98.0	64.1	7.80-	- 0.3064	0.1287	1905311012
	-CE01A	4 5.850	-7.3820	-0.49	126.18	-19.5	68.1	7.27	-0.2399	0.2292	1907071508
	-CE01A	4 5.850	-7.3820	- 3.4 4	128.44	-19.5	69.1	6.72 -	-0.3207	0.1676	1909252346
	-CE01A	4 5.850	-7.3820	-6.80	125.20	-19.5	64.9	8.00-	-1.8302	0.1558	1910290104
	- CE01A	4 5.850	-7.3820	-1.56	126.39	-59.0	67.2	7.35-	-1.1091	0.0626	1911141617
	- CE02A	4 5.809	-7.5183	-1.06	119.96 -	-10.0	74.3	7.67	-1.9190	0.2833	1809281025
	- CE02A	4 5.809	-7.5183	-10.3 4	119.05 -	-19.5	81.6	6.89 -	-0.5372	0.2347	1901212359
	- CE02A	4 5.809	-7.5183	- <u>1.81</u>	122.63	-19.5	72.7	7.35-	-0.7407	0.3568	1904121140
	- CE02A	4 5.809	-7.5183	-6.38	129.17	226.4	70.7	6.38 -	- 0.8537	0.0250	1906240253
	- CE02A	4 5.809	-7.5183	-18.05	120.33	<u>-9.8</u>	86.9	6.15 -	- 0.3457	0.3510	1907140539
	- CE02A	4 5.809	-7.5183	-7.31	104.81	-19.5	89.9	8.50 -	- 0.0089	0.1153	1908021203
	- CE02A	4 5.809	-7.5183	-6.80	125.20	-19.5	65.0	8.01 -	-1.8607	0.1805	1910290104
	- CE03A	4 5.786	-7.6024	- 0.26	119.90 -	-19.5	73.8	7.75-	-0.4436	0.0433	1809281002
	- CE03A	4 5.786	-7.6024	-5.86	126.89	-83.2	64.1	7.75	- 0.6473	0.0336	1812290339
	-CE03A	4 5.786	-7.6024	-2.72	100.20	-19.5	90.2	9.5 4-	- 0.0166	0.1762	1902020927

	- STA	STA	STA	-EV	₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	-CE03A	4 5.786	-7.6024	-2.78	100.26	-19.5	90.1	9.53 -	-0.0174	0.2243	1902021059
	- CE03A	4 5.786	-7.6024	1.81	122.63	<u>-19.5</u>	72.8	7.36 -	-0.6455	0.2272	1904121140
	-CE03A	4 5.786	-7.6024	-11.71	125.30	-84.8	61.7	8.55 -	-0.5141	0.0685	1904230537
	-CE03A	4 5.786	-7.6024	- <u>-6.9</u> 4	146.46	139.5	55.4	5.20 -	-1.1786	0.1737	1905062119
	- CE03A	4 5.786	-7.6024	-6.26	126.61	-98.0	64.2	7.82	- 0.0370	0.0817	1905311012
	- CE03A	4 5.786	-7.6024	-30.00	-72.11	9.8	241.6	7.90 -	- 0.8227	0.1711	1906140019
	- CE03A	4 5.786	-7.6024	- <u>-6.38</u>	129.17	226.4	70.8	6.39 -	- 0.4875	0.0605	1906240253
	-CE03A	4 5.786	-7.602 4	-0.49	126.18	<u>-19.5</u>	68.3	7.29	-0.5261	0.0354	1907071508
	-CE03A	4 5.786	-7.602 4	-0.92	128.60	9.8	67.4	6.95 -	-0.0136	0.1784	1909141621
	-CE03A	4 5.786	-7.602 4	- <u>5.69</u>	126.66	-91.0	64.6	7.75-	-0.8130	0.0916	1909290202
	- CE03A	4 5.786	-7.6024	-6.80	125.15	<u>-19.5</u>	65.1	8.02 -	-0.0234	0.1278	1910161137
	- CE03A	4 5.786	-7.6024	-1.56	126.39	-59.0	67.4	7.36	-0.5351	0.062 4	1911141617
	- CE04A	4 5.740	-7.7453	0.26	119.90	-19.5	74.0	7.76	- 0.9002	0.0797	1809281002
	- CE04A	4 5.740	-7.7453	-5.86	126.89	-83.2	64.3	7.76	- 0.4851	0.0445	1812290339
	- CE04A	4 5.740	-7.7453	-2.27	126.85	-66.8	66.8	7.41	- 1.2227	0.1311	1901061727
	- CE04A	4 5.740	-7.7453	-11.71	125.30	-84.8	61.8	8.56 -	-0.6598	0.0393	1904230537
	- CE04A	45.740	-7.7453	-6.26	126.61	-98.0	64.4	7.83	-0.6234	0.0394	1905311012
	- CE04A	45.740	-7.7453	-6.38	129.17	226.4	70.9	6.39 -	-0.4874	0.0283	1906240253
	- CE04A	45.740	-7.7453	-0.49	126.18	-19.5	68.5	7.30	-0.8205	0.0843	1907071508
	- CE04A	4 5.740	-7.7453	-5.69	126.66	-91.0	64.7	7.76 -	-1.3103	0.1227	1909290202
	- CE04A	45.740	-7.7453	-6.80	125.20	-19.5	65.2	8.03 -	-0.7340	0.0793	1910290104
	- CE04A	45.740	-7.7453	-6.94	125.31	-19.9_	65.0	8.03 -	-0.3912	0.2440	1910310111
	- CE05A	4 5.685	-7.8551	-57.49	-66.29	33.6	216.7	5.99 -	-0.3681	0.1224	1810292017

