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Abstract 14 

Individual hydrological and crop growth models often oversimplify underlying processes, 15 

reducing the accuracy of both simulated hydrology and crop growth dynamics. While crop 16 

models tend to generalize soil moisture processes, most hydrological models commonly use 17 

constant vegetation parameters and prescribed phenologies, neglecting the dynamic nature of 18 

crop growth. Despite some studies that have coupled hydrological and crop models, a limited 19 

understanding exists regarding the feedbacks between hydrology and crop growth. Our 20 

objective is to quantify the feedback between crop systems and hydrology on a fine-grained 21 

spatio-temporal level. To this end, the PCR-GLOBWB 2 hydrological model was coupled with 22 

the WOFOST crop growth model to quantify both the one-way and two-way interactions 23 

between hydrology and crop growth on a daily timestep and at 5 arc minutes (~10 km) 24 

resolution. Our study spans the Contiguous United States (CONUS) region and covers the 25 

period from 1979 to 2019, allowing a comprehensive evaluation of the feedback between 26 

hydrology and crop growth dynamics. We compare individual (stand-alone) as well as one-27 

way and two-way coupled WOFOST and PCR-GLOBWB 2 model runs and evaluate the 28 

average crop yield and its interannual variability for rainfed and irrigated crops as well as 29 

simulated irrigation water withdrawal for maize, wheat and soybean. Our results reveal distinct 30 

patterns in the temporal and spatial variation of crop yield depending on the included 31 

interactions between hydrology and crop systems. Evaluating the model results against 32 

reported yield and water use data demonstrates the efficacy of the coupled framework in 33 

replicating observed irrigated and rainfed crop yields. Our results show that two-way coupling, 34 

with its dynamic feedback mechanisms, outperforms one-way coupling for rainfed crops. This 35 

improved performance stems from the feedback of WOFOST crop phenology to the crop 36 

parameters in the hydrological model. Our results suggest that when crop models are combined 37 
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with hydrological models, a two-way coupling is needed to capture the impact of interannual 38 

climate variability on food production.  39 

 40 

1 Introduction 41 

Global trends in population and economic growth are expected to increase the demand for 42 

water, food, and energy, threatening the sustainable and equitable use of natural resources 43 

(Sophocleous, 2004; Tompkins and Adger, 2004). Water as a resource plays a crucial role in 44 

crop growth, cooling of thermoelectric plants, hydropower generation, and covering domestic 45 

and industrial demand. Water, therefore, is an essential resource at the core of the Water-46 

Energy-Food-Ecosystem (WEFE) nexus. Currently, 70% of total global freshwater 47 

withdrawals are accounted for by agriculture, making it the largest water user among all sectors 48 

(Dubois, 2011). The Food and Agriculture Organization (FAO) of the United Nations estimated 49 

that the demand for water and food resources will likely increase by 50% by 2050 compared 50 

to 2015 (IRENA, 2015; Corona-López et al., 2021). The increasing demand for water and food 51 

will likely have negative impacts on the environment and will inhibit socio-economic 52 

development if a gap opens between growing water demand and water availability.  53 

The critical interplay between hydrology and crop growth becomes evident during 54 

hydroclimatic extremes (e.g. droughts, heatwaves), as rising demands coincide with potential 55 

declines in both water resources and food production (crop yield) (Jackson et al., 2021). In 56 

addressing the complexities associated with these challenges, studies by Jägermeyr et al. 57 

(2017), utilizing a dynamic vegetation model (LPJmL), evaluated achievable irrigated crop 58 

production under sustainable water management. Their findings revealed that 41% of global 59 

water use currently compromises environmental flow requirements crucial for river 60 

ecosystems, potentially leading to losses in irrigated croplands. Concurrently, research by 61 

Vörösmarty et al. (2000) and Leclère et al., (2014) projects the impacts of climate change on 62 

global agricultural systems, foreseeing an increase in irrigated areas in the future, underscoring 63 

the necessity for significant investments in irrigation, energy, and water resource management. 64 

These findings emphasize the urgent need for improved modelling approaches to assess the 65 

complex interaction between water availability, climate change and crop yields.  66 

BiophysicalTo address these challenges, biophysical process-based models, as highlighted by  67 

have been widely used to study the interactions between hydrology and crop growth (Siad et 68 

al., (2019);  and Zhang et al., (2021), are instrumental in understanding the intricate relationship 69 
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between hydrology and crop growth, particularly in response to changing hydroclimatic 70 

conditions. Considering factors like irrigation water use and soil-groundwater dynamics, these 71 

. These models exploreprovide valuable insights into how meteorological events influence 72 

water availability for crops, as well as the impacts of diminishedhow changes in crop growth 73 

and premature senescence on hydrology through effects on root water uptake andaffect 74 

hydrological fluxes such as evapotranspiration. This understanding becomes crucial when 75 

assessed at the regional to global scale, where local deficits can have cascading consequences 76 

for both water and food security. 77 

In the context of studying the impact of climate change and variability on crop yields, aside 78 

from biophysical models, numerous crop models have been employed. and root water uptake. 79 

However, theseexisting stand-alone crop models and hydrological models often simplify these 80 

processes.  For instance, crop models usually  incorporate a simplified soil-water balance 81 

(Zhang et al., 2021) that overlooks local hydrological processes and often do not account for 82 

water use for irrigation and non-agricultural sectors. Conversely, most hydrological models 83 

simplify or neglect the effects of land cover, phenology and vegetation changes on hydrological 84 

fluxes and the state of available water resources (Tsarouchi et al., 2014). These simplifications 85 

arise due to computational expediency, disparities in process scales between hydrology at the 86 

river basin level and crop yield at the field level, incomplete understanding of the other domain 87 

by model developers, or because of epistemological uncertainty (Siad et al. 2019; McMillan et 88 

al., 2018; Shafiei et al. 2014). Recognizing the strengths of both crop models and global 89 

hydrological models, a coupling allows for the exploration of dynamic crop growth's influence 90 

on hydrology and water use and. Additionally, a model coupling allows the incorporation of 91 

accurate spatio-temporal variations in hydrological fluxes, including water use, in estimates of 92 

crop yield. This understanding becomes crucial when assessed at the regional to global scale, 93 

where local deficits can have cascading consequences for both water and food security at the 94 

basin scale.  95 

The rationale for coupling hydrological and crop growth models is twofold. First, coupling 96 

these models allows for the possibility to assess the impact of limited irrigation water 97 

availability on crop yield. Second, it enables a detailed analysis of how changes in crop type 98 

and growth stages influence groundwater and surface water availability, particularly through 99 

processes such as evapotranspiration and root water uptake. By combining a hydrological 100 

model with a crop growth model, this study aims to enhance our understanding of hydrological 101 
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and crop growth interactions and their implications for agricultural productivity and water 102 

resource management on the continental scale.  103 

Previous studies have attempted to couple hydrological and crop models. Noteworthy efforts 104 

by Droppers et al. (2021) have successfully coupled hydrological and crop models, primarily 105 

focusing on achieving attainable crop production. However, these efforts were conducted at 106 

half-degree (~50 km) spatial resolution and focused on long-term average crop yield. They 107 

therefore fall short in exploring the aspects of fine-scale spatiotemporal variability in particular 108 

as a result of interannual climate variability. Other recent efforts to couple crop growth models 109 

and global hydrological models (Jägermeyr et al., 2017) predominantly focus on assessing 110 

yield under different scenarios or adaptation measures. However, limited work focused on 111 

delving into how two-way interactions and feedback mechanisms between crop growth and 112 

hydrological systems operate.  113 

In addition, integrated assessment models have been instrumental in studying the combined 114 

effects of climate change and socio-economic developments on crop yield and water resources 115 

at a large scale. Typically, these models operate on a macro-regional level (Easterling, 1997) 116 

and use annual (or 5 to 10 yearly timesteps), neglecting the impacts of inter- and intra-annual 117 

variability and particularly short-term hydroclimatic extremes. Furthermore, integrated 118 

assessment models often adopt an optimization modelling approach, making them less suitable 119 

for studying the effects of hydroclimatic extremes (Ewert et al., 2015).  120 

Another class of efforts to link water to crop production are water-food nexus studies, that, 121 

however, tend to concentrate on local linkages or provide qualitative descriptions of existing 122 

connections (Momblanch et al., 2019). For instance, a recent review of water-food nexus 123 

studies focusing on the contiguous United States (CONUS), shows that such studies focus 124 

mainly on water security indicators (Veettil et al., 2022) or climate variability impacts on crop 125 

yields (Huang et al., 2021). However, knowledge gaps persist, as water and food resources are 126 

often evaluated separately (Corona-López et al., 2021), exploring allocations through an 127 

optimization model (Mortada et al., 2018) that lacks spatiotemporal variability considerations. 128 

