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Abstract 14 

Individual hydrological and crop growth models often oversimplify underlying processes, 15 

reducing the accuracy of both simulated hydrology and crop growth dynamics. While crop 16 

models tend to generalize soil moisture processes, most hydrological models commonly use 17 

constant vegetation parameters and prescribed phenologies, neglecting the dynamic nature of 18 

crop growth. Despite some studies that have coupled hydrological and crop models, a limited 19 

understanding exists regarding the feedbacks between hydrology and crop growth. Our 20 

objective is to quantify the feedback between crop systems and hydrology on a fine-grained 21 

spatio-temporal level. To this end, the PCR-GLOBWB 2 hydrological model was coupled with 22 

the WOFOST crop growth model to quantify both the one-way and two-way interactions 23 

between hydrology and crop growth on a daily timestep and at 5 arc minutes (~10 km) 24 

resolution. Our study spans the Contiguous United States (CONUS) region and covers the 25 

period from 1979 to 2019, allowing a comprehensive evaluation of the feedback between 26 

hydrology and crop growth dynamics. We compare individual (stand-alone) as well as one-27 

way and two-way coupled WOFOST and PCR-GLOBWB 2 model runs and evaluate the 28 

average crop yield and its interannual variability for rainfed and irrigated crops as well as 29 

simulated irrigation water withdrawal for maize, wheat and soybean. Our results reveal distinct 30 

patterns in the temporal and spatial variation of crop yield depending on the included 31 

interactions between hydrology and crop systems. Evaluating the model results against 32 

reported yield and water use data demonstrates the efficacy of the coupled framework in 33 

replicating observed irrigated and rainfed crop yields. Our results show that two-way coupling, 34 

with its dynamic feedback mechanisms, outperforms one-way coupling for rainfed crops. This 35 

improved performance stems from the feedback of WOFOST crop phenology to the crop 36 

parameters in the hydrological model. Our results suggest that when crop models are combined 37 
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with hydrological models, a two-way coupling is needed to capture the impact of interannual 38 

climate variability on food production.  39 

 40 

 41 

1 Introduction 42 

Global trends in population and economic growth are expected to increase the demand for 43 

water, food, and energy, threatening the sustainable and equitable use of natural resources 44 

(Sophocleous, 2004; Tompkins and Adger, 2004). Water as a resource plays a crucial role in 45 

crop growth, cooling of thermoelectric plants, hydropower generation, and covering domestic 46 

and industrial demand. Water, therefore, is an essential resource at the core of the Water-47 

Energy-Food-Ecosystem (WEFE) nexus. Currently, 70% of total global freshwater 48 

withdrawals are accounted for by agriculture, making it the largest water user among all sectors 49 

(Dubois, 2011). The Food and Agriculture Organization (FAO) of the United Nations estimated 50 

that the demand for water and food resources will likely increase by 50% by 2050 compared 51 

to 2015 (IRENA, 2015; Corona-López et al., 2021). The increasing demand for water and food 52 

will likely have negative impacts on the environment and will inhibit socio-economic 53 

development if a gap opens between growing water demand and water availability.  54 

The critical interplay between hydrology and crop growth becomes evident during 55 

hydroclimatic extremes (e.g. droughts, heatwaves), as rising demands coincide with potential 56 

declines in both water resources and food production (crop yield) (Jackson et al., 2021). In 57 

addressing the complexities associated with these challenges, studies by Jägermeyr et al. 58 

(2017), utilizing a dynamic vegetation model (LPJmL), evaluated achievable irrigated crop 59 

production under sustainable water management. Their findings revealed that 41% of global 60 

water use currently compromises environmental flow requirements crucial for river 61 

ecosystems, potentially leading to losses in irrigated croplands. Concurrently, research by 62 

Vörösmarty et al. (2000) and Leclère et al., (2014) projects the impacts of climate change on 63 

global agricultural systems, foreseeing an increase in irrigated areas in the future, underscoring 64 

the necessity for significant investments in irrigation, energy, and water resource management.  65 

Biophysical process-based models, as highlighted by Siad et al., (2019) and Zhang et al., 66 

(2021), are instrumental in understanding the intricate relationship between hydrology and crop 67 

growth, particularly in response to changing hydroclimatic conditions. Considering factors like 68 

irrigation water use and soil-groundwater dynamics, these models explore how meteorological 69 
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events influence water availability for crops, as well as the impacts of diminished growth and 70 

premature senescence on hydrology through effects on root water uptake and 71 

evapotranspiration. This understanding becomes crucial when assessed at the regional to global 72 

scale, where local deficits can have cascading consequences for both water and food security. 73 

In the context of studying the impact of climate change and variability on crop yields, aside 74 

from biophysical models, numerous crop models have been employed. However, these models 75 

often incorporate a simplified soil-water balance (Zhang et al., 2021) that overlooks local 76 

hydrological processes and often do not account for water use for irrigation and non-77 

agricultural sectors. Conversely, most hydrological models simplify or neglect the effects of 78 

land cover, phenology and vegetation changes on hydrological fluxes and the state of available 79 

water resources (Tsarouchi et al., 2014). These simplifications arise due to computational 80 

expediency, disparities in process scales between hydrology at the river basin level and crop 81 

yield at the field level, incomplete understanding of the other domain by model developers, or 82 

because of epistemological uncertainty (Siad et al. 2019; McMillan et al., 2018; Shafiei et al. 83 

2014). Recognizing the strengths of both crop models and global hydrological models, a 84 

coupling allows for the exploration of dynamic crop growth's influence on hydrology and water 85 

use and the incorporation of accurate spatio-temporal variations in hydrological fluxes, 86 

including water use, in estimates of crop yield.  87 

Noteworthy efforts by Droppers et al. (2021) have successfully coupled hydrological and crop 88 

models, primarily focusing on achieving attainable crop production. However, these efforts 89 

were conducted at half-degree (~50 km) spatial resolution and focused on long-term average 90 

crop yield. They therefore fall short in exploring the aspects of fine-scale spatiotemporal 91 

variability in particular as a result of interannual climate variability. Other recent efforts to 92 

couple crop growth models and global hydrological models (Jägermeyr et al., 2017) 93 

predominantly focus on assessing yield under different scenarios or adaptation measures. 94 