	- STA	STA	STA	EV	₩	- DEP	-BAZ-	INC-	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	-CE05A	4 5.685	-7.8551	-5.86	126.89	83.2	64.4	7.77	-0.3449	0.0544	1812290339
	- CE05A	4 5.685	-7.8551	-9.78	126.60	-19.5	62.1	8.24	-0.4057	0.2107	1902081155
	- CE05A	4 5.685	-7.8551	- <u>1.65</u>	126.44	-65.2	67.6	7.39 -	-0.5038	0.3057	1903240437
	- CE05A	4 5.685	-7.8551	-1.81	122.63	-19.5	73.0	7.38	-1.0346	0.0606	1904121140
	- CE05A	4 5.685	-7.8551	-11.71	125.30	-84.8	61.9	8.56 -	-1.0035	0.0526	1904230537
	- CE05A	4 5.685	-7.8551	-6.26	126.61	-98.0	64.5	7.84	-0.7699	0.2665	1905311012
	- CE05A	4 5.685	-7.8551	-6.38	129.17	226.4	71.1	6.40 -	- 0.7452	0.0435	1906240253
	- CE05A	4 5.685	-7.8551	-0.49	126.18	-19.5	68.6	7.30-	-1.3720	0.0813	1907071508
	- CE05A	4 5.685	-7.8551	-5.69	126.66	-91.0	64.8	7.77	-1.5481	0.1440	1909290202
	- CE05A	4 5.685	-7.8551	-6.94	125.31	-19.9	65.1	8.04 -	-1.4171	0.0876	1910310111
	- CE05A	4 5.685	-7.8551	-1.56	126.39	-59.0	67.6	7.38	- 0.2845	0.1529	1911141617
	- CE06A	4 5.627	-7.9818	-5.86	126.89	-83.2-	64.5	7.78	- 0.5776	0.0807	1812290339
	- CE06A	4 5.627	-7.9818	- <u>3.</u> 47	146.07	-10.2	53.3	5.54 -	-1.4210	0.2191	1901171506
	- CE06A	4 5.627	-7.9818	<u>-14.62</u>	-70.10-	258.6	251.3	9.71	-1.2115	0.1033	1903010850
	- CE06A	4 5.627	-7.9818	- <u>6.85</u>	125.03	549.6	74.8	6.62 -	- 0.1637	0.0712	1904062155
	- CE06A	4 5.627	-7.9818	- <u>1.81</u>	122.63	-19.5	73.2	7.39	- 0.6756	0.0601	1904121140
	-CE06A	45.627	-7.9818	-11.71	125.30	-84.8	62.0	8.57	-0.6584	0.0794	1904230537
	-CE06A	45.627	-7.9818	-6.38	129.17	226.4	71.2	6.41	-1.2692	0.0288	1906240253
	- CE06A	45.627	7.9818	-0.49	126.18	-19.5	68.7	7.31	-1.4828	0.0455	1907071508
	- CE06A	45.627	-7.9818	-1.56	126.39	-59.0	67.7	7.39	-1.2550	0.0529	1911141617
	- CE07A	4 5.567	-8.1720	- -0.26	119.90	-19.5	74.3	7.80	- 0.7674	0.1094	1809281002
	- CE07A	45.567	8.1720	-58.42	-26.33	164.8	198.1	7.42	-0.2332	0.0613	1812110226
	- CE07A	45.567	8.1720	-5.86	126.89	-83.2-	64.7	7.79	-0.9517	0.0782	1812290339

	- STA	STA	STA	EV	₩	- DEP	-BAZ-	INC -	- SI -	Slerr—	EQ_ID
		LAT-	LON-	LAT	LON-						(yy,mm,dd,hh,m
											m)
	-CE07A	4 5.567	-8.1720	-11.71	125.30	-84.8	62.2	8.58 -	-0.3496	0.0663	1904230537
	-CE07A	4 5.567	-8.1720	-29.00	139.37	4 <u>34.8</u>	4 1.3	9.47	-0.2703	0.1049	1906040439
Π	- CE07A	4 5.567	- <u>8.1720</u>	-0.49	126.18	<u>-19.5</u>	68.9	7.33	-0.7826	0.0851	1907071508
	-CI01A	4 6.50 4	4.7212	-0.00	119.76	-10.0	71.3	7.57	-1.1948	0.1183	1809281014
	-CI01A	4 6.50 4	4.7212	-42.87	42.28	19.5	153.3	9.28	-0.6481	0.1108	1901221901
	-CI01A	4 6.50 4	4.7212	-2.72	100.20	-19.5	88.0	9.22	-0.8975	0.1411	1902020927
	-CI02A	4 6.439	4.8174	-0.00	119.76	-10.0	71.4	7.58	-1.3547	0.0757	1809281014
	-CI02A	4 6.439	4.8174	-17.29	147.87	-10.2	37.1	7.42-	-1.2665	0.4633	1810260905
	-CI02A	4 6.439	4.8174	-7.43	128.75	159.0	69.2	6.16 -	- 0.0045	0.0479	1812011327
	-CI02A	4 6.439	4.8174	-6.04	149.90	-19.5	4 7.8	4 .99	-0.4637	0.1208	1812192137
	-CI02A	4 6.439	- 4.8174	-42.87	42.28	19.5	153.3	9.29	-1.1079	0.0936	1901221901
	-CI03A	4 6.421	- 4.9455	-0.26	119.90 	<u>-19.5</u>	71.6	7.54-	-0.2770	0.0378	1809281002
	-CI03A	4 6.421	- 4.9455	-0.00	119.76	-10.0	71.5	7.59	-1.5665	0.2224	1809281014
	-CI03A	4 6.421	- 4.9455	-1.06	119.96 -	-10.0	72.1	7.47	-1.3681	0.1830	1809281025
	-CI04A	4 6.402	-5.0743	-42.87	42.28	19.5	153.5	9.31	-0.5223	0.1560	1901221901
	-CI05A	4 6.277	-5.3345	-1.06	119.96	-10.0	72.4	7.49 –	-1.2095	0.1553	1809281025
	- CI05A	46.277	-5.3345	-1.65	126.44	-65.2	65.4	7.21	-0.0324	0.1228	1903240437
	- CI05A	46.277	-5.3345	-60.03	-26.63 -	124.2	196.2	7.22	-0.2716	0.0822	1908272355
	- CI05A	46.277	-5.3345	-6.87	125.24	-34.8	63.1	7.86 -	-0.0161	0.1148	1910290242
	-CI05A	4 6.277	-5.3345	-1.64	132.86	-9.8	60.0	6.74	-0.2371	0.1292	1911231211
	- CI06A	4 6.282	-5.4496	-10.34	119.05	-19.5	79.8	6.72 -	-0.3987	0.0763	1901212359
	- CI06A	46.282	-5.4496	-29.00	139.37	434.8	39.2	9.36	-0.3377	0.0487	1906040439
	-CI06A	4 6.282	-5.4496	-31.80	-71.45	55.9	238.7	7.92	-0.0303	0.1514	1911042153