Notably, there is a lack of effort to understand the interactions between hydrology and crop 129 

growth. Further research is needed to bridge these gaps and enhance our understanding of the 130 

dynamic and interlinked processes shaping the water-food nexus. 131 

To address this knowledge gap, our objective is, therefore, to quantify the feedback between 132 

crop growth and hydrology. Although eventuallythis study aims to quantify the two-way 133 
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interactions between crop growth and hydrology, hypothesizing that coupling a crop growth 134 

model with a hydrological model will improve both crop yield and hydrological predictions by 135 

incorporating dynamic feedbacks between water availability and crop processes. Specifically, 136 

we hypothesize that: (1) a more realistic representation of soil moisture dynamics and water 137 

availability will lead to better estimates of water stress and yield; and that (2) directly 138 

integrating crop growth information into hydrological models will enhance the accuracy of 139 

predictions regarding irrigation needs and water resource allocation. To test these hypotheses, 140 

we compare three modeling approaches: a stand-alone crop model, a one-way coupled model 141 

(where hydrological conditions influence crop growth but not vice versa), and a two-way 142 

coupled model (where interactions between hydrology and crop growth are fully represented). 143 

By evaluating these different approaches, we aim to determine whether dynamic hydrological-144 

crop growth feedbacks improve the performance of crop yield and irrigation water use 145 

simulations.  146 

Although this study has a  global scale in scope, we limit this analysis to the Contiguous United 147 

States (CONUS) region, to keep the analysis tractable and because CONUS has detailed 148 

information on yearly crop production and water use.  149 

CONUS is a major producer and contributor to the global production of three primary crops: 150 

maize, soybean, and wheat. These crops were selected due to their substantial impact on the 151 

agricultural landscape and their pivotal role in shaping global food production trends. The 152 

CONUS serves as an ideal study area owing to its extensive availability of relevant data, 153 

particularly on agricultural statistics and irrigation water withdrawals, which can provide a 154 

basis for analysis and model evaluation. Additionally, the CONUS region exhibits diverse 155 

climatic and geographic conditions, contributing to a better understanding of crop and water 156 

system dynamics and their responses to various environmental factors. 157 

To this end, we developed a coupled global hydrological-crop growth model framework to 158 

investigate the intricate feedback between water availability and crop growth, focusing on three 159 

key scientific objectives: 1) assessing the impacts of irrigation and hydrology on crop growth; 160 

2) investigating the feedbacks of crop growth on the hydrological system when accounting for 161 

interannual variability; and 3) evaluating the importance of the two-way coupling between 162 

hydrology and crop growth to provide realistic water resources and crop yield simulations. By 163 

delving into these aspects, we aim to contribute valuable insights into the feedback processes 164 
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between hydrology and crop growth, thereby addressing the current research gap in a more 165 

comprehensive manner. 166 

The rationale behind coupling the hydrological and crop growth models lies in the need to 167 

accurately capture the dynamic interactions between these systems, ensuring that both the water 168 

availability and crop growth are represented with a sufficient level of sophistication in the 169 

simulations to understand crop-water interactions. The coupling allows for the exchange of 170 

critical variables such as soil moisture, evapotranspiration, and crop water uptake, which are 171 

essential for understanding and predicting the impacts of environmental changes on agricultural 172 

productivity and water resources. The justification for this coupling, including its expected 173 

benefits and the technical approach, is detailed in section 2.2. 174 

We hypothesize that the feedback between hydrology and crop growth is significant and 175 

complex. Changes in soil moisture and water availability are expected to directly influence 176 

crop water uptake, growth rates, and yield outcomes. Conversely, crop processes such as 177 

evapotranspiration and root water uptake are likely to impact soil moisture levels, groundwater 178 

recharge, and surface water flows, thereby altering water resources. Furthermore, we anticipate 179 

that the integration of real-time crop data into hydrological models will enhance the accuracy 180 

of predictions regarding water stress, irrigation needs, and crop productivity. 181 

To address thisTo test the hypotheses coined above, the PCR-GLOBWB 2 hydrological model 182 

(Sutanudjaja et al., 2018) is coupled to the WOFOST crop model (de Wit et al., 2019) at a daily 183 

timestep and at a 5-arc minute (~10 km) spatial resolution applied to CONUS (section 2.1). In 184 

examining the interaction between hydrology and crop growth, we consider both one-way and 185 

two-way interactions. First, a one-way coupling is established to evaluate the effect of the 186 

simulated water availability of PCR-GLOBWB 2 for rainfed and irrigated crop growth in 187 

WOFOST (section 2.1; section 2.3.1). In addition, a two-way coupling is established in which, 188 

additional to passing water availability from PCR-GLOBWB 2 to WOFOST, the crop 189 

phenology of WOFOST in terms of actual evapotranspiration, leaf area index and rooting depth 190 

is fed back into PCR-GLOBWB 2 (section 2.1, 2.3.2;).). The justification for this coupling 191 

approach, along with technical implementation details, is elaborated upon in section 2.2. 192 

Furthermore, ourOur framework was tested by comparing individual WOFOST and coupled 193 

one-way and two-way model runs to evaluate the impact of feedbacks on crop yield and 194 

irrigation water use (section 2.4). The results of these simulations are compared with and 195 

evaluated against reported yield statistics and reported annual irrigation withdrawals to assess 196 
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their validity (section 2.5; section 3). In the end, we elaborate on the uncertainties, strengths, 197 

and usability of our coupled model framework for studying the water-food nexus under global 198 

change (section 4). 199 

 200 

2 Methods 201 

A newly coupled hydrological-crop model framework (Fig. 1) is developed to include the 202 

feedback between crop growth and hydrology. Here, we chose WOFOST as the crop growth 203 

model because of its detailed crop phenology and development and PCR-GLOBWB 2 as the 204 

hydrological model because of its detailed hydrological process simulation and large-scale 205 

applicability. This framework includes both a one-way and two-way coupling between the 206 

PCR-GLOBWB 2 global hydrological and water resources model (Sutanudjaja et al., 2018) 207 

and the WOFOST crop growth model (de Wit et al., 2019). The coupled framework was then 208 

used to quantify the impacts of included feedbacks between hydrology and crop growth on a 209 

daily timestep and 5 arcminutes resolution for CONUS.  210 

The following (sub)sections provide a description of the PCR-GLOBWB 2 and WOFOST 211 

models and modules used (2.1), justification of coupling (2.2), the model coupling setup (2.3), 212 

model coupling simulation experiments and parametrization (2.3), validation of crop yield and 213 

of irrigation water use (2.4). 214 
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 215 