However, limited work focused on delving into how two-way interactions and feedback 95 

mechanisms between crop growth and hydrological systems operate.  96 

In addition, integrated assessment models have been instrumental in studying the combined 97 

effects of climate change and socio-economic developments on crop yield and water resources 98 

at a large scale. Typically, these models operate on a macro-regional level (Easterling, 1997) 99 

and use annual (or 5 to 10 yearly timesteps), neglecting the impacts of inter- and intra-annual 100 

variability and particularly short-term hydroclimatic extremes. Furthermore, integrated 101 
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assessment models often adopt an optimization modelling approach, making them less suitable 102 

for studying the effects of hydroclimatic extremes (Ewert et al., 2015).  103 

Another class of efforts to link water to crop production are water-food nexus studies, that, 104 

however, tend to concentrate on local linkages or provide qualitative descriptions of existing 105 

connections (Momblanch et al., 2019). For instance, a recent review of water-food nexus 106 

studies focusing on the contiguous United States (CONUS), shows that such studies focus 107 

mainly on water security indicators (Veettil et al., 2022) or climate variability impacts on crop 108 

yields (Huang et al., 2021). However, knowledge gaps persist, as water and food resources are 109 

often evaluated separately (Corona-López et al., 2021), exploring allocations through an 110 

optimization model (Mortada et al., 2018) that lacks spatiotemporal variability considerations. 111 

Notably, there is a lack of effort to understand the interactions between hydrology and crop 112 

growth. Further research is needed to bridge these gaps and enhance our understanding of the 113 

dynamic and interlinked processes shaping the water-food nexus. 114 

To address this knowledge gap, our objective is, therefore, to quantify the feedback between 115 

crop growth and hydrology. Although eventually global scale in scope, we limit this analysis 116 

to the Contiguous United States (CONUS) region, to keep the analysis tractable and because 117 

CONUS has detailed information on yearly crop production and water use.  118 

CONUS is a major producer and contributor to the global production of three primary crops: 119 

maize, soybean, and wheat. These crops were selected due to their substantial impact on the 120 

agricultural landscape and their pivotal role in shaping global food production trends. The 121 

CONUS serves as an ideal study area owing to its extensive availability of relevant data, 122 

particularly on agricultural statistics and irrigation water withdrawals, which can provide a 123 

basis for analysis and model evaluation. Additionally, the CONUS region exhibits diverse 124 

climatic and geographic conditions, contributing to a better understanding of crop and water 125 

system dynamics and their responses to various environmental factors. 126 

To this end, we developed a coupled global hydrological-crop growth model framework to 127 

answer questions related to 1) the impacts of irrigation and hydrology on crop growth; 2) the 128 

feedbacks of crop growth on the hydrological system when accounting for interannual 129 

variability; and 3) the importance of the two-way coupling between hydrology and crop growth 130 

to provide realistic water resources and crop yield simulations. By delving into these aspects, 131 

we aim to contribute valuable insights into the feedback processes between hydrology and crop 132 

growth, thereby addressing the current research gap in a more comprehensive manner. 133 
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To address this, the PCR-GLOBWB 2 hydrological model (Sutanudjaja et al., 2018) is coupled 134 

to the WOFOST crop model (de Wit et al., 2019) at a daily timestep and at 5 arc minutes (~10 135 

km) spatial resolution applied to CONUS (section 2.1). First, a one-way coupling is established 136 

to evaluate the effect of the simulated water availability of PCR-GLOBWB 2 for rainfed and 137 

irrigated crop growth in WOFOST (section 2.1; section 2.2.1). In addition, a two-way coupling 138 

is established in which, additional to passing water availability from PCR-GLOBWB 2 to 139 

WOFOST, the crop phenology of WOFOST in terms of actual evapotranspiration, leaf area 140 

index and rooting depth is fed back into PCR-GLOBWB 2 (section 2.1, 2.2.2;). Furthermore, 141 

individual WOFOST and coupled one-way and two-way model runs were compared to 142 

evaluate the impacts of feedbacks on crop yield and irrigation water use (section 2.3). The 143 

results of these simulations are compared with and evaluated against reported yield statistics 144 

and reported annual irrigation withdrawals to assess their validity (section 2.4; section 3). In 145 

the end, we elaborate on the uncertainties, strengths, and usability of our coupled model 146 

framework for studying the water-food nexus under global change (section 4). 147 

 148 

2 Methods 149 

2.1 Coupled PCR-GLOBWB 2-WOFOST model framework  150 

A new fully coupled PCR-GLOBWB 2 - WOFOST model framework is developed to include 151 

the feedbacks between crop growth and hydrology. Here, we included both a one-way and two-152 

way coupling between the PCR-GLOBWB 2 global hydrology and water resources model 153 

(Sutanudjaja et al., 2018) and the WOFOST crop growth model (de Wit et al., 2019). This 154 

coupled framework was then used to quantify the impacts of included feedbacks between 155 

hydrology and crop growth on a daily timestep and 5 arcminutes resolution for CONUS. The 156 

following (sub)sections provide a description of the PCR-GLOBWB 2 and WOFOST models 157 

and modules used (2.1), the model coupling setup (2.2), model coupling simulation 158 

experiments and parametrization (2.3), validation of crop yield and of irrigation water use (2.4). 159 