	- STA	STA	STA	-EV	E₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
ļ		LAT -	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CI07A	4 6.231	- <u>5.5241</u>	-10.46	120.17	-10.0	79.2	6.62 -	- 0.4238	0.1723	1810020016
	-CI07A	4 6.231	-5.5241	-30.11	-71.58-	61.3	240.0	8.07	-0.0305	0.3285	1901200132
	-CI07A	4 6.231	-5.5241	-10.34	119.05	<u>-19.5</u>	79.9	6.73	-0.0121	0.1786	1901212359
	-CI07A	46.231	-5.5241	-10.37	119.05	-19.5	80.0	6.73	-0.0144	0.1773	1901220510
	-CI07A	46.231	-5.5241	-42.87	42.28	19.5	153.8	9.36 -	-0.0046	0.0551	1901221901
	-CI07A	46.231	-5.5241	- <u>5.52</u>	133.85	<u>-9.8</u>	64.2	6.03 -	-0.0272	0.3418	1901260812
	-CI07A	46.231	-5.5241	-2.72	100.20	-19.5	88.6	9.30	-0.0113	0.1311	1902020927
	-CI07A	46.231	-5.5241	<u>-2.78</u>	100.26	-19.5	88.6	9.29	- 0.0097	0.1310	1902021059
	-CI07A	4 6.231	-5.5241	-9.78	126.60	<u>-19.5</u>	60.1	8.08	-0.0419	0.4250	1902081155
	-CI07A	46.231	-5.5241	- <u>6.85</u>	125.03	549.6	72.6	6.46 -	-0.1952	0.0530	1904062155
	-CI07A	46.231	-5.5241	-31.80	-71.45-	55.9	238.7	7.91 –	- <u>1.8757</u>	0.4471	1911042153
	-CI08A	4 6.185	-5.6842	-17.29	147.87	-10.2	37.9	7.44-	-0.4694	0.0833	1810260905
	-CI08A	4 6.185	-5.6842	-10.37	119.05	<u>-19.5</u>	80.2	6.74	-0.6585	0.0788	1901220510
	-CI08A	4 6.185	-5.6842	7.00	156.40 -	384.4	42.1	4.58-	-0.8294	0.3038	1901260351
	-CI08A	4 6.185	-5.6842	-5.69	126.66	-91.0	62.9	7.62 -	-1.2057	0.3176	1909290202
	-CI09A	4 6.193	-5.8187	- 12.22	146.24	-10.0	4 2.1	6.97 -	-0.4719	0.1859	1809230552
	-CI09A	46.193	-5.8187	-7.43	128.75	159.0	70.2	6.22	-0.6023	0.1002	1812011327
	-CI09A	46.193	-5.8187	-10.37	119.05	-19.5	80.3	6.75	-0.8538	0.0843	1901220510
	-CI09A	46.193	-5.8187	-8.52	127.04	-15.6	60.9	7.92 -	-0.6865	0.1300	1903060013
	-CI09A	46.193	-5.8187	-55.76	-27.85 -	74.2	198.9	7.71-	-0.0111	0.1160	1904051614
	-CH10A	4 6.105	-5.9172	-0.26	119.90 	-19.5	72.4	7.62	-0.1711	0.0390	1809281002
	-CH10A	4 6.105	-5.9172	-58.42	-26.33 -	164.8	197.1	7.42	-1.3135	0.0682	1812110226
	-CH10A	4 6.105	-5.9172	-30.11	-71.58	61.3	240.2	8.05	-0.0236	0.2471	1901200132

	- STA	STA	STA	-EV	E₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
ļ		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	-CH1A	46.087	-6.0314	- <u>58.42</u>	-26.33 -	164.8	197.1	7.42	-1.0427	0.0921	1812110226
	-CH1A	4 6.087	-6.0314	-10.34	119.05 -	<u>-19.5</u>	80.3	6.76 -	-0.0942	0.0732	1901212359
	-CIIIA	4 6.087	-6.0314	-2.78	100.26	<u>-19.5</u>	89.0	9.35	- 0.8960	0.1927	1902021059
	-CIIIA	4 6.087	-6.0314	-29.00	139.37	4 <u>34.8</u>	39.7	9.38	-0.6820	0.2361	1906040439
	-CIIIA	4 6.087	-6.0314	-0.49	126.18	<u>-19.5</u>	67.0	7.17	-0.6936	0.0319	1907071508
	-CH2A	4 6.053	-6.1727	-58.42	-26.33-	164.8	197.2	7.42	-1.0550	0.1108	1812110226
	-CH2A	4 6.053	-6.1727	-5.86	126.89	-83.2	62.9	7.65	- 0.0273	0.0413	1812290339
	-CH2A	4 6.053	-6.1727	7.00	156.40	384.4	4 2.8	4.59	- 0.9258	0.1733	1901260351
	-CH12A	4 6.053	-6.1727	-29.00	139.37	4 <u>34.8</u>	39.8	9.38	- 0.6696	0.0703	1906040439
	-CH12A	4 6.053	-6.1727	-6.38	129.17	226.4	69.5	6.29	-0.5003	0.0529	1906240253
	-CH12A	4 6.053	-6.1727	-0.49	126.18	-19.5	67.1	7.18	-0.7010	0.0255	1907071508
	-CH2A	4 6.053	-6.1727	- 6.80	125.20	<u>-19.5</u>	63.9	7.91 –	-0.4365	0.0629	1910290104
	-CH2A	4 6.053	-6.1727	- 6.9 4	125.31	-19.9	63.7	7.92 -	-0.9995	0.1303	1910310111
	-CH3A	4 5.99 4	-6.255 4	-0.00	119.76	-10.0	72.6	7.69 -	-1.8037	0.1709	1809281014
	-CH3A	4 5.99 4	-6.255 4	- <u>4.9</u> 4	151.71	139.8	4 6.8	5.02 -	- 0.3421	0.2386	1810102200
	-CH3A	4 5.99 4	-6.255 4	-5.86	126.89	-83.2	63.0	7.66 -	-0.0133	0.0877	1812290339
	- CH3A	45.994	-6.2554	-7.00	156.40	384.4	42.9	4.59	-0.7991	0.0959	1901260351
	- CH3A	45.994	-6.2554	-29.00	139.37	4 <u>34.8</u>	39.9	9.38	-1.0184	0.0821	1906040439
	-CH4A	46.004	-6.3926	- <u>-1.06</u>	119.96 -	-10.0	73.3	7.57	-1.7214	0.4915	1809281025
	-CH4A	4 6.004	-6.3926	-2.27	126.85	-66.8 -	65.6	7.31	-1.0425	0.1084	1901061727
	-CH4A	4 6.004	-6.3926	-42.87	42.28	19.5	154.4	9.44	-0.7778	0.0786	1901221901
	-CH14A	46.004	-6.3926	-55.76	-27.85	74.2	199.1	7.72	-0.0462	0.2071	1904051614
	-CH5A	4 6.005	-6.5370	0.26	119.90	-19.5 -	73.0	7.67	-0.3478	0.0340	1809281002