Figure 1: The coupled model framework of the PCR-GLOBWB 2 hydrological and water resource model 216 
and the WOFOST crop growth model along with their model structures. The blue arrow represents the 217 
one-way coupling from PCR-GLOBWB 2 to WOFOST and the variables that are exchanged; the green 218 
arrow is added in case the full two-way coupling is considered. At the start of the day, WOFOST computes 219 
evapotranspiration, leaf area index, and rooting depth that is used by PCR-GLOBWB 2 to compute soil 220 
moisture status. At the end of the day, soil moisture storage in the upper and lower layers from PCR-221 
GLOBWB 2 is fed to WOFOST to compute crop growth for the next day. 222 

 223 

 224 

 225 
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2.1. Model descriptiondescriptions  226 

PCR-GLOBWB 2  227 

The PCRaster Global Water Balance (PCR-GLOBWB 2) model (Sutanudjaja et al., 2018), 228 

developed at Utrecht University, is a global hydrological and water resource model that 229 

operates on a latitude-longitude grid. This model simulates the terrestrial hydrological cycle 230 

with daily resolution, incorporating anthropogenic impacts like man-made reservoirs, sectoral 231 

water demands, withdrawals, consumptive use, and return flows. PCR-GLOBWB 2 is applied 232 

and tested across local to global scales.    233 

PCR-GLOBWB 2 utilizes time-explicit schemes for all dynamic processes, running on daily 234 

time steps for hydrology and water use, and sub-daily steps for hydrodynamic river routing. It 235 

simulates moisture storage in two upper soil layers and manages water exchange among the 236 

soil, atmosphere, and groundwater. Atmospheric interactions include precipitation, 237 

evaporation, transpiration, and snow processes. The model considers sub-grid variability in 238 

land use, soils, and topography, influencing run-off, interflow, groundwater recharge, and 239 

capillary rise. Run-off is routed through river networks using methods ranging from simple 240 

accumulation to kinematic wave routing, supporting floodplain inundation and surface water 241 

temperature simulation. 242 

The model includes a reservoir operation scheme for over 6000 human-made reservoirs from 243 

the GRanD database, integrated according to their construction year. Human water use is 244 

comprehensively modeled, estimating sectoral water demands and converting them into 245 

withdrawals from groundwater, surface water, and desalination sources, while accounting for 246 

resource availability and groundwater pumping capacity. Consumptive use and return flows 247 

are calculated for each sector. 248 

PCR-GLOBWB 2’s flexible structure encompasses five main hydrological modules: 249 

meteorological forcing, land surface, groundwater, surface water, irrigation, and water use. The 250 

meteorological module uses gridded temperature and precipitation data. Reference potential 251 

evaporation is calculated using Hamon’s method and employed in the land surface module to 252 

determine crop-specific potential evaporation. The groundwater and surface water modules 253 

handle fluxes and stores for groundwater and surface water, respectively. The irrigation and 254 

water use module simulates water demand, withdrawals, consumption, and return flows, 255 

sourcing water from surface water (rivers and reservoirs), groundwater (both renewable and 256 
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non-renewable), and desalinated water, depending on availability. Detailed descriptions of 257 

each module are provided by Sutanudjaja et al., (2018). 258 

WOFOST 259 

WOFOST (WOrld FOod STudies) is a crop simulation model developed at Wageningen 260 

‘School of De Wit’, in the Netherlands, designed to quantitatively analyze the crop growth and 261 

potential production of annual field crops at the field scale (Supit et al., 1994). WOFOST 262 

employs a fixed time step of one day to simulate crop growth based on eco-physiological 263 

processes such as phenological development and growth (de Wit et al., 2019). WOFOST has 264 

found extensive application in assessing the impacts of climate change and management 265 

strategies on crop growth and yield at local to global scales (Droppers et al. 2021).  266 

The WOFOST crop model comprises of four modules: meteorological, crop, astronomical and 267 

soil (Fig. 1). The WOFOST modules simulate a range of processes, including phenological 268 

development, CO2 assimilation, leaf development, light interception, transpiration, respiration, 269 

root growth, assimilated partitioning to the various organs and the formation of dry matter. The 270 

model’s output includes simulated crop biomass total, crop yield and variables such as leaf area 271 

and crop water use.  272 

Temperature effects on crop development within WOFOST are modeled using temperature 273 

sums, which accumulate daily temperatures above a specified threshold. These sums influence 274 

germination and phenological stages, thereby affecting CO2 assimilation. Additionally, the 275 

model accounts for the direct and indirect effects of suboptimal daytime temperatures on crop 276 

growth and development, which are critical to overall plant performance. Daily photosynthesis 277 

in the crop growth model is simulated by considering absorbed radiation and water stress. After 278 

accounting for the assimilates used in maintenance respiration, the remaining resources are 279 

allocated among the plant’s leaves, stems, roots, and storage organs. A key internal driver of 280 

this process is the leaf area index (LAI), which results from leaf area dynamics governed by 281 

photosynthesis, biomass allocation, leaf age, and developmental stage. LAI, in turn, influences 282 

the daily rates of photosynthesis.  283 

WOFOST has been finely tuned to account for diverse climate and soil conditions, particularly 284 

for commonly studied crops such as maize, soybean, and wheat, thereby, reducing the need for 285 

further recalibration. This pre-tuning ensures that simulations reliably capture the growth and 286 

yield responses of these crops under varying environmental conditions. For more detailed 287 

information on the fine-tuning of crop variables, see (de Wit and& Boogaard, 2021).  288 
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WOFOST employs a classic water balance approach designed for freely draining soils where 289 

groundwater is too deep to affect soil moisture content in the rooting zone. This approach 290 

divides the soil profile into two compartments: the rooted zone and the lower zone extending 291 

from the actual rooting depth to the maximum rooting depth. The subsoil below this maximum 292 

rooting depth is not considered. As roots extend deeper towards the maximum rooting depth, 293 

the lower zone gradually merges with the rooted zone. This approach is suitable for regional 294 

applications with limited soil property information. Soil moisture in the root zone serves as a 295 

primary link between the WOFOST model and the underlying soil module. For a detailed 296 

description of the WOFOST crop growth model, we refer to de Wit and& Boogaard, (2021) 297 

and Supit et al., (1994).  298 

2.2. Justification of model coupling 299 

The integration of the hydrological model PCR-GLOBWB 2 (Sutanudjaja et al., 2018) with 300 

the crop growth model WOFOST (Supit et al., 1994) is crucial for accurately simulating the 301 

complex interactions between water availability and crop development. The hydrological 302 

model PCR-GLOBWB 2 is designed to simulate hydrological processes such as river 303 

discharge, groundwater flow, and water storage dynamics. It provides detailed representation 304 

and insights into the state and dynamics of water resources over large spatial scales and long 305 

temporal scales. On the other hand, the crop growth model WOFOST is focused on simulating 306 

crop phenology, including the stages of crop development, growth, and yield formation under 307 

varying environmental conditions. 308 

Despite the strengths of each model, they individually have limitations that can affect the 309 

accuracy of simulations. PCR-GLOBWB 2 relies on static vegetation parameters, such as fixed 310 

Leaf Area Index (LAI) and root depth, which can limit its ability to reflect the dynamic nature 311 

of crop growth. On the other hand, WOFOST offers a detailed and dynamic representation of 312 

crop phenology and development, adjusting parameters like LAI and root depth based on actual 313 

growth stages. However, WOFOST employs a simplified water balance model, that may not 314 

adequately capture complex hydrological interactions.  315 

To address these limitations, it is important to combine the strengths of both models to enhance 316 

hydrological and crop modelling performance. By integrating, WOFOST’s detailed crop 317 

growth simulation capabilities with the robust hydrological process simulations of PCR-318 