  160 
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 161 

Figure 1: The coupled model framework of the PCR-GLOBWB 2 hydrology and water resources model 162 
and the WOFOST crop growth model. The blue arrow represents the one-way coupling from PCR-163 
GLOBWB 2 to WOFOST and the variables that are exchanged; the green arrow is added in case the full 164 
two-way coupling is considered. At the start of the day, WOFOST computes evapotranspiration, leaf area 165 
index, and rooting depth that is used by PCR-GLOBWB 2 to compute soil moisture status. At the end of 166 
the day, soil moisture storage in the upper and lower layers from PCR-GLOBWB 2 is fed to WOFOST to 167 
compute crop growth for the next day. 168 

PCR-GLOBWB 2  169 

The PCRaster Global Water Balance (PCR-GLOBWB 2) model (Sutanudjaja et al., 2018) is a 170 

global hydrology and water resource model developed at Utrecht University. This model 171 

operates on a latitude-longitude grid for which it simulates fluxes and stores of the terrestrial 172 

hydrological cycle with a daily resolution and dynamically includes anthropogenic impacts 173 

such as man-made reservoirs and sectoral water demands, water withdrawals, consumptive 174 

water use, and return flows. The PCR-GLOBWB 2 model currently consists of five main 175 

hydrological modules encompassing meteorological forcing, land surface, groundwater, 176 

surface water, irrigation and water use (Fig. 1). 177 

The PCR-GLOBWB 2 meteorological forcing uses a gridded time series of temperature and 178 

precipitation as input. More information on input datasets is provided in supplementary I. 179 

Reference potential evaporation is computed within the model using Hamon's (1963) method. 180 

The resulting reference potential evaporation is then employed in the land surface module to 181 

calculate the crop-specific land cover potential evaporation. Separate soil conditions are 182 

specified for each land cover type, with vegetative and soil properties varying accordingly for 183 

each grid cell and land cover type. The groundwater and surface water modules simulate the 184 

fluxes and stores of groundwater and surface water, respectively. The irrigation and water use 185 

module focuses on simulating water demand, withdrawals, consumption, and return flows. For 186 
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a more detailed understanding of each module, we refer to the comprehensive description 187 

provided by Sutanudjaja et al. (2018).  188 

WOFOST 189 

WOFOST (WOrld FOod STudies) is a crop simulation model developed at Wageningen 190 

‘School of De Wit’, in the Netherlands, designed to quantitatively analyze the crop growth and 191 

potential production of annual field crops at the field scale (Supit et al., 1994). WOFOST 192 

employs a fixed time step of one day to simulate crop growth based on eco-physiological 193 

processes such as phenological development and growth (de Wit et al., 2019). WOFOST has 194 

found extensive application in assessing the impacts of climate change and management 195 

strategies on crop growth and yield at local to global scales.  196 

The WOFOST crop model comprises of four modules: weather, crop, astro and soil (Fig. 1). 197 

The WOFOST modules simulate a range of processes, including phenological development, 198 

CO2 assimilation, leaf development, light interception, transpiration, respiration, root growth, 199 

assimilated partitioning to the various organs and the formation of dry matter. The model’s 200 

output includes simulated crop biomass total, crop yield and variables such as leaf area and 201 

crop water use.  202 

2.2 Model coupling setup 203 

The PCR-GLOBWB 2 - WOFOST coupled model framework integrates hydrological and crop 204 

models through both one-way and two-way couplings, as illustrated in Fig. 1. This model 205 

coupling aims to assess the intricate interactions between hydrology and crop growth under 206 

different agricultural conditions, specifically irrigated and rainfed settings. The one-way 207 

coupling examines the impact of water availability on crop growth, while the two-way coupling 208 

incorporates the exchange of soil moisture status and hydrological parameters and fluxes based 209 

on crop status. 210 

The online coupling process occurs seamlessly at each time step, facilitating dynamic 211 

interactions between WOFOST and PCR-GLOBWB 2 and limiting I/O-related computation 212 

times. To achieve this integration, we utilized the Basic Model Interface (BMI) (Hutton et al., 213 

2020; Peckham et al., 2013), which is particularly valuable as WOFOST and PCR-GLOBWB 214 

2 are written in different programming languages (C and PCRaster-Python, respectively). The 215 

decision to use BMI was driven by its non-interfering nature, ensuring no code entanglement 216 

and facilitating seamless connection between the models. BMI functions act as a bridge, 217 

https://doi.org/10.5194/egusphere-2024-465
Preprint. Discussion started: 12 March 2024
c© Author(s) 2024. CC BY 4.0 License.



8 
 

enabling direct variable exchange between WOFOST and PCR-GLOBWB 2 without 218 

modifying their source code. This non-invasive approach ensures a flexible and robust coupling 219 

framework, allowing for continuous model development without interruptions. Integrating 220 

BMI functions into both models provides a set of functions for retrieving or altering model 221 

variables, enhancing adaptability and efficiency. The schematization of the workflow of the 222 

coupled PCR-GLOBWB 2 - WOFOST model framework can be seen in Supplementary 223 

Information II Fig. S1. Further details on BMI functions used for the development of the 224 

coupled PCR-GLOBWB 2 – WOFOST model framework are available in supplementary II. 225 

2.2.1 One-way coupling 226 

In the one-way coupling, information on soil hydrology is passed from PCR-GLOBWB 2 to 227 

WOFOST (Fig 1). Here, PCR-GLOBWB 2 simulates soil moisture content for every day and 228 

the soil water storage is simulated separately for each land cover type. Consequently, WOFOST 229 

receives the soil moisture content from PCR-GLOBWB 2 as input, with generally higher values 230 

of soil moisture for irrigated crops than of nearby rainfed crops. WOFOST then simulates the 231 

crop yield based on the simulated soil moisture content and the same meteorological inputs as 232 

PCR-GLOBWB 2 uses. 233 

The combined model framework captures the impact of hydroclimatic conditions by assessing 234 

water stress and heat stress. Water stress, influenced by soil moisture levels derived from PCR-235 