	- STA	STA	STA	÷E∀	₩	- DEP	-BAZ-	INC	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	-CH5A	4 6.005	-6.5370	- <u>4.9</u> 4	151.71	139.8	4 7.2	5.03 -	-0.9066	0.2099	1810102200
	-CH5A	4 6.005	-6.5370	-57.30	-66.37 -	63.3	216.4	6.03 -	-0.0711	0.1547	181029065 4
	-CH15A	4 6.005	-6.5370	-5.86	126.89	-83.2	63.2	7.68	-0.0152	0.0767	1812290339
	-CH15A	4 6.005	-6.5370	- <u>5.52</u>	133.85	<u> </u>	65.2	6.08 -	-0.4599	0.1246	1901260812
Ι	-CH5A	4 6.005	-6.5370	-9.78	126.60	<u>-19.5</u>	61.0	8.15	-0.4844	0.2110	1902081155
1	-CH5A	4 6.005	-6.5370	- 6.94	146.46	139.5	54.2	5.15	-1.0375	0.0683	1905062119
1	-CH5A	4 6.005	-6.5370	-2.16	138.50	-19.5	58.7	6.06 -	-0.4506	0.0900	1906191724
1	-CH5A	4 6.005	-6.5370	<u>-19.79</u>	144.47	4 09.8	4 0.6	7.87	-1.1455	0.0290	1906281551
	-CH15A	4 6.005	-6.5370	-0.49	126.18	-19.5	67.4	7.21	-0.6778	0.0558	1907071508
Ι	-CH15A	4 6.005	-6.5370	-60.03	-26.63-	124.2	196.7	7.23-	-0.8547	0.0277	1908272355
	-CH15A	4 6.005	-6.5370	<u> </u>	126.39	-59.0	66.5	7.29	-0.7970	0.0410	1911141617
	-CH16A	4 5.925	-6.6170	0.26	119.90	-19.5	73.0	7.67	-0.6229	0.0386	1809281002
	-CH6A	4 5.925	-6.6170	-1.06	119.96	-10.0	73.5	7.59	- 0.4874	0.16 44	1809281025
	- CI16A	4 5.925	-6.6170	- <u>35.87</u> -	101.03 -	18	253.1	5.33 -	-0.033 4	0.2491	1812190137
1	-CI16A	4 5.925	-6.6170	-42.87	42.28	19.5	154.6	9.46	-0.0054	0.0569	1901221901
	-CH6A	4 5.925	-6.6170	-5.52	133.85	-9.8-	65.3	6.09 -	-0.0277	0.3249	1901260812
	-CI16A	4 5.925	-6.6170	-2.72	100.20	-19.5	89.5	9.43	-0.0097	0.1283	1902020927
Ι	-CH6A	4 5.925	-6.6170	- <u>-2.78</u>	100.26	-19.5	89.4	9.42 -	-0.0110	0.1277	1902021059
Ι	-CH6A	4 5.925	-6.6170	-9.78	126.60	-19.5	61.1	8.15	-0.0456	0.4047	1902081155
	-CH6A	4 5.925	-6.6170	-10.35	126.12	-62.1	61.2	8.24 -	-1.5484	0.1891	1903081506
	-CI16A	4 5.925	-6.6170	-11.71	125.30	-84.8	60.9	8.47	-1.0051	0.0516	1904230537
	-CH6A	4 5.925	-6.6170	6.94	146.46	139.5	54.3	5.15	-0.9850	0.0723	1905062119
	-CH6A	4 5.925	-6.6170	-4.10	152.61	-19.5	45.7	5.08	- 0.8694	0.1868	1905141258

	-STA	STA	STA	-EV	E₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CH6A	4 5.925	-6.6170	-29.00	139.37	4 <u>34.8</u>	4 0.1	9.40 -	-0.9680	0.0709	1906040439
	- CH6A	4 5.925	-6.6170	-2.16	138.50	<u>-19.5</u>	58.8	6.06 -	-1.3793	0.1107	1906191724
	-CI16A	4 5.925	-6.6170	-6.38	129.17	226.4	69.9	6.32	-0.5927	0.062 4	1906240253
	-CI16A	4 5.925	-6.6170	-19.79	144.47	4 09.8	4 0.7	7.87	-1.3315	0.0520	1906281551
	-CI16A	4 5.925	-6.6170	-0.49	126.18	-19.5	67.5	7.21	-0.8738	0.0392	1907071508
	-CI16A	4 5.925	-6.6170	0.64	128.02	-9.8	66.7	6.95	-1.3038	0.1065	1907140910
	-CI16A	4 5.925	-6.6170	-60.03	-26.63-	124.2	196.8	7.23	-1.3241	0.0545	1908272355
	-CI17A	4 5.9 47	-6.7180	-0.26	119.90	-19.5	73.1	7.69	-0.4495	0.0705	1809281002
	-CH7A	4 5.9 47	-6.7180	-10.46	120.17	-10.0	80.3	6.72	-1.4507	0.2269	1810020016
	-CH7A	4 5.9 47	-6.7180	7.45	114.43	<u>-19.5</u>	82.3	7.48	- 0.0878	0.1087	1810101844
	-CH17A	4 5.9 47	-6.7180	- <u>5.86</u>	126.89	-83.2-	63. 4	7.69	- 0.0272	0.1362	1812290339
	-CH17A	4 5.9 47	-6.7180	-30.11	-71.58-	61.3	240.7	7.99	- 0.3770	0.1061	1901200132
	-CH17A	4 5.9 47	-6.7180	-42.87	42.28	19.5	154.6	9.46 -	- 0.9240	0.1025	1901221901
	-CH7A	4 5.947	-6.7180	-10.35	126.12	-62.1	61.3	8.25	-0.6499	0.0917	1903081506
	-CH17A	4 5.9 47	-6.7180	-29.00	139.37	4 <u>34.8</u>	4 0.2	9.41	-0.7326	0.0746	1906040439
	-CH17A	4 5.947	-6.7180	-19.79	144.47	4 09.8	4 0.8	7.88-	-0.8229	0.0342	1906281551
	- CH17A	45.947	-6.7180	-0.49	126.18	-19.5	67.6	7.22-	-0.6969	0.0281	1907071508
	- CI17A	45.947	-6.7180	-6.80	125.15	-19.5	64.4	7.95 -	-0.3724	0.0796	1910161137
	-CH8A	45.900	-6.7699	-0.26	119.90 -	-19.5	73.2	7.69 -	-0.5447	0.0679	1809281002
	-CH8A	45.900	-6.7699	-10.51	120.24	-19.5	80.3	6.71 -	-0.5548	0.1480	1810012359
	-CH8A	4 5.900	-6.7699	-58.42	-26.33-	164.8	197.5	7.42-	-0.1933	0.0836	1812110226
	-CI18A	45.900	-6.7699	-42.87	42.28	19.5	154.7	9.47	-1.2876	0.1389	1901221901
	-CI18A	4 5.900	-6.7699	- -7.00	156.40	384.4	43.6	4 <u>.61</u>	-0.0103	0.1471	1901260351