GLOBWB 2, we can better understand and represent the soil-plant-atmosphere interactions. 319 

Therefore, this study integrates PCR-GLOBWB 2 and WOFOST by passing soil moisture data 320 
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from PCR-GLOBWB 2 to WOFOST and feeding vegetative fluxes from WOFOST back into 321 

PCR-GLOBWB 2 on a daily basis. Additionally, to understand the intricate dynamics between 322 

hydrology and crop model, PCR-GLOBWB 2 is coupled to the WOFOST in one-way and two-323 

way interactions. 324 

In evaluating various coupling methods for integrating hydrological and crop models, we 325 

identified several approaches, including one where the hydrological model directly provides 326 

detailed irrigation schedules and percolation rates to the crop model. While this method offers 327 

highly detailed hydrological inputs, it often leads to inconsistencies due to the separate 328 

handling of soil moisture dynamics between the models, resulting in errors in soil moisture 329 

management and water balance. Commonly used coupling procedures, such as those described 330 

by Li et al., (2014) and Tsarouchi et al., (2014), calculate potential evapotranspiration and 331 

vegetation water uptake within the hydrological model, which is then passed to the crop model 332 

to simulate crop growth. The crop model then calculates state variables like leaf area index, 333 

root depth, and canopy height, which are subsequently fed back into the hydrological model. 334 

However, these methods can introduce system errors, particularly in the transpiration module, 335 

if there is a discrepancy between evapotranspiration calculated by the crop and hydrological 336 

model, as highlighted by Wang et al., (2012). Our chosen coupling method, where soil moisture 337 

is calculated by PCR-GLOBWB 2 and passed to WOFOST and vegetative dynamics and 338 

evapotranspiration fluxes are then fed back into PCR-GLOBWB 2, offers a balanced approach 339 

that ensures consistency, and the necessary complexity, and efficiency in the simulations. 340 

The selected coupling approach also addresses specific challenges associated with the models. 341 

PCR-GLOBWB 2 allows for flexible land cover classification and parameterization, which is 342 

essential for accurately representing diverse crop types and their interactions with water 343 

resources. For this study, we defined 12 land cover types (tall natural, short natural, pasture, 344 

irrigated maize, irrigated soybean, irrigated wheat, non-paddy irrigated crops (irrigated other 345 

crops), paddy irrigated crop, rainfed maize, rainfed soybean, rainfed wheat and rainfed others. 346 

WOFOST’s role in this coupling is to pass the fluxes of irrigated and rainfed maize, soybean 347 

and wheat to PCR-GLOBWB 2, ensuring a detailed simulation of crop water use.     348 

One of the key considerations in this coupling is accurately calculating the soil-water balance. 349 

Given its more advanced soil moisture accounting scheme, PCR-GLOBWB 2 handles this 350 

aspect, as WOFOST’s simpler single-layer leaky bucket approach could introduce 351 

complexities if soil moisture data were passed from WOFOST to the multi-layered soil model 352 
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of PCR-GLOBWB 2. Therefore, the coupling approach we selected minimizes potential 353 

discrepancies while maximizing the strengths of each model. 354 

It is important to acknowledge, that individual models come with inherent uncertainties, related 355 

to model structure, parameters and data. When coupling these models, the level of uncertainty 356 

compounds further (Kanda et al., 2018). Additionally, the nature of coupling itself can 357 

introduce another layer of uncertainty. According to Antle et al., (2001), coupling models lead 358 

to further conceptualization and computational problems, elevating uncertainty levels. 359 

Therefore, an efficient coupling is essential to minimize these risks. There are three primary 360 

methods for coupling models (Vereecken et al., 2016): light/loose coupling, 361 

external/framework coupling using a central coupler, and full coupling. 362 

In light or loose coupling, the output of one model serves as the input for the other, which can 363 

lead to a straightforward but limited interaction. Framework coupling uses a central coupler for 364 

communication between models without requiring code modification, offering a balance 365 

between integration and flexibility. Full coupling involves both models sharing the same 366 

boundary conditions, drivers, and variables, which requires significant code modification.  367 

Implementation of the (BMI) framework coupling  368 

Given the complexity of integrating the PCR-GLOBWB 2 and WOFOST models and the need 369 

for efficient simulations, we opted for framework coupling. This approach was chosen because 370 

WOFOST and PCR-GLOBWB 2 are written in different programming languages (C and 371 

PCRaster-Python, respectively). Framework coupling allows for seamless interaction between 372 

the models at each time step, facilitating dynamic exchanges while limiting I/O-related 373 

computation times. We employed the Basic Model Interface (BMI) for this purpose (Hutton et 374 

al., 2020; Peckham et al., 2013). The decision to use BMI over alternative techniques was 375 

driven by its non-interfering nature, ensuring no code entanglement and facilitating seamless 376 

connection between the two models. BMI functions act as a bridge, enabling direct variable 377 

exchange between WOFOST and PCR-GLOBWB 2 without modifying their source code. This 378 

non-invasive approach ensures a flexible and robust coupling framework, allowing continuous 379 

model development without interruptions. Integrating BMI functions into both models 380 

provides a set of functions for retrieving or altering model variables, enhancing adaptability 381 

and efficiency.         382 

An additional wrapper was required to translate the model-specific BMI functions into Python-383 

compatible information to establish a Python-based coupling framework. The Babelizer 384 
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wrapper (CSDMS, 2024) was utilized for this purpose with the WOFOST BMI. Conversely, 385 

no supplementary wrapper is needed in the PCR-GLOBWB 2 BMI, as the model is inherently 386 

Python-compatible due to its programming language. 387 

The Babelizer wrapper facilitates the integration of the WOFOST model by utilizing an input 388 

file that provides essential details, including the model library, entry point, packages, and 389 

author information. This input file guides the construction of the necessary dependencies to 390 

generate Python bindings. Once these Python bindings are created, Babelizer ensures the 391 

successful integration of the WOFOST BMI into Python by verifying that the bindings are 392 

correctly built and loaded. 393 

Workflow of PCR-GLOBWB 2 - WOFOST model framework  394 

In the PCR-GLOBWB 2 - WOFOST coupling framework, the workflow after implementing 395 

BMI functions remains consistent for both one-way and two-way coupling, up until the 396 

initialization of the hydrological and crop models (Fig. 2).  397 

 398 

Figure 2: Schematization of the workflow of the coupled PCR-GLOBWB 2 - WOFOST model framework  399 
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Before initiating the Python session, it is crucial to activate the BMI wrap environment, which 400 

includes all necessary libraries for both hydrological and crop models. After this setup, the 401 

PCR-GLOBWB 2 and WOFOST models, along with their configuration files that define the 402 

coupling settings, are loaded into the Python session. BMIwrap reads the configuration file, 403 

initializing the model-specific configuration settings before establishing both models as a 404 

coupled entity.  405 

Once the coupled models are initialized, a loop is initiated, commencing at the start time and 406 

concluding at the end time. During each iteration of this loop, variables are exchanged between 407 

the models based on the one-way or two-way coupling configuration. This iterative process 408 

ensures a continuous and seamless flow of information between the PCR-GLOBWB 2 409 

hydrological model and the WOFOST crop model throughout the simulation period. 410 

2.3.Model coupling setup 411 

The developed PCR-GLOBWB 2 - WOFOST coupled model framework integrates 412 

hydrological and crop models through both one-way and two-way couplings, as illustrated in 413 

Fig. 1 &3. This model coupling aims to assess the intricate interactions between hydrology and 414 

crop growth under different agricultural conditions, specifically irrigated and rainfed settings. 415 

The one-way coupling examines the impact of water availability on crop growth, while the 416 

two-way coupling incorporates the exchange of soil moisture status and hydrological 417 

parameters and fluxes based on crop status. 418 
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 419 