GLOBWB 2, affects various processes in WOFOST such as a reduction in the leaf area, a 236 

decrease in the assimilation of biomass (growth), changes in the partitioning of biomass, and 237 

an increase in various plant organs of senescence (ageing processes). Elevated temperatures 238 

have varying effects across different stages of crop development. They can accelerate crop 239 

growth by promoting faster accumulation of Growing Degree Days, which are essential for 240 

determining crop maturity. However, prolonged exposure to high temperatures can also induce 241 

heat stress, adversely impacting crop health and potentially shortening the overall duration of 242 

the crop's growth cycle. Insufficient water availability that limits the evapotranspiration also 243 

reduces the amount of assimilation and the corresponding yield. 244 

2.2.2 Two-way coupling 245 

In addition to one-way coupling, vegetation-related states and fluxes are passed from WOFOST 246 

to PCR-GLOBWB 2 and data exchange between the two models is iterated twice per day. In 247 

the two-way coupling, information is exchanged between PCR-GLOBWB 2 and WOFOST as 248 

follows (Fig. 1): 249 
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• At the start of the day, WOFOST computes the potential evapotranspiration on the basis 250 

of the meteorological variables and the pertinent vegetation states from the previous 251 

time step (leaf area index (LAI), rooting depth, and crop height), as well as the actual 252 

bare soil evaporation, actual transpiration and the open water evaporation; 253 

• The fluxes are passed to PCR-GLOBWB 2, together with the root depth. The root depth 254 

is used to partition the actual transpiration from the single root zone of WOFOST over 255 

the two soil layers of PCR-GLOBWB 2, dependent on the root content. For both 256 

irrigated and rainfed crops, the actual evapotranspiration from WOFOST is imposed on 257 

PCR-GLOBWB 2 and used to update the soil moisture content of the two soil layers in 258 

PCR-GLOBWB 2 for the current daily timestep; 259 

• In the case of irrigated crops, the stages of vegetated development are used to compute 260 

the amount of irrigation. Potential evaporation is used to calculate the irrigation water 261 

demand for paddy crops (not considered here), whereas the irrigation water requirement 262 

for non-paddy crops is computed on the basis of the soil moisture status according to 263 

the FAO guidelines (Allen et al., 1998). The irrigation water requirement is withdrawn 264 

from the available water resources in PCR-GLOBWB 2 and the available irrigation 265 

water supply is applied to the crops in addition to any natural precipitation; 266 

• The resulting soil moisture of the two soil layers from PCR-GLOBWB 2 is aggregated 267 

to the average value for the root zone of each crop and passed to WOFOST; 268 

• With the soil moisture from PCR-GLOBWB 2, WOFOST computes the actual 269 

transpiration and the crop growth and the crop status is updated.  The new fluxes and 270 

new crop parameters are then passed to PCR-GLOBWB 2 again in the next daily 271 

timestep (Fig.1). 272 

In this two-way coupling, the crop phenology from WOFOST determines evapotranspiration 273 

and thus the soil hydrology of PCR-GLOBWB 2, particularly during dry spells.  Compared to 274 

the predefined phenology of PCR-GLOBWB 2, the LAI, rooting depth and evapotranspiration 275 

as simulated by WOFOST will lag during dry spells and less water may be lost from PCR-276 

GLOBWB 2. However, the thinner rooting depth will also lead to an earlier drying out of the 277 

soil and reduced capillary rise. This subsequently leads to reduced soil moisture (compared to 278 

PCR-GLOBWB 2 standalone) which in turn feeds back to a reduced simulated yield in 279 

WOFOST, in particular for rainfed crops. For irrigated crops, the extra water supplied will 280 

largely offset these feedbacks and result in near-optimum growth. 281 

2.3 Model coupling simulation experiments and parametrization 282 
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Hydrological simulations were conducted with a daily timestep at a 5-arcminute grid 283 

resolution, where for each grid cell WOFOST was used to simulate crop growth for irrigated 284 

and rainfed maize, soybean, and wheat. To assess the impact of hydrology on crop growth and 285 

understand the interactions between hydrology and crop growth, three sets of simulations were 286 

carried out for both irrigated and rainfed crops: a) standalone simulations using the WOFOST 287 

crop model solely, b) one-way coupled, and c) two-way coupled PCR-GLOBWB 2 - WOFOST 288 

simulations. Note that for the standalone simulations with WOFOST under irrigation the 289 

potential crop yield is simulated, which is potential yield without water (and nutrient) stress 290 

except for temperature effects. When coupled to PCR-GLOBWB 2, water stress can occur even 291 

for irrigated crops in case there is not enough water available (in PCR-GLOBWB 2) to fully 292 

satisfy the crop water demand. For rainfed crops, growth is influenced by available soil 293 

moisture for all simulations and is thus sensitive to water stress and temperature. Green water 294 

from natural rainfall is the primary water supply in rainfed analysis, while irrigated crops get 295 

water from both green and blue water (from surface water and renewable groundwater) and 296 

non-renewable groundwater leading to groundwater depletion.  297 

Daily timestep simulations covered the period from 1979 and 2019, using weather variables 298 

(minimum and maximum air temperature, short wave radiation, precipitation, vapour pressure, 299 

windspeed, and humidity) from the W5E5 forcing data (Lange et al., 2021) as input to PCR-300 

GLOBWB 2 (Sutanudjaja et al., 2018) and WOFOST. Cropland areas and growing seasons 301 

were determined from the MIRCA2000 (Portmann et al., 2010) global monthly irrigated and 302 

rainfed crop area dataset. The focus of the coupled framework was to comprehend the impacts 303 

and feedback between hydrology and crop growth. Crop parameters, atmospheric CO2 304 

concentrations, and fertilizer application were obtained from the WOFOST crop parameter 305 

dataset for each crop (WOFOST Crop Parameters, 2024). Cultivars in the WOFOST crop 306 

parameter datasets were calibrated for each crop against reported agricultural yields from the 307 

United States Department of Agriculture (USDA) National Agricultural Statistics Service 308 