	- STA	STA	STA	EV	E₩	- DEP	BAZ	INC -	- SI -	Slerr-	EQ_ID
ļ		LAT -	LON-	LAT	LON-						(yy,mm,dd,hh,m
											m)
	-CH8A	4 5.900	-6.7699	- <u>-5.52</u>	133.85	-9.8 -	65.5	6.10 -	- 0.0302	0.3543	1901260812
	- CH8A	4 5.900	-6.7699	-3.35	152.23	358.6	4 6.0	5.13	-0.2036	0.3078	1902171435
l	-CH8A	4 5.900	-6.7699	-2.16	138.50	<u>-19.5</u>	59.0	6.07 -	-0.4230	0.0856	1906191724
I	-CH8A	4 5.900	-6.7699	- 0.64	128.02	-9.8	66.9	6.97 -	-1.3366	0.1783	1907140910
l	-CH9A	4 5.945	-6.8987	-6.04	149.90 	-19.5	50.3	5.07 -	-0.8620	0.1875	1812192137
	-CH19A	4 5.945	-6.8987	- <u>14.62</u>	-70.10 -	258.6	250.6	9.81 -	-0.5240	0.0502	1903010850
	-CH9A	4 5.945	-6.8987	-55.76	-27.85-	74.2	199.4	7.71-	-1.1017	0.0813	1904051614
	-CH19A	4 5.945	-6.8987	- <u>6.85</u>	125.03	549.6	73.8	6.55 -	-1.8740	0.142 4	1904062155
	-CH9A	4 5.945	-6.8987	-1.81	122.63	-19.5	72.2	7.31	-0.7696	0.0560	1904121140
	-CH19A	4 5.945	-6.8987	-29.00	139.37	4 <u>34.8</u>	4 0.3	9.42	-1.2433	0.1255	1906040439
	-CH9A	4 5.945	-6.8987	-2.16	138.50 -	-19.5	59.0	6.08 -	-1.3913	0.0837	1906191724
	-CH9A	4 5.945	-6.8987	- 0.49	126.18	-19.5	67.7	7.24	-0.9356	0.0420	1907071508
	-CH9A	4 5.945	-6.8987	-60.03	-26.63 -	124.2	196.9	7.22	-0.7249	0.0415	1908272355
	-CH19A	4 5.945	-6.8987	-35.41	-73.17-	13.1	237.9	7.35	-0.7925	0.0687	1909291557
	-CH19A	4 5.945	-6.8987	-1.56	126.39	-59.0	66.8	7.32	-1.5790	0.0520	1911141617
	-CI21A	4 5.72 4	-7.1389	-0.26	119.90 	-19.5	73.5	7.71	-1.0832	0.0989	1809281002
	- CI21A	45.724	-7.1389	-0.00	119.76	-10.0	73.4	7.75	-1.5397	0.0906	1809281014
	- CI21A	45.724	-7.1389	-5.86	126.89	-83.2-	63.8	7.72	-0.8406	0.0842	1812290339
	- CI21A	45.724	-7.1389	-10.34	119.05	-19.5	81.3	6.85	-0.1473	0.2306	1901212359
	-CI21A	4 5.724	-7.1389	-10.37	119.05	-19.5	81.5	6.85	-0.2566	0.1864	1901220510
	-CI21A	4 5.724	-7.1389	- -7.00	156.40	384.4	<u>44.1</u>	4.62	-0.9413	0.2628	1901260351
	-CI21A	4 5.724	-7.1389	-6.38	129.17	226.4	70.4	6.35 -	-0.9671	0.0372	1906240253
	-CI21A	45.724	7.1389	-0.49	126.18	-19.5	68.0	7.25	-1.1114	0.0520	1907071508

-STA	STA	STA	-EV	₩	- DEP	-BAZ-	INC	- SI -	Slerr-	EQ_ID
	LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
										m)
- CI21A	4 5.72 4	-7.1389	-18.05	120.33	-9.8	86.7	6.12	-1.1557	0.1200	1907140539
-CI21A	4 5.72 4	-7.1389	-0.92	128.60	-9.8 -	67.1	6.92	-0.0895	0.1605	1909141621
-CI22A	4 5.68 4	7.1415	0.26	119.90	-19.5	73.5	7.71	-0.7957	0.0723	1809281002
-CI22A	4 5.68 4	-7.1415	-0.00	119.76	-10.0	73.4	7.75	-1.9 444	0.1960	1809281014
- CI22A	4 5.68 4	7.1415	-0.49	126.18	-19.5	68.0	7.24	-0.9683	0.0948	1907071508
-CI22A	4 5.68 4	-7.1415	-18.05	120.33	<u>-9.8</u>	86.7	6.12 -	-0.9249	0.1636	1907140539
-CI23A	4 5.678	-7.2388	- 0.26	119.90 -	-19.5	73.6	7.72	- 1.0696	0.0717	1809281002
-CI23A	4 5.678	-7.2388	-10.46	120.17	-10.0	80.8	6.75	-0.3726	0.1663	1810020016
-CI23A	4 5.678	-7.2388	-23.04	112.66	-10.2	96.6	6.36 -	-0.0229	0.2452	1812161426
-CI23A	4 5.678	-7.2388	-5.86	126.89	-83.2-	63.9	7.72	-0.3909	0.0632	1812290339
-CI23A	4 5.678	-7.2388	-2.27	126.85	-66.8	66. 4	7.36-	-0.4645	0.0964	1901061727
-CI23A	4 5.678	-7.2388	-8.52	127.04	-15.6	62.2	8.01	-0.4764	0.0846	1903060013
-CI23A	4 5.678	-7.2388	-55.76	-27.85-	74.2	199.6	7.73	-0.0351	0.1391	1904051614
-CI23A	4 5.678	-7.2388	-11.71	125.30	-84.8	61.5	8.51	-0.8582	0.0591	1904230537
-CI23A	4 5.678	-7.2388	<u>-6.91</u>	160.18	-19.5	39.6	4.49-	-1.3872	0.1619	1905030725
-CI23A	4 5.678	-7.2388	-6.26	126.61	-98.0	64.0	7.78	-0.5985	0.0725	1905311012
- CI23A	45.678	-7.2388	-6.38	129.17	226.4	70.5	6.36 -	-0.9549	0.0367	1906240253
- CI23A	45.678	-7.2388	-0.49	126.18	-19.5	68.1	7.25	-0.8975	0.0462	1907071508
-CI23A	45.678	7.2388	- 6.80	125.20	-19.5	64.8	7.98	-0.7865	0.0844	1910290104
-CI23A	4 5.678	-7.2388	-1.56	126.39	-59.0	67.1	7.33	-1.1949	0.1322	1911141617
-CI24A	4 5.650	-7.2530	-0.26	119.90	-19.5	73.6	7.72	-1.0694	0.0929	1809281002
-CI24A	4 5.650	7.2530	-5.86	126.89	83.2	63.9	7.72	-0.3099	0.0539	1812290339
-CI24A	4 5.650	7.2530	-6.85	125.03	549.6	74.2	6.57	-0.1893	0.0861	1904062155