Figure 3: Schematic view of the coupled model framework: a) shows the calculated phenology from 420 
WOFOST and PCR-GLOBWB 2 over time along with the associated fluxes. b) displays a detailed 421 
representation of the one-way coupling approach, where variables such as soil moisture are exchangedis  422 
transferred from PCR-GLOBWB 2 to WOFOST and (c) illustrates the two-way coupling approach, where 423 
variables are exchanged in both directions between PCR-GLOBWB 2 and WOFOST. 424 

2.3.1. One-way coupling 425 

In the one-way coupling, information on soil moisture status is passed from PCR-GLOBWB 2 426 

to WOFOST (Fig 3(b)). Here, PCR-GLOBWB 2 simulates soil moisture content for every day 427 

and the soil water storage is simulated separately for each land cover type. Consequently, 428 

WOFOST receives the soil moisture content from PCR-GLOBWB 2 as input, with generally 429 

higher values of soil moisture for irrigated crops than of nearby rainfed crops. WOFOST then 430 

simulates the crop yield based on the simulated soil moisture content and the same 431 

meteorological inputs as PCR-GLOBWB 2 uses. 432 

The combined model framework captures the impact of hydroclimatic conditions by assessing 433 

water stress and heat stress. Water stress, influenced by soil moisture levels derived from PCR-434 
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GLOBWB 2, affects various processes in WOFOST such as a reduction in the leaf area, a 435 

decrease in the assimilation of biomass (growth), changes in the partitioning of biomass, and 436 

an increase in various plant organs of senescence (ageing processes). Elevated temperatures 437 

have varying effects across different stages of crop development. They can accelerate crop 438 

growth by promoting faster accumulation of Growing Degree Days, which are essential for 439 

determining crop maturity. However, prolonged exposure to high temperatures can also induce 440 

heat stress, adversely impacting crop health and potentially shortening the overall duration of 441 

the crop's growth cycle. Insufficient water availability that limits the evapotranspiration also 442 

reduces the amount of assimilation and the corresponding yield. 443 

2.3.2. Two-way coupling 444 

• In addition to one-way coupling, the two-way coupling approach involves iterating data 445 

exchange between WOFOST and PCR-GLOBWB 2 twice per day. WOFOST 446 

calculates the vegetation states, (such as leaf area index (LAI), biomass and root depth) 447 

and fluxes (e.g., evapotranspiration) for irrigated and rainfed maize, soybean and wheat 448 

crops, while other vegetation and non-vegetation fluxes for other crops are simulated 449 

within PCR-GLOBWB 2. To be more specific, for the fraction of land cover that is 450 

different from maize, wheat and soybean, the vegetation states and fluxes are calculated 451 

within the PCR-GLOBWB 2. For these land cover types, vegetation phenology in the 452 

form of crop factors, is approximated by a yearly climatology. In the two-way coupling, 453 

data is exchanged between PCR-GLOBWB 2 and WOFOST as follows (Fig. 3c): At 454 

the start of the day, PCR-GLOBWB 2 passes the previous day’s soil moisture to the 455 

WOFOST, assuming no root development has occurred overnight. WOFOST then 456 

computes the potential evapotranspiration based on the meteorological variables at the 457 

current time step and the pertinent vegetation states from the previous time step (leaf 458 

area index (LAI), rooting depth, and crop height). It also calculates the actual bare soil 459 

evaporation, actual transpiration (actual evapotranspiration), potential evaporation and 460 

open water evaporation; 461 

• The calculated fluxes are passed to PCR-GLOBWB 2, together with the root depth. The 462 

root depth is used to partition the actual transpiration from the single root zone of 463 

WOFOST over the two soil layers of PCR-GLOBWB 2, dependent on the root content. 464 

For both irrigated and rainfed crops, the actual evapotranspiration from WOFOST is 465 

forced to PCR-GLOBWB 2 and used to update the soil moisture content of the two soil 466 

layers in PCR-GLOBWB 2 for the current daily timestep; 467 
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• In the case of irrigated crops, the stages of vegetated development are used to compute 468 

the amount of irrigation in PCR-GLOBWB 2. Potential evaporation is used to calculate 469 

the irrigation water demand for paddy crops (not considered here), whereas the 470 

irrigation water requirement for non-paddy crops is computed based on the soil 471 

moisture status according to the FAO guidelines (Allen et al., 1998). The irrigation 472 

water requirement is withdrawn from the available water resources in PCR-GLOBWB 473 

2, and the available irrigation water supply is applied to the crops in addition to any 474 

natural precipitation; 475 

• At the end of the day, the resulting soil moisture from the two soil layers from PCR-476 

GLOBWB 2 is aggregated to provide a total for the root zone of each crop, which is 477 

then passed back to WOFOST; 478 

• Using the updated soil moisture from PCR-GLOBWB 2, WOFOST computes the actual 479 

transpiration and updates crop growth and the crop status. The new fluxes and crop 480 

parameters are then passed to PCR-GLOBWB 2 again on the next day (Fig.1, Fig. 3c). 481 

In this two-way coupling, the crop phenology from WOFOST determines evapotranspiration 482 

and thus the soil hydrology of PCR-GLOBWB 2, particularly during dry spells.  Compared to 483 

the predefined phenology of PCR-GLOBWB 2, the LAI, rooting depth and evapotranspiration 484 

as simulated by WOFOST will lag during dry spells and less water may be lost from PCR-485 

GLOBWB 2. However, the thinner rooting depth will also lead to an earlier drying out of the 486 

soil and reduced capillary rise. This subsequently leads to reduced soil moisture (compared to 487 

PCR-GLOBWB 2 standalonestand-alone) which in turn feeds back to a reduced simulated 488 

yield in WOFOST, in particular for rainfed crops. For irrigated crops, the extra water supplied 489 

will largely offset these feedbacks and result in near-optimum growth. 490 

2.4.Model coupling simulation experiments and parametrization 491 

Hydrological simulations were conducted with a daily timestep at a 5-arcminute grid 492 

resolution, where for each grid cell WOFOST was used to simulate crop growth for irrigated 493 

and rainfed maize, soybean, and wheat. To assess the impact of hydrology on crop growth and 494 

understand the interactions between hydrology and crop growth, three sets of simulations were 495 

carried out for both irrigated and rainfed crops: a) standalonestand-alone simulations using the 496 

WOFOST crop model solely, b) one-way coupled, and c) two-way coupled PCR-GLOBWB 2 497 

- WOFOST simulations. Note that for the standalonestand-alone simulations with WOFOST 498 

under irrigation the potential crop yield is simulated, which is potential yield without water 499 
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(and nutrient) stress except for temperature effects. When coupled to PCR-GLOBWB 2, water 500 

stress can occur even for irrigated crops in case there is not enough water available (in PCR-501 

GLOBWB 2) to fully satisfy the crop water demand. For rainfed crops, growth is influenced 502 

by available soil moisture for all simulations and is thus sensitive to water stress and 503 

temperature. Green water from natural rainfall is the primary water supply in rainfed analysis, 504 

while irrigated crops get water from both green and blue water (from surface water and 505 

renewable groundwater) and non-renewable groundwater leading to groundwater depletion.  506 

Daily timestep simulations covered the period from 1979 and 2019, using weather variables 507 

(minimum and maximum air temperature, short wave radiation, precipitation, vapour pressure, 508 

windspeed, and humidity) from the W5E5 forcing data (Lange et al., 2021) as input to PCR-509 