(USDA, 2024), with the closest matching cultivar selected for final simulations. Detailed 309 

information on the cultivar calibration for each crop (i.e. irrigated and rainfed maize, soybean 310 

and wheat) is provided in the supplementary information section III.  311 

Comparisons were made between simulations from standalone WOFOST and the one-way and 312 

two-way coupled PCR-GLOBWB 2 - WOFOST runs. This comparative analysis involved 313 

evaluating the results from different model runs for crop growth against reported crop yields. 314 
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Furthermore, irrigation water withdrawals of coupled model runs are compared against the 315 

USGS Water Use Database (USGS, 2023) (section 2.4).   316 

2.4 Model evaluation 317 

We evaluated the three different model configurations by comparing simulated results against 318 

reported USDA crop yields of maize, soybean and wheat. Furthermore, we cross-referenced 319 

our simulations with irrigation water withdrawal data spanning five years from the USGS 320 

Water Use Database. Specifically, we compared data for the years 2005, 2010, and 2015, as 321 

the USGS census data is collected at five-yearly intervals.  322 

2.4.1 Crop yields model evaluation 323 

To assess the model's performance, we employ three key metrics: correlation coefficients (r), 324 

Normalized Root Mean Square Error (NRMSE) and Normalized Bias (NBIAS). These metrics 325 

were selected for their ability to capture the strength, accuracy and systematic errors in the 326 

relationship between simulated and observed values. 327 

𝑟 =
∑(𝑃𝑖−�̅�)(𝑂𝑖−�̅�)

√∑(𝑃𝑖−�̅�)2⋅∑(𝑂𝑖−�̅�)2
            (1)         328 

𝑁𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

�̅�
                                        (2) 329 

𝑁𝐵𝐼𝐴𝑆 =  
1

𝑛
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

�̅�
        (3) 330 

Where, 𝑃𝑖 and 𝑂𝑖 are the individual predicted and observed values, respectively and �̅� and �̅� 331 

are the means of the predicted and observed values.  332 

The evaluation was done both temporally for average CONUS yields per year, as well as for 333 

multi-year averages per state-per-state to evaluate the model's ability to capture spatial 334 

variations in crop yield. This was done for both irrigated and rainfed maize, soybean and wheat.  335 

To further characterize the dataset and evaluate the impact of the degree of coupling on 336 

simulated yields, additional statistical analyses were conducted on the 41 years of simulated 337 

data at the 5-arcminute grid scale. To this end, the mean and coefficient of variation (CV) were 338 

computed for both one-way and two-way datasets for the three crops under irrigated and rainfed 339 

conditions. The purpose of this analysis was to examine the central tendency and year-to-year 340 

variability of yield simulations and how these are related to the way hydrology and crop growth 341 

are coupled.  342 
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2.4.2 Irrigation water use model evaluation 343 

The USGS reported irrigation water use data provides a comprehensive representation of the 344 

total irrigation water utilized by all crops for a number of states (USGS, 2023). The irrigated 345 

crop area used in this dataset is however not the same as that used in PCR-GLOBWB 2  which 346 

is based on MIRCA2000 (Portmann et al., 2010). Thus, directly comparing USGS data with 347 

our simulated water withdrawals would result in bias. To ensure a fair comparison between the 348 

simulated and reported data, we adjusted the USGS irrigation water use data by multiplying 349 

these with the ratio of the irrigated area from MIRCA2000 to the reported total USGS irrigated 350 

area. Additionally, our simulated irrigation water withdrawal volumes did not yet account for 351 

irrigation efficiency. We intend to implement this in future development. Hence, we introduced 352 

an additional correction by dividing the simulated withdrawal data by the irrigation efficiency 353 

as is commonly used in PCR-GLOBWB 2 when it is not coupled to a crop model. 354 

After these corrections, the coupled model simulated irrigation water withdrawals were 355 

evaluated against actual irrigation data obtained from the USGS database through spatial 356 

(multi-year averages per state) and temporal (multi-state totals per year) analysis, providing 357 

insights into the model's ability to replicate observed irrigation water use patterns.  358 

This comparison was limited to the years with available reported area data for the simulation 359 

period (2005, 2010, 2015) and to the states with reported irrigation water withdrawal volumes 360 

for these years (37 states). 361 

3. Results 362 

In this section, we present the key findings obtained from the implementation of the coupled 363 

hydrological-crop growth model framework based on WOFOST and PCR-GLOBWB 2. We 364 

present our findings sequentially, first delving into observed hydrological impacts on crop 365 

growth (one-way coupling) and then exploring how feedback mechanisms between crop 366 

growth and hydrology impact the crop growth system (two-way coupling). 367 

3.1 Comparative temporal and spatial analysis of stand-alone, one-way, and two-way 368 

coupling for irrigated and rainfed crops  369 

Temporal analysis (Fig. 2) compares the simulated yields with reported yields for irrigated and 370 

rainfed maize, soybean, and wheat crops spanning from 1979 to 2019 in the CONUS region. 371 

Notably, the reported yields exhibit discernible trends for the CONUS region across the three 372 

crops and in both irrigated and rainfed analysis. This temporal evolution is primarily attributed 373 
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to technological advancements, encompassing improved agricultural practices and the 374 

introduction of enhanced crop varieties over the study period (Arata et al., 2020).  375 

In contrast, our coupled PCR-GLOBWB 2 – WOFOST model framework simulated yields do 376 

not capture such trends, as the modelling approach intentionally omitted to incorporate trends 377 

in technology and management practices.  For a consistent analysis, we specifically focused on 378 

the years when reported yields appear to be more or less stable and in line with our simulated 379 

yields. Consequently, the timeframe from 2006 to 2019 was selected for further analysis. Thus, 380 

to ensure a meaningful comparison, only the reported yields from 2006-2019 were used for 381 

evaluating the accuracy and reliability to ensure a fair and meaningful comparison of simulated 382 

yields. 383 

 384 

Figure 2: Temporal analysis of irrigated and rainfed crops of a) maize, b) soybean and c) wheat for the 385 
years 1979 to 2019 of a CONUS region  386 
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 387 