	-STA	STA	STA	-EV	₩	- DEP	-BAZ-	INC-	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CI24A	4 5.650	-7.2530	-11.71	125.30	-84.8	61.5	8.50 -	-0.8582	0.0459	1904230537
ļ	-CI24A	4 5.650	-7.2530	- -6.94	146.46	139.5	55.1	5.17 -	-0.0734	0.2975	1905062119
ļ	-CI24A	4 5.650	-7.2530	- <u>-6.38</u>	129.17	226.4	70.6	6.36 -	-1.0258	0.0482	1906240253
	-CI24A	4 5.650	-7.2530	- 0.49	126.18	-19.5	68.1	7.25-	-0.9026	0.0457	1907071508
	-CI24A	4 5.650	-7.2530	-4.44	101.28	-19.5	90.3	9.18 -	-1.0278	0.0605	1910142223
	-CI24A	4 5.650	-7.2530	-6.80	125.20	-19.5	64.9	7.98 -	-0.9197	0.0646	1910290104
	-CI24A	4 5.650	7.2530	<u> </u>	132.86	_9.8_	61.8	6.84 -	-0.5526	0.0733	1911231211
l	-CI25A	4 5.629	7.3243	- 0.26	119.90 -	-19.5	73.7	7.73-	-0.9740	0.0663	1809281002
	-CI25A	4 5.629	-7.3243	-1.06	119.96 -	-10.0	74.2	7.64 -	-0.6391	0.1449	1809281025
	-CI25A	4 5.629	-7.3243	-5.86	126.89	-83.2-	64.0	7.72	- 0.4368	0.0366	1812290339
	-CI25A	4 5.629	-7.3243	-10.37	119.05	-19.5	81.7	6.86 -	- 0.9757	0.0780	1901220510
	-CI25A	4 5.629	-7.3243	-11.71	125.30	-84.8	61.5	8.51	-0.5712	0.0546	1904230537
	-CI25A	4 5.629	-7.3243	-6.26	126.61	-98.0	64.1	7.78	-1.7950	0.3814	1905311012
	-CI25A	4 5.629	-7.3243	-6.38	129.17	226.4	70.6	6.36 -	-1.0434	0.0566	1906240253
	- CI25A	4 5.629	-7.3243	-0.49	126.18	-19.5	68.2	7.26-	- 0.9086	0.0999	1907071508
	- Cl25A	4 5.629	-7.3243	-6.80	125.20	-19.5	64.9	7.98	-1.1708	0.1304	1910290104
	- CI25A	45.629	-7.3243	-1.56	126.39	-59.0	67.2	7.34 -	- 0.2650	0.0838	1911141617
	- CI26A	45.596	-7.3907	-10.37	119.05	-19.5	81.7	6.87 -	-1.1453	0.2121	1901220510
	- CI26A	4 5.596	-7.3907	-10.09	152.09	-10.2	51.7	4.62	-0.7148	0.2772	1903101248
	- CI26A	4 5.596	-7.3907	-0.49	126.18	-19.5	68.2	7.26-	-1.1745	0.0782	1907071508
	- CI27A	4 5.596	-7.4880	-10.46	120.17	-10.0-	81.0	6.77	- 0.3866	0.4755	1810020016
	- CI28A	4 5.556	7.5737	-11.71	125.30	-84.8	61.7	8.53	-0.4497	0.1141	1904230537
	- CI29A	45.538	-7.6631	-6.26	126.61	-98.0	64.4	7.81	-0.4439	0.2432	1905311012

	-STA	STA	STA	-EV	₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CI29A	4 5.538	-7.6631	- -6.38	129.17	226.4	71.0	6.38 -	-1.0928	0.1515	1906240253
	- Cl29A	4 5.538	-7.6631	-0.49	126.18	-19.5	68.5	7.28	-0.7900	0.3852	1907071508
	-CI29A	4 5.538	-7.6631	-6.26	126.61	-98.0	64.4	7.81-	-0.4439	0.2432	1905311012
	-CI29A	4 5.538	-7.6631	-6.38	129.17	226.4	71.0	6.38	-1.0928	0.1515	1906240253
	-CI29A	4 5.538	-7.6631	- 0.49	126.18	<u>-19.5</u>	68.5	7.28	-0.7900	0.3852	1907071508
	-CI30A	4 5.52 4	-7.7104	6.04	149.90	<u>-19.5</u>	51.5	5.08	-1.1889	0.2453	1812192137
	-CI30A	45.524	-7.7104	- 0.49	126.18	-19.5	68.5	7.28	-1.2315	0.1096	1907071508
	-CI30A	45.524	-7.7104	- 0.92	128.60	-9.8	67.6	6.95 -	-0.4890	0.2897	1909141621
	-CI31A	4 5.441	-7.8122	-14.62	-70.10-	258.6	251.2	9.74	-0.5816	0.0492	1903010850
	-CI31A	45.441	-7.8122	-29.00	139.37	4 <u>34.8</u>	4 1.0	9.43 -	-0.6504	0.1497	1906040439
	-CI31A	45.441	-7.8122	-6.80	125.15	<u>-19.5</u>	65.4	8.02 -	-0.4940	0.0762	1910161137
	- CI32A	4 5.359	-7.9062	-6.26	126.61	-98.0	64.6	7.82 -	-0.7431	0.1956	1905311012
	- CI32A	4 5.359	-7.9062	-6.80	125.20-	<u>-19.5</u>	65.4	8.02 -	-0.4591	0.1371	1910290104
	-CI33A	4 5.288	-7.9447	-23.04	112.66	-10.2	97.3	6.42 -	-0.9293	0.1217	1812161426
	-CI33A	4 5.288	-7.9447	-30.11	-71.58	61.3	241.3	7.93	-0.6535	0.1378	1901200132
	-CI33A	4 5.288	-7.9447	-9.78	126.60	<u>-19.5</u>	62.2	8.22	-0.2719	0.0948	1902081155
	- CI33A	45.288	7.9447	-19.79	144.47	409.8	41.9	7.89	-1.4684	0.0720	1906281551
	- CI34A	45.191	-8.0221	-29.00	139.37	4 <u>34.8</u>	41.2	9.42	-0.8557	0.1315	1906040439
	- CI36A	45.031	-8.1833	-10.46	120.17	-10.0	81.8	6.82	-1.1712	0.2383	1810020016
	- CI36A	4 5.031	-8.1833	-10.37	119.05	-19.5	82.6	6.93 -	-0.7112	0.0744	1901220510
	- CI36A	45.031	-8.1833	-2.72	100.20	-19.5	90.6	9.62	-0.0929	0.2266	1902020927
	- CI36A	45.031	-8.1833	-11.71	125.30	-84.8	62.3	8.55	-0.3814	0.0714	1904230537
	- CI36A	45.031	8.1833	-6.26	126.61	-98.0	64.9	7.83	-0.8216	0.1222	1905311012