GLOBWB 2 (Sutanudjaja et al., 2018) and WOFOST. Cropland areas and growing seasons 510 

were determined from the MIRCA2000 (Portmann et al., 2010) global monthly irrigated and 511 

rainfed crop area dataset. The focus of the coupled framework was to comprehend the impacts 512 

and feedback between hydrology and crop growth. Crop parameters, atmospheric CO2 513 

concentrations, and fertilizer application were obtained from the WOFOST crop parameter 514 

dataset for each crop (WOFOST Crop Parameters, 2024). Cultivars in the WOFOST crop 515 

parameter datasets were calibrated for each crop against reported agricultural yields from the 516 

United States Department of Agriculture (USDA) National Agricultural Statistics Service 517 

(USDA, 2024), with the closest matching cultivar selected for final simulations. Detailed 518 

information on the cultivar calibration for each crop (i.e., irrigated and rainfed maize, soybean 519 

and wheat) is provided in the supplementary information section IIIII.  520 

Additionally, to ensure a consistent comparison, we harmonized the soil parameters in both 521 

WOFOST and PCR-GLOBWB 2 by incorporating data from the FAO soil map (FAO, 2007). 522 

WOFOST uses constant soil parameters across all spatial locations, which may not accurately 523 

represent local soil variability. By integrating FAO soil data, we ensured consistency in soil 524 

properties such as water-holding capacity and infiltration rates across the different models, 525 

improving the robustness of the comparison. 526 

Comparisons were made between simulations from standalonestand-alone WOFOST and the 527 

one-way and two-way coupled PCR-GLOBWB 2 - WOFOST runs. This comparative analysis 528 

involved evaluating the results from different model runs for crop growth against reported crop 529 

yields. Furthermore, irrigation water withdrawals of coupled model runs are compared against 530 

the USGS Water Use Database (USGS, 2023) (section 2.4).   531 
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2.5.Model evaluation 532 

We evaluated the three different model configurations by comparing simulated results against 533 

reported USDA crop yields of maize, soybean and wheat. Furthermore, we cross-referenced 534 

our simulations with irrigation water withdrawal data spanning five years from the USGS 535 

Water Use Database. Specifically, we compared data for the years 2005, 2010, and 2015, as 536 

the USGS census data is collected at five-yearly intervals.  537 

2.5.1. Crop yields model evaluation 538 

To assess the model's performance, we employ three key metrics: correlation coefficients (r), 539 

Normalized Root Mean Square Error (NRMSE) and Normalized Bias (NBIAS). These metrics 540 

were selected for their ability to capture the strength, accuracy and systematic errors in the 541 

relationship between simulated and observed values. 542 

𝑟 =
∑(𝑃𝑖−𝑃̅)(𝑂𝑖−𝑂̅)

√∑(𝑃𝑖−𝑃̅)2⋅∑(𝑂𝑖−𝑂̅)2
            (1)         543 

𝑁𝑅𝑀𝑆𝐸 =
√

1

𝑛
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑂̅
                                        (2) 544 

𝑁𝐵𝐼𝐴𝑆 =  
1

𝑛
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑂̅
        (3) 545 

Where, 𝑃𝑖 and 𝑂𝑖 are the individual predicted and observed values, respectively and 𝑃̅ and 𝑂̅ 546 

are the means of the predicted and observed values.  547 

The evaluation was done both temporally for average CONUS yields per year, as well as for 548 

multi-year averages per state-per-state to evaluate the model's ability to capture spatial 549 

variations in crop yield. This was done for both irrigated and rainfed maize, soybean and wheat.  550 

To further characterize the dataset and evaluate the impact of the degree of coupling on 551 

simulated yields, additional statistical analyses were conducted on the 41 years of simulated 552 

data at the 5-arcminute grid scale. To this end, the mean and coefficient of variation (CV) were 553 

computed for both one-way and two-way datasets for the three crops under irrigated and rainfed 554 

conditions. The purpose of this analysis was to examine the central tendency and year-to-year 555 

variability of yield simulations and how these are related to the way hydrology and crop growth 556 

are coupled.  557 

2.5.2. Irrigation water use model evaluation 558 
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The USGS reported irrigation water use data provides a comprehensive representation of the 559 

total irrigation water utilized by all crops for a number of states (USGS, 2023). The irrigated 560 

crop area used in this dataset is however not the same as that used in PCR-GLOBWB 2, which 561 

is based on MIRCA2000 (Portmann et al., 2010). Thus, directly comparing USGS data with 562 

our simulated water withdrawals would result in bias. To ensure a fair comparison between the 563 

simulated and reported data for all crops, we adjusted the USGS irrigation water use data by 564 

multiplying these with the ratio of the irrigated area from MIRCA2000 to the reported total 565 

USGS irrigated area. Additionally, our simulated irrigation water withdrawal volumes did not 566 

yet account for irrigation efficiency. We intend to implement this in future development. 567 

Hence, we introduced an additional correction by dividing the simulated withdrawal data by 568 

the irrigation efficiency as is commonly used in PCR-GLOBWB 2 when it is not coupled to a 569 

crop model. 570 

After these corrections, the coupled model simulated irrigation water withdrawals for all crops 571 

were evaluated against actual irrigation data obtained from the USGS database through spatial 572 

(multi-year averages per state) and temporal (multi-state totals per year) analysis, providing 573 

insights into the model's ability to replicate observed irrigation water use patterns.  574 

This comparison was limited to the years with available reported area data for the simulation 575 

period (2005, 2010, 2015) and to the states with reported irrigation water withdrawal volumes 576 

for these years (37 states). 577 

3. Results 578 

In this section, we present the key findings obtained from the implementation of the coupled 579 

hydrological-crop growth model framework based on WOFOST and PCR-GLOBWB 2. We 580 

present our findings sequentially, first delving into observed hydrological impacts on crop 581 

growth (one-way coupling) and then exploring how feedback mechanisms between crop 582 

growth and hydrology impact the crop growth system (two-way coupling). 583 

3.1 Comparative temporal and spatial analysis of stand-alone, one-way, and two-way 584 

coupling for irrigated and rainfed crops  585 

Temporal analysis (Fig. 2) compares the simulated yields with reported yields for irrigated and 586 

rainfed maize, soybean, and wheat crops spanning from 1979 to 2019 in the CONUS region. 587 

Notably, the reported yields exhibit discernible trends for the CONUS region across the three 588 

crops and in both irrigated and rainfed analysis. This temporal evolution is primarily attributed 589 

to technological advancements, encompassing improved agricultural practices and the 590 
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introduction of enhanced crop varieties over the study period (Arata et al., 2020). In contrast, 591 

simulated yields of our coupled PCR-GLOBWB 2–WOFOST model framework do not capture 592 

such trends, as the modelling approach intentionally omitted to incorporate trends in 593 

technology and management practices. This intentional omission was to focus on the intrinsic 594 

biophysical processes and climatic conditions affecting crop yields, providing a baseline 595 

understanding unaffected by external advancements.  596 

The trends in reported yields differ significantly across all crops and between irrigated and 597 

rainfed systems. For maize, both irrigated and rainfed yields show an increasing trend, 598 

particularly post-2000, which is not reflected in the simulated yields. Soybean yields exhibit a 599 

gradual upward trend in irrigated systems, while rainfed soybean yields show little to no 600 

discernible trend until 2007, followed by a slight increase. Wheat yields, both irrigated and 601 

rainfed, demonstrate fluctuations with a slight upward trend towards the end of the period. 602 

These discrepancies can be attributed to various factors, including technological advancements, 603 

improved agricultural practices, and the introduction of enhanced crop varieties, which were 604 

not incorporated into the modelling approach. To ensure a consistent and meaningful analysis, 605 

we selected the years 2006-2019 for further analysis (spatial analysis (Fig. 5) and evaluation 606 

metrics (Table. 1)). This period was selected because reported yields during these years appear 607 

more stable and are better aligned with the simulated yields, allowing for a fair evaluation of 608 

the model's accuracy and reliability. For the selected periods, we think that the results are 609 

convincing, and, except for rainfed Soybean, they are certainly up to par with the results from 610 

other crop growth modelling studies at continental scales.  611 
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 612 