Figure 3: Spatial (i.e. state level) analysis of irrigated and rainfed crops of a) maize, b) soybean and c) wheat 388 
for the years 2006 to 2019 for the CONUS region.  389 

Figures 2 and 3 show the outcomes of comparing simulated irrigated and rainfed analyses 390 

yields for maize, soybean, and wheat with reported yields. For the irrigated crops, the obtained 391 

yields by standalone WOFOST represent the potential productivity for the three crops. Notably, 392 

one-way, and two-way model runs for irrigated crops yielded nearly identical results to the 393 

standalone runs, indicating that there is generally enough irrigation water to completely satisfy 394 

crop water demands. Although not shown here, we note that this is at the expense of non-395 

renewable groundwater use in states overlying the Southern Great Plains aquifer system. 396 

Conversely, for rainfed crops, the stand-alone and two-way simulations produced comparable 397 

results, while the one-way coupling approach exhibited an overestimation of yields relative to 398 

stand-alone and two-way simulations particularly for wheat and to a lesser degree for maize. 399 

This discrepancy arises from the fact that in one-way coupling soil moisture calculations in 400 

PCR-GLOBWB 2 under drought conditions assume a full rooting depth development (the 401 

phenology is fixed) which could, as described before, lead to an over-estimation of soil 402 

moisture that is then passed to WOFOST, eventually leading to an overestimation of yield. In 403 

contrast, the two-way coupling approach feeds back information about the lagging behind of 404 

crop development to PCR-GLOBWB 2, which results in more realistic soil moisture and crop 405 

yield simulations by the two-way coupling. 406 

The analysis of temporal variations in simulated irrigated and rainfed maize crop yields shows 407 

distinct year-to-year fluctuations. Rainfed maize, in particular, exhibits a discernible pattern 408 
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with certain years marked by notable peaks in yields, contrasting with others that experienced 409 

comparatively lower production, revealing sensitivity to varying environmental conditions. 410 

These variations are also observed in reported maize yields. Similar year-to-year patterns are 411 

found for simulated irrigated and rainfed wheat yields, but not so in observed yields. 412 

Apparently, sensitivity to water and/or temperature variability in WOFOST is larger than 413 

observed. Also, a significant discrepancy emerges in irrigated and rainfed soybean yields, 414 

where simulated yields surpass the reported values, particularly in rainfed conditions.  415 

In the spatial analysis, simulated irrigated maize yields from stand-alone (WOFOST), one-way, 416 

and two-way coupling align almost identical with reported irrigated maize yields. Conversely, 417 

in rainfed maize analysis, stand-alone and two-way simulations outperform reported yields in 418 

states such as Colorado, Kansas, North Dakota, and Wyoming, while one-way coupling 419 

exhibits an overestimation of yields compared to stand-alone (WOFOST) and two-way 420 

coupling. 421 

For soybeans, the spatial analysis reveals identical yields among stand-alone (WOFOST), one-422 

way, and two-way simulations for both irrigated and rainfed crops. For irrigated crops, 423 

simulated yields were overestimated in states like Arkansas and Delaware and underestimated 424 

in Kansas and Nebraska compared to reported values. For irrigated and rainfed wheat, 425 

simulated yields of the two-way coupling outperform stand-alone WOFOST and one-way 426 

coupling, particularly in states like Idaho, Montana, Oregon, and Wyoming. The one-way 427 

coupling, lacking feedback from the crop growth model to the hydrological model, leads to an 428 

overestimation of rainfed yields across all states compared to stand-alone WOFOST and two-429 

way coupling. This underscores the importance of incorporating two-way interactions and 430 

feedback mechanisms for more accurate yield simulation results. 431 

3.2 Evaluation statistics 432 

Table 1 presents model performance metrics (correlation, normalized RMSE and normalized 433 

bias), evaluating simulations for the three model setups (i.e. standalone WOFOST, one-way, 434 

two-way coupling) for irrigated and rainfed maize, soybean, and wheat. 435 

For irrigated crops, simulation approaches exhibit positive correlations. Specifically, for maize, 436 

the correlation coefficients are high (0.63), moderate for soybean and rather low for wheat. The 437 

normalized root mean square errors (RMSE) remain consistently low, with values ranging from 438 

0.13 to 0.18 across three crops, indicating a reasonable fit of the simulated values to the 439 

observed data. Moreover, normalized biases are also low, ranging from 0.01 to 0.20. The two-440 
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way coupling demonstrates overall slightly lower biases compared to stand-alone and one-way 441 

simulations, particularly for wheat. 442 

Table 1: Model performance metrics (i.e. correlation, normalized RMSE and normalized bias) for 443 
simulated irrigated and rainfed maize, soybean, and wheat.  444 

 445 

For rainfed crops, the correlation coefficients vary, with two-way coupling displaying the 446 

highest correlations. Higher correlation coefficients are obtained for maize (0.65-0.77) 447 

compared to soybean (0.22-0.57) and wheat (0.44-0.55). Normalized RMSE values are 448 

generally higher in rainfed conditions compared to irrigated, ranging from 0.22 to 0.66. 449 