	-STA	STA	STA	EV	₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CI37A	44 .952	-8.2530	-23.04	112.66	-10.2	97.6	6.45	-1.455 4	0.4135	1812161426
ļ	- CI37A	44 <u>.952</u>	-8.2530	-6.26	126.61	-98.0	65.0	7.83 -	-0.3742	0.1807	1905311012
	- CI37A	44. 952	-8.2530	-5.97	149.59	-77.3	52.8	5.10 -	-0.9196	0.1089	1907150821
	-CI37A	44 .952	-8.2530	- 0.92	128.60	-9.8	68.3	6.97 -	-0.7664	0.2996	1909141621
	-CI37A	44 .952	-8.2530	-6.80	125.15	<u>-19.5</u>	65.8	8.03 -	-0.0407	0.0936	1910161137
	-CI38A	44. 762	-8.4124	-57.30	-66.37 -	63.3	216.7	6.05 -	-0.0020	0.0200	1810290654
	-CI38A	44. 762	-8.4124	-57.49	-66.29-	33.6	216.6	6.04	-0.0013	0.0212	1810292017
	-CI38A	44. 762	-8.4124	<u>-14.62</u>	-70.10-	258.6	251.6	9.71	-0.5057	0.0510	1903010850
	-CI38A	44. 762	-8.4124	-11.71	125.30	-84.8	62.5	8.55 -	- 0.0356	0.1141	1904230537
	-CI38A	44. 762	-8.4124	-6.26	126.61	-98.0	65.1	7.83-	-1.3133	0.1998	1905311012
	-CI38A	44. 762	-8.412 4	-19.79	144.47	4 09.8	42.4	7.87	-0.0079	0.0850	1906281551
	-CI38A	44. 762	-8.412 4	-0.49	126.18	<u>-19.5</u>	69.3	7.31	-0.0235	0.2395	1907071508
	-CI38A	44 .762	-8.4124	0.64	128.02	-9.8 -	68.6	7.05 -	- 0.0216	0.2307	1907140910
	-CI38A	44 .762	-8.4124	- <u>-5.97</u>	149.59	-77.3	53.0	5.09 -	- 0.0113	0.1240	1907150821
	-CI38A	44 .762	-8.4124	-6.80	125.20	-19.5	66.0	8.03 -	- 0.0554	0.3688	1910290104
	-CI38A	44 .762	-8.4124	-6.87	125.24	-34.8	65.9	8.03 -	- 0.0287	0.3667	1910290242
	-CI38A	44.762	-8.4124	-6.94	125.31	-19.9	65.7	8.03 -	-0.0234	0.3639	1910310111
	-CI38A	44.762	-8.4124	-31.80	-71.45	55.9	240.1	7.77	-0.0203	0.2100	1911042153
	-CI38A	44.762	-8.4124	-1.64	132.86	-9.8-	63.1	6.88 -	-0.0321	0.3138	1911231211
	-CI38A	44.762	-8.4124	-18.35	-70.45	9.8	249.3	9.30 -	-0.0295	0.3405	1912030846
	- CI39A	44 <u>.674</u>	-8.4731	-57.30	-66.37	63.3	216.7	6.05 -	-1.1151	0.1490	1810290654
	- CI39A	<u>44.674</u>	8.4731	-2.72	100.20	-19.5 -	90.8	9.66	-0.0927	0.2980	1902020927
	- CI39A	<u>44.674</u>	-8.4731	-60.03	-26.63-	124.2	197.5	7.34	-0.9247	0.0259	1908272355

	- STA	STA	STA	- EV	E₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
		LAT-	LON-	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	- CI39A	<u>44.674</u>	-8.4731	<u>-1.64</u>	132.86	<u> </u>	63.2	6.88 -	-0.1997	0.1510	1911231211
	-CI40A	<u>44.605</u>	-8.5230	-2.72	100.20-	-19.5	90.9	9.66 -	-1.9685	0.2516	1902020927
	-CI40A	44. 605	-8.5230	- <u>-2.16</u>	138.50	-19.5	61.2	6.12 -	-0.7546	0.0745	1906191724
	-CI40A	44 <u>.605</u>	-8.5230	-18.05	120.33	_9.8_	88.3	6.22 -	-0.7765	0.2318	1907140539
	-CI40A	44 <u>.605</u>	-8.5230	- -0.92	128.60	_9.8_	68.6	6.97 -	-0.2667	0.2197	1909141621
	-CI41A	44.530	-8.5343	-14.62	-70.10-	258.6	251.7	9.71	-1.1041	0.0740	1903010850
	-CI41A	44.530	-8.5343	-6.85	125.03	549.6	75.7	6.64 -	-0.4293	0.0606	1904062155
	-CI41A	44.530	-8.5343	-30.00	-72.11	9.8	241.9	7.90 -	-0.5665	0.0411	1906140019
	-CI41A	44.530	-8.5343	-6.38	129.17	226.4	72.1	6.41	- 0.4470	0.0766	1906240253
	-CI41A	44.530	-8.5343	-19.79	144.47	4 09.8	4 2.6	7.85	-0.7258	0.0398	1906281551
	-CI41A	44.530	-8.5343	-60.03	-26.63 -	124.2	197.6	7.35	-0.7816	0.0243	1908272355
	-CI41A	44.530	-8.5343	-35.41	-73.17-	13.1	238.4	7.33	- 0.7712	0.0424	1909291557
	-CI42A	44 .462	- <u>8.5805</u>	-10.37	119.05	-19.5_	83.1	6.95 -	-1.1350	0.2285	1901220510
	-CI42A	44 .462	- <u>8.5805</u>	-42.87	42.28	19.5	155.9	9.78	- 0.8690	0.0501	1901221901
	-CI42A	44 .462	- <u>8.5805</u>	-6.38	129.17	226.4	72.2	6.41	- 0.6015	0.0986	1906240253
	-CI42A	44 <u>.462</u>	-8.5805	-35.41	-73.17-	13.1	238.4	7.33	- 1.2119	0.0655	1909291557
	-CI43A	44.397	-8.6165	-42.87	42.28	19.5	155.9	9.80	-0.9450	0.0675	1901221901
	-CI43A	44.397	-8.6165	-3.35	152.23	358.6	48.8	5.12 -	-0.6969	0.0964	1902171435
	-CI43A	44.397	-8.6165	-14.62	-70.10-	258.6	251.7	9.70	-0.6959	0.0911	1903010850
	-CI43A	44.397	-8.6165	-6.38	129.17	226.4	72.3	6.41	-0.3171	0.0641	1906240253
	-CI43A	44.397	-8.6165	-34.17	-72.38	19.7	238.9	7.50	-0.8792	0.0723	1908011828
	-CI43A	44.397	-8.6165	-35.41	-73.17	13.1	238.4	7.33	-1.0847	0.0803	1909291557
	- CW01A	45.433	7.2591	-57.49	-66.29	33.6	216.4	6.04	-0.2244	0.4004	1810292017