 613 
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 614 

Figure 4: Temporal analysis of irrigated and rainfed crops of a) maize, b) soybean and c) wheat for the 615 
years 1979 to 2019 of a CONUS region  616 

 617 
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 618 

 619 

Figure 5: Spatial (i.e., state level) analysis of irrigated and rainfed crops of a) maize, b) soybean and c) 620 
wheat for the years 2006 to 2019 for the CONUS region.  621 

Figures 4 and 5 show the outcomes of comparing simulated irrigated and rainfed analyses 622 

yields for maize, soybean, and wheat with reported yields. For the irrigated crops, the obtained 623 

yields by standalonestand-alone WOFOST represent the potential productivity for the three 624 

crops. Notably, one-way, and two-way model runs for irrigated crops yielded nearly identical 625 

results to the standalonestand-alone runs, indicating that there is generally enough irrigation 626 

water to completely satisfy crop water demands. This similarity arises because in irrigated 627 

conditions, water supply is managed to meet crop water demands fully, thereby minimizing the 628 

influence of soil moisture variability on yield outcomes. In other words, since the primary 629 

constraint, water availability, is alleviated by irrigation, the simulations naturally converge, 630 

regardless of the model coupling approach. Although not shown here, we note that this is at the 631 

expense of non-renewable groundwater use in states overlying the Southern Great Plains 632 

aquifer system.  633 
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Conversely, for rainfed crops that rely solely on rainfall, we generally expect similar yields 634 

from stand-alone and two-way coupled simulations, since the primary water input, is rainfall. 635 

However, differences were observed between these models, especially more pronounced in 636 

maize crops and less significant in soybean and wheat., with yields in the two-way coupled 637 

model being larger than stand-alone WOFOST. These variations between the two models 638 

differences can be attributed to various factors. The coupled model incorporates detailed soil 639 

moisture dynamics, including processes like infiltration, percolation, capillary rise and surface 640 

runoff, which directly influence water availability for crops. For example, higher infiltration 641 

ratescapillary rise from groundwater can increase soil moisture, thereby increasing water 642 

available to crops, whereas greatersurface runoff limits infiltration, and deep percolation rates 643 

might lead to water loss beyond the root zone, reducing available moisture. In contrast, 644 

standalonestand-alone WOFOST cannot accurately capture such variability, leading to 645 

differences in simulated yields. Additionally, the coupled model integrates simulations of 646 

surface runoff and lateral water redistribution, which impact local soil moisture levels. In areas 647 

with significant runoff, less water infiltrates the soil, thereby reducing moisture availability for 648 

crops. This aspect is often simplified or omitted in standalone crop models, which might 649 

assume uniform water availability from rainfall. These differences contribute to the differences 650 

in simulated yields, with the coupled model providing a more comprehensive simulation of 651 

hydrological conditions affecting crop productivity.  652 

Another key distinction lies in how the plants access soil moisture in the root zone in the 653 

different models. In the stand-alone WOFOST model, all soil moisture is extracted from a 654 

single soil layer using a simple one-layer tipping bucket approach. Conversely, PCR-655 

GLOBWB 2 subdivides the soil profile into two layers (see section 2.1), with 656 

evapotranspiration distributed between them. In this setup, bare soil evaporation is entirely 657 

sourced from the upper layer, while transpiration is drawn from both layers. In the coupled 658 

approach, soil moisture can be disproportionately supplied from the wetter second layer, 659 

including the part of the second soil layer that is below the root zone. This provides slightly 660 

higher average root zone soil moisture to WOFOST under stressed conditions, making the 661 

simulated yields of the two-way-coupled PCR-GLOBWB 2- WOFOST a bit higher than those 662 

of stand-alone WOFOST  (see Supplementary Information III-2, Supplementary Figure S7-663 

S10 for a detailed analysis of the differences between stand-alone WOFOST, one-way and two-664 

way coupled PCR-GLOBWB 2 – WOFOST models).   665 
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The one-way coupling approach tended to exhibit an overestimation ofgenerally overestimates 666 

yields relative to stand-alone and two-way simulations, particularly for wheat and, to a lesser 667 

degree, for maize. This discrepancy arises from the fact that in one-way coupling soil moisture 668 

calculations in PCR-GLOBWB 2 under drought conditions assume a full rooting depth 669 

development (, the phenology is (Leaf area index and root development) is prescribed and 670 

independent of actual crop development as simulated by WOFOST. In a dry and warm year, 671 

crop development in WOFOST is faster than average and thus also faster than the fixed) which 672 

could, as described before, lead development in PCR-GLOBWB 2; this is due to an over-673 

estimation of soil moisture availability that is thenhigher radiation and temperature at the 674 

beginning of the growing season. This leads to early-season higher evapotranspiration in the 675 

stand-alone WOFOST model and less available soil moisture at the end of the season when the 676 

storage organs are formed (see Supplementary Information III-1). In a one-way coupled setup, 677 

plant development from WOFOST is not fed back to PCR-GLOBWB 2, so that soil moisture 678 

in PCR-GLOBWB 2 remains higher throughout the season. This higher soil moisture is passed 679 

to WOFOST, eventually leading to an overestimation of yield. In contrast, the two-way 680 

coupling approach feeds back information about the lagging behind of crop development to 681 

PCR-GLOBWB 2 and dynamically adjusts the root zone depth based on actual crop 682 

development stages. As a result, the two-way coupling approach results in more realistic soil 683 

moisture and higher yields in the one-way coupled PCR-GLOBWB 2 – WOFOST model than 684 

the stand-alone WOFOST model and the two-way coupled PCR-GLOBWB 2 – WOFOST 685 

model, where crop yield simulations.development is fed back to PCR-GLOBWB 2.  We further 686 

refer to Supplementary Information III, Supplementary Figure S5-S10, for a detailed analysis 687 

of the differences between stand-alone WOFOST, one-way and two-way coupled PCR-688 

GLOBWB 2 – WOFOST models.   689 

The temporal analysis (Fig. 4) of simulated and reported yields reveals distinct trends and year-690 

to-year fluctuations for each crop. For maize, both irrigated and rainfed conditions show 691 

considerable variability in yields over the years. Rainfed maize, in particular, exhibits a 692 

discernible pattern with certain years marked by notable peaks in yields, highlighting its 693 

sensitivity to varying environmental conditions. These variations are also observed in reported 694 

maize yields. This indicates that maize yields, especially under rainfed conditions, are highly 695 

influenced by annual climatic variability.  696 

For wheat, the simulated yields under both irrigated and rainfed conditions show similar year-697 

to-year patterns, which are not as evident in the reported yields. This suggests that the 698 
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discrepancies might be due to the model’s sensitivity to water and temperature variability, 699 

which may not fully capture the complexities of actual wheat production. Specifically, factors 700 

such as the use of different wheat varieties, the differentiation between winter and spring wheat, 701 

and their respective growth parameters could influence the observed yields. These varietal and 702 

seasonal distinctions introduce variability that the model might not fully incorporate, leading 703 

to differences between simulated and reported yields. 704 

Soybean yields present a different scenario. Both irrigated and rainfed simulated yields 705 

consistently surpass the reported values, with the discrepancy being more pronounced in 706 

rainfed conditions. This overestimation could be due to the model’s assumptions or parameters 707 

that do not fully capture the limitations faced by soybean crops in real-world rainfed 708 

environments, such as variations in soil fertility, pest pressures, crop varieties and other 709 

management practices not accounted for in the model.   710 

In the spatial analysis (Fig. 5), simulated irrigated maize yields from stand-alone (WOFOST), 711 

one-way, and two-way coupling align almost identical with reported irrigated maize yields. 712 