Normalized biases show variations across simulation approaches and crops, ranging from 0.28 450 

to 1.65. Specifically, one-way coupling exhibits higher biases in rainfed maize, soybean and 451 

wheat compared to stand-alone and two-way simulations.  452 

Overall, the validation results affirm the overall effectiveness of the simulation approaches in 453 

accurately representing observed irrigated and rainfed crop yields, with stand-alone and two-454 

way coupling slightly outperforming one-way simulations.  455 

3.3 Relevant feedbacks revealed by two-way coupling between hydrology and crop 456 

growth 457 

We further investigated the impact of the developed model coupling by looking at its impact 458 

on simulated crop yield in terms of the CONUS-wide 5-arcminute spatial variation and multi-459 

year variability. To evaluate the impact of coupling dynamics, we assessed key indicators, 460 

including mean crop yields, the coefficient of variation (CV) of crop yields expressing 461 

interannual variability, and the relative difference in mean and CV between two-way and one-462 

way couplings. 463 
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Spatial patterns of the 1979-2019 mean simulated crop yields of maize, soybean and wheat are 464 

shown under irrigated (Fig. 4) and rainfed (Fig. 5) conditions across the CONUS region. For 465 

irrigated crops (Fig. 4), the regions show similar yields for one-way and two-way coupled 466 

simulations, which is expected since soil moisture is kept at optimal conditions so that 467 

feedbacks from WOFOST to PCR-GLOBWB 2 are inconsequential. For rainfed conditions 468 

(Fig. 5), where water availability relies on green water, the yields are comparatively lower than 469 

in irrigated conditions. Also, differences between one-way and two-way coupled simulations 470 

emerge in the western part of the CONUS. Notably, one-way coupling tends to simulate higher 471 

yields for maize and wheat compared to two-way coupling. This discrepancy arises from the 472 

transmission of soil moisture from the hydrological to the crop growth model in one-way 473 

coupling, without receiving feedback from crop development to the hydrological model. As 474 

stated before, this may overestimate soil moisture availability under drier conditions 475 

subsequently leading to a likely overestimation of simulated crop yield by the one-way 476 

coupling. Clearly, this feedback is more important in the western part of CONUS, which is 477 

likely related to larger interannual climate variability (with more dry conditions) compared to 478 

the eastern part (see the section hereafter). The larger differences in mean yields for rainfed 479 

crops, particularly in the western CONUS, that occur between one-way and two-way coupled 480 

simulations are further illustrated by looking at the relative differences between the two 481 

coupling methods (see Supplementary Information IV; Fig. S5).  482 
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 483 

Figure 4: Mean irrigated crop yields for maize, soybean, and wheat within CONUS as obtained from one-484 
way and two-way coupled simulations for 1979-2019. 485 

 486 

Figure 5: Mean rainfed crop yields for maize, soybean, and wheat within CONUS as obtained from one-487 
way and two-way coupled simulations for 1979-2019. 488 
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Spatial patterns of the coefficient of variation (CV) (in % of the mean) across CONUS for 489 

maize, soybean and wheat are shown under irrigated (Fig. 6) and rainfed conditions (Fig. 7) 490 

comparing the simulations of the one-way and two-way coupling. High CV values entail a 491 

larger inter-annual variability in crop yield. 492 

In the eastern part of CONUS, the CV values both in irrigated and rainfed conditions are 493 

notably lower, suggesting a more stable and consistent pattern of crop growth in these regions. 494 

Conversely, in the mid-western and western CONUS, inter-annual variability is higher, owing 495 

to larger inter-annual climate variability in these parts. For irrigated crops, a larger CV is mostly 496 

apparent for maize and wheat. For a small number of instances, this could be caused by 497 

insufficient irrigation water availability during very dry and hot years, but most likely this is a 498 

temperature signal. Also, we note that in these parts of CONUS, some pixels have very low to 499 

minimal cropping areas, resulting in more pronounced fluctuations in yields. As can also be 500 

seen from Supplementary Information IV Fig. S6, the differences between one-way and two-501 

way coupled runs are generally small, except for some northwestern states. 502 

 503 

Figure 6: Coefficient of Variation (CV) over 1979-2019 of irrigated crop yields for maize, soybean, and 504 
wheat within CONUS as obtained under one-way and two-way coupling  505 
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 506 

Figure 7: Coefficient of Variation (CV) over 1979-2019 of rainfed crop yields for maize, soybean, and wheat 507 
within CONUS as obtained under one-way and two-way coupling 508 

Rainfed crops show larger values of CV, especially in the western part of CONUS, reflecting 509 

the larger sensitivity of rainfed agriculture to inter-annual climate variability (Fig. 7). It is also 510 

clear that the simulated inter-annual variability of simulated crop yield is larger for two-way 511 

than for one-way coupling, reflecting the importance of including crop phenology, in particular 512 

variation in rooting depth, when simulating available soil moisture. We also refer to 513 

Supplementary Information IV Fig. S6 for relative differences between the two model coupling 514 

approaches. This larger inter-annual variability also partly explains the lower mean yields for 515 

rainfed crops and two-way coupling as was shown in Fig 5.  516 

3.4 Irrigation water use 517 

The scatter plot  (Fig. 8) shows the relationship between reported USGS (after correction for 518 

area and irrigation efficiency – see 2.4) and simulated irrigation water withdrawals under one-519 

way and two-way coupling. The plot shows that the simulated irrigation water withdrawals are 520 

correct in order of magnitude when compared to reported data across different states. The 521 

temporal variations (Fig. 9) illustrate that year-to-year changes in total irrigation water 522 

withdrawal over time are small for both one-way and two-way coupling and the reported totals. 523 
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Figures 8 and 9 show that irrigation water withdrawal is underestimated in total and for most 524 

states. The underestimation of irrigation water use by PCR-GLOBWB 2 was previously noted 525 

by Ruess et al., (2023). This underestimation was partly accounted for when using more 526 

detailed crop cover data, irrigation efficacies and meteorological forcing than currently used in 527 

the global version of PCR-GLOBWB 2.  528 

 529 

Figure 8: Spatial variation of one-way and two-way irrigation water withdrawal compared with USGS 530 
water withdrawal data across the CONUS region with a logarithmic scale  531 

 532 

Figure 9: Temporal variation of one-way and two-way irrigation water withdrawal compared with USGS 533 
water withdrawal data of 5-year intervals across the CONUS region with a logarithmic scale  534 
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4 Discussion and Conclusion 535 