-STA	STA	STA	- EV	E₩	- DEP	-BAZ-	INC -	- SI -	Slerr-	EQ_ID
	LAT-	LON-	LAT	LON-						(yy,mm,dd,hh,m
										m)
- CW01A	4 5.433	-7.2591	-23.04	112.66	-10.2	96.7	6.37	- 0.7174	0.1679	1812161426
-CW01A	45.433	-7.2591	-42.87	42.28	19.5	155.0	9.57 -	-0.3877	0.1196	1901221901
-CW01A	45.433	-7.2591	- 0.49	126.18	<u>-19.5</u>	68.2	7.24	-0.8938	0.0544	1907071508
- CW02A	45.433	-7.3747	-57.30	-66.37 -	63.3	216.5	6.04	-1.7705	0.1204	1810290654
- CW02A	45.433	7.3747	-57.49	-66.29 -	33.6	216.4	6.03 -	-0.2153	0.0996	1810292017
- CW02A	45.433	-7.3747	-0.49	126.18	<u>-19.5</u>	68.3	7.25	-1.0730	0.0886	1907071508
- CW02A	4 5.433	-7.3747	- -0.92	128.60	-9.8-	67.4	6.93 -	- 0.0417	0.1917	1909141621
- CW03A	4 5.407	-7.5053	-2.27	126.85	- 66.8	66.7	7.37	-1.7258	0.1987	1901061727
- CW03A	4 5.407	-7.5053	-11.71	125.30	-84.8	61.7	8.51	-0.5868	0.0836	1904230537
- CW03A	4 5.407	-7.5053	-0.49	126.18	<u>-19.5</u>	68. 4	7.26	-0.8621	0.1016	1907071508
- CW03A	4 5.407	-7.5053	-6.80	125.20	-19.5	65.1	7.99	-0.5815	0.2034	1910290104
- CW04A	4 5.367	-7.6128	-8.52	127.04	<u> </u>	62.5	8.02	-0.4399	0.0883	1903060013
- CW04A	4 5.367	-7.6128	-0.49	126.18	-19.5	68.5	7.27	-1.0816	0.0850	1907071508
- CW05A	4 5.32 4	-7.7318	- <u>5.52</u>	133.85	<u>-9.8</u>	66.6	6.14	- 0.8727	0.1121	1901260812
- CW05A	4 5.32 4	-7.7318	-6.80	125.20	<u>-19.5</u>	65.3	8.00 -	- 0.7146	0.0854	1910290104
-CT03A	44.324	- 5.0275	-4 6.33	-35.07 -	33	159.7	9.43	- 1.0060	0.0652	1307220701
-CT04A	44.371	-5.1477	-46.33	-35.07 -	33	159.7	9.42 -	-1.4409	0.0996	1307220701
-CT05A	44.370	-5.2677	-46.33	-35.07 -	33	159.8	9.43 -	-1.4937	0.0686	1307220701
-CT06A	44.382	-5.3872	-3.23	100.59	-23.5-	88.7	9.18	-0.8362	0.1189	1307060505
-CT08A	44.412	-5.6051	-18.79	145.27	598.0	39.9	7.44	-0.6962	0.0466	1305140032
-CT09A	44.429	-5.7144	-46.33	35.07	33	160.1	9.44	-1.6600	0.0938	1307220701
-CT10A	44.437	-5.7940	-46.33	-35.07-	33	160.2	9.44	-1.9193	0.0602	1307220701
-CT11A	44.454	-5.9026	-10.03	107.18	-11.1	89.3	7.83	-0.9164	0.0895	1306131647

	-STA	STA	STA	-EV	E₩	- DEP	-BAZ-	INC	- SI -	Slerr-	EQ_ID
ļ		LAT-	LON_	LAT-	LON-						(yy,mm,dd,hh,m
											m)
	-CT11A	44.454	-5.9026	<u>-5.43</u>	-81.99 -	5	264.6	9.80 -	-1.6904	0.0501	1308120949
	-CT12A	44 <u>.</u> 475	-5.9826	-4 6.33	-35.07-	33	160.3	9.44	-1.8337	0.0526	1307220701
	-CT13A	<u>44.460</u>	-6.0559	-46.33	-35.07-	33	160.3	9.45	-1.9759	0.0929	1307220701
	-CT20A	44 .585	-6.5389	-4 6.33	-35.07-	33	160.6	9.45	-1.3514	0.0864	1307220701
	-CT21A	44 .65 4	-6.5686	- <u>3.23</u>	100.59	-23.5-	89.5	9.31	-0.3706	0.1366	1307060505
	-CT21A	44 .65 4	-6.5686	-46.33	-35.07-	33	160.7	9.44	-1.1207	0.0477	1307220701

581 | Table S2 - Anisotropy parameters obtained from SI measurements

- STA	ST LAT	ST-LON-	-FPD	Time Delay (s)	-FPDerr-	-TDerr-
- CE03A -	4 5.786	7.6024	- -0.78	0.74992	-11.2	0,639
-CI07A-	46.231	5.5241	-11.58	0.13265-	-14.3	0,203
-CI11A-	4 6.087	6.0314	-0.32-	0.83092	<u> 12.8 </u>	1,75
-CH5A-	4 6.005	6.5370-	-7.45-	1.08421	7.0	1,101
- CI16A-	4 5.925	6.6170	-2.58-	1.09206 -	-2.1-	1,30 4
-CH7A-	4 5.947	6.7180	-11.48	0.79153	-12.3	0,709
-CH8A	4 5.900	6.7699	-15.11	0.64205	-21.3	1,15 4
-CI19A-	4 5.945	6.8987-	-0.99-	1.32372	-4.1	1,079
-CI21A-	45.724	7.1389	-37.08 -	1.03633 -	-36.2	0,871
-CI23A-	4 5.678	7.2388	-22.22	0.73735 	-22.8	1,026
-CI24A-	4 5.650	7.2530	37.75	0.92882	-32.4	0,781
-CI38A-	44.762	8.4124	-59.03	0.13426 -	-45.1	0,187
-CI39A-	44.674	8.4731	-43.54-	1.00657	-79.8	1,005
-CI41A-	<u>44.530</u>	8.5343	-53.46	0.98773	-66.8	0,707
-CI42A-	4 4.462	8.5805-	-76.64	2.17814 -	-79.3	1,755

	- STA	ST LAT	ST-LON-	FPD	Time Delay (s)	-FPDerr-	-TDerr-
	-CI43A-	44.397	8.6165-	-67.27-	0.84845	-63.6	0,865
1	- CW01A -	45.433	7.2591	-1.35	0.88253	-5.7	1,428
1	- CW02A	45.433	7.3747	-22.80-	0.77871	-35.3	<u>1,92</u>
1							2-