In this study, we developed a coupled hydrology-crop model framework to investigate the 536 

intricate feedbacks between water availability and crop growth within the CONUS region 537 

focusing on maize, soybean and wheat. This discussion delves into the implications of the 538 

findings, emphasizing their significance and addressing both methodological considerations 539 

and inherent uncertainties. 540 

The spatiotemporal analysis of hydrological impacts on crop growth reveals distinctive patterns 541 

for both irrigated and rainfed conditions. Notably, the improved performance of the two-way 542 

coupling in capturing more realistic yield outcomes for rainfed conditions highlights the 543 

importance of incorporating the full feedback loop between hydrology and crop growth. The 544 

discrepancy in one-way coupling results, leading to overestimation in simulated compared to 545 

reported yields, underscores the importance of feeding back the actual crop phenology to the 546 

hydrological model in coupled hydrology-crop growth modelling.  547 

Our studies adds to previous work by Droppers et al., (2021), which investigated worldwide 548 

water constraints and sustainable irrigation by coupling the Variable Infiltration Capacity 549 

(VIC) hydrological model with WOFOST and Zhang et al. (2021) who focused on refining the 550 

coupled VIC hydrological model with a crop growth model EPIC by incorporating the 551 

evapotranspiration module at a regional scale. In comparison, our research extends the analysis 552 

to a finer spatial scale and places a stronger emphasis on the comprehensive integration of 553 

feedback loops between hydrology and crop growth. Particularly, we demonstrate the 554 

importance of two-way coupling in capturing realistic yield outcomes, which is particularly 555 

evident for rainfed crops. This is mainly because the two-way coupled system addresses the 556 

influence of crop status on evapotranspiration and rooting depth, thereby impacting soil 557 

moisture content, which in turn feed backs on crop growth. The two-way coupling approach 558 

provides a more realistic depiction of water availability for crops, which results in larger inter-559 

annual variability and lower mean crop yields when inter-annual climate variability is 560 

significant. Including this two-way interaction is particularly important under drier conditions 561 

or if the coupled framework is used to assess reduced surface water availability under climate 562 

change or the impact of environmental constraints on groundwater and surface water use. The 563 

significance of implementing a two-way coupling between hydrology and crop growth is also 564 

evident when calculating high-resolution long-term mean crop yields and inter-annual 565 

variability of yield, as measured by the coefficient of variation (CV) of simulated yield. In 566 
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irrigated conditions, both one-way and two-way coupling yield similar results, demonstrating 567 

the stability in water availability.  568 

Validation results affirm the reliability of the coupled PCR-GLOBWB 2 – WOFOST model 569 

framework, demonstrating close agreement with observed data through overall strong positive 570 

correlations, low normalized RMSE, and minimal bias. Here, the difference in performance 571 

between one-way and two-way coupling is small. In rainfed conditions, where variability is 572 

inherent, the better performance of two-way coupling emphasizes the added value of dynamic 573 

feedback mechanisms for more accurate simulation results. Even though the stand-alone 574 

WOFOST performed similarly to the two-way coupled model framework, the latter is still 575 

beneficial for comprehensively understanding the joint impacts on both crop growth and 576 

irrigation water use, particularly in situations of limited water availability. 577 

While the results of this study offer valuable insights into the coupled hydrology-crop model 578 

framework, it is essential to recognize and address the uncertainties associated with the 579 

structure and parametrization, as well as inherent limitations in the research. A significant 580 

limitation is that the study does not account for potential advancements in agricultural 581 

technology and evolving farming practices, which could impact crop yields (section 3.1; Fig. 582 

2). The ignorance of technological innovations may contribute to discrepancies between 583 

simulated and actual yields. 584 

Furthermore, uncertainties linked to input datasets (Porwollik et al., 2017; Roux et al., 2014) 585 

such as crop calendars, cultivars and land-use changes introduce potential limitations and 586 

implications for the study results. Accurate representations of crop growth dynamics hinge on 587 

accurate crop calendar definitions (Wang et al., 2022), encompassing planting, maturation, and 588 

harvesting periods. Variations in these timelines due to climate change or evolving agricultural 589 

practices potentially introduce uncertainties in yield predictions. Additionally, the assumption 590 

of static cultivars neglects potential shifts in agricultural practices or the introduction of new 591 

varieties, influencing crop growth responses to environmental stressors over time. Land-use 592 

changes further contribute to uncertainties (Prestele et al., 2016; Eckhardt et al., 2003; 593 

Dendoncker et al., 2008) as dynamic shifts in agricultural practices alter water demand, 594 

evapotranspiration patterns, and overall hydrological dynamics. Ignoring these potential shifts 595 

limits the model's ability to capture the complex interactions between water and crop systems, 596 

and this should be considered in future development steps.  597 
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Hence, future work should also consider representing the dynamic nature of crop areas, 598 

including both irrigated and rainfed crop harvest areas, as well as the total crop area. The 599 

assumption of constant areas, as made in prior studies (Müller et al., 2017; Ai and Hanasaki, 600 

2023; Jägermeyr et al., 2021) was based on data availability constraints, but acknowledging 601 

the potential variability in these factors over time. Addressing this aspect is crucial for 602 

enhancing the accuracy of yield calculations and, consequently, advancing the overall 603 

understanding of hydrology-crop growth interactions. The integration of such variability into 604 

modelling frameworks is not only essential for improving the accuracy of assessments but also 605 

for contributing to an enhanced understanding of the broader water-food nexus.  606 

In conclusion, the development and application of the two-way coupled hydrology-crop growth 607 

model framework presented in this study represents a significant advancement in our ability to 608 

understand the cascading mechanisms and feedbacks between water and crop systems. This 609 

versatile framework not only enhances our understanding of the interplay between hydrology 610 

and crop growth but, through the sectoral water use modules of PCR-GLOBWB 2, has the 611 

necessary components to evaluate large-scale water use management strategies, and simulate 612 

the large-scale impacts of informed decision-making under change, particularly when dealing 613 

with hydroclimatic extremes.  614 
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