Conversely, in rainfed maize analysis, both stand-alone and two-way simulations 713 

outperformclosely matched reported yields in states such as Delaware, Colorado, Kansas, 714 

NorthNebraska, South Dakota, and Wyoming, while one-way coupling exhibits an 715 

overestimation of yields compared to stand-alone (WOFOST) and two-way coupling. 716 

For soybeans, the spatial analysis reveals identical yields among stand-alone (WOFOST), one-717 

way, and two-way simulations for both irrigated and rainfed crops. For irrigated crops, 718 

simulated yields were overestimated in Arkansas state but closely matched in states like 719 

Arkansas and Delaware and underestimated in, Kansas and Nebraska compared to reported 720 

values. Under rainfed conditions, all three models overestimated the simulated yield relative to 721 

reported yields. For irrigated and rainfed wheat, simulated yields of the two-way coupling 722 

outperform stand-alone WOFOST and one-way coupling, particularly in states like Idaho, 723 

Montana, Oregon, and Wyoming.Oregon, Washington and Wyoming. In contrast, for rainfed 724 

wheat, stand-alone and two-way coupling simulations closely align except in states such as 725 

California and Montana. The one-way coupling, lacking feedback from the crop growth model 726 

to the hydrological model, leads to an overestimation of rainfed yields across all states 727 

compared to stand-alone WOFOST and two-way coupling. This underscores the importance of 728 

incorporating two-way interactions and feedback mechanisms for more accurate yield 729 

simulation results. 730 
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3.2 Evaluation statistics 731 

Table 1 presents model performance metrics (correlation, normalized RMSE and normalized 732 

bias),) from the temporal analysis, evaluating simulations for the three model setups (i.e., 733 

standalonestand-alone WOFOST, one-way, two-way coupling) for irrigated and rainfed maize, 734 

soybean, and wheat. for the period 2006-2019 (see section 3.1). Model performance metrics 735 

for the spatial analysis are presented in supplementary IV.  736 

For irrigated crops, simulationsimulations of all model approaches exhibit positive 737 

correlations. Specifically, for maize, the  with reported yields, though correlation coefficients 738 

are high (0.63), moderate for soybeanvary across models and rather lowcrops. Two-way 739 

coupling shows a slightly higher correlation (0.59) with reported yields for maize, but a lower 740 

correlation (0.24) for wheat. compared to stand-alone and one-way coupling. The normalized 741 

root mean square errors (RMSE) normalized to the mean remain consistently low, with values 742 

ranging from 0.1308 to 0.1815 across three crops, indicating a reasonable fit of the simulated 743 

values to the observed data. Moreover, normalized biases are also low, ranging from -0.0165 744 

to 0.2050. The two-way coupling demonstrates overall slightly lower biases and minimal error 745 

compared to stand-alone and one-way simulations, particularly for wheat. 746 

 747 

 748 

 749 

Table 1: Model performance metrics (i.e. correlation, normalized RMSE and normalized bias) for 750 
simulated irrigated and rainfed maize, soybean, and wheat.  751 

 752 

S.NO Metrics Maize Soybean Wheat 

Irrigated crops Stand 

alone 

One-

way 

Two-

way 

Stand 

alone 

One-

way 

Two-

way 

Stand 

alone 

One-

way 

Two-

way 

1 Correlation 0.6357 0.6356 0.6359 0.4625 0.4636 0.4536 0.2245 0.2246 0.24 

2 Normalized 

RMSE 

0.1308 0.1308 0.1308 0.0612 0.0610 0.0610 0.1815 0.1815 0.1811 

3 Normalized 

Bias 

-

0.2058 

-0.2058 -

0.2065 

0.0134 0.0127 0.0127 0.1250 0.1250 -

0.0602 

Rainfed crops 

1 Correlation 0.7780 0.6581 0.7784 0.5786 0.2280 0.3384 0.4437 0.5146 0.5547 
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2 Normalized 

RMSE 

0.2219 0.50 0.5020 0.4268 0.571.01 0.5791 0.3756 0.6697 0.6655 

3 Normalized 

Bias 

-

0.3110 

1.652.00 0.8491 0.421.39 0.782.24 0.632.03 0.281.13 0.912.26 0.3298 

 753 

For rainfed crops, the correlation coefficients vary, with two-way coupling displaying the 754 

highest correlations. Higher correlation coefficients are obtained for maize (0.65808-0.7784)  755 

and soybean (0.84-0.86) compared to soybean (0.22-0.57) and wheat (0.4437-0.5547). 756 

Normalized RMSE values are generally higher in rainfed conditions compared to irrigated, 757 

ranging from 0.2219 to 0.661.01. Normalized biases show variations across simulation 758 

approaches and crops, ranging from -0.2810 to 1.652.26. Specifically, one-way coupling 759 

exhibits higher biases in rainfed maize, soybean and wheat compared to stand-alone and two-760 

way simulations. Two-way coupling shows lower error in wheat crops compared to the stand-761 

alone model, while the stand-alone model performs better for maize and soybeans than both 762 

two-way and one-way coupling.  763 

Overall, the validation results affirm the overall effectiveness of the simulation approaches in 764 

accurately representing observed irrigated and rainfed crop yields, with stand-alone and two-765 

way coupling slightly outperforming one-way simulations.  766 

3.3 Relevant feedbacks revealed by two-way coupling between hydrology and crop 767 

growth 768 

We further investigated the impact of the developed model coupling by looking at its impact 769 

on simulated crop yield in terms of the CONUS-wide 5-arcminute spatial variation and multi-770 

year variability. To evaluate the impact of coupling dynamics, we assessed key indicators, 771 

including mean crop yields, the coefficient of variation (CV) of crop yields expressing 772 

interannual variability, and the relative difference in mean and CV between two-way and one-773 

way couplings. 774 

Spatial patterns of the 1979-2019 mean simulated crop yields of maize, soybean and wheat are 775 

shown under irrigated (Fig. 6) and rainfed (Fig. 7) conditions across the CONUS region. The 776 

stand-alone simulations show the yield distribution without coupling between the hydrological 777 

and crop models, relying on the internal soil moisture calculation using a simple one-layer 778 

tipping bucket approach. In contrast, one-way and two-way coupled simulations involve 779 

dynamic interaction between the hydrological model (PCR-GLOBWB 2) and crop growth 780 

model (WOFOST), where soil moisture from PCR-GLOBWB 2 is passed to the WOFOST, 781 
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with two-way coupling also incorporating feedback from WOFOST to the PCR-GLOBWB 2. 782 

(see Fig 3). 783 

For irrigated crops (Fig. 6), the regions show similar yields for stand-alone, one-way and two-784 

way coupled simulations. This is expected since soil moisture is kept at optimal levels in 785 

irrigated conditions, ensuring that water availability does not become a limiting factor.  786 

Consequently, in one-way coupling, the feedback from WOFOST to PCR-GLOBWB 2  to 787 

WOFOST is inconsequential, as the continuous supply of water minimizes the need for 788 

dynamic interaction between the models.  789 

For rainfed conditions (Fig. 7), where water availability relies on green water, the only, crop 790 

yields are comparatively lower than inunder irrigated conditions. Differences between the 791 

various stand-alone, one-way and two-way coupling approaches become apparent, particularly 792 

in the western part of the CONUS. Notable differences in yields between stand-alone and two-793 

way coupling simulations are observed in maize and wheat crops, both under irrigated and 794 

rainfed conditions. However, these differences are more pronounced infor rainfed crops, (see 795 

supplementary Fig S13), where water availability is a crucial factor influencing crop yields. In 796 

the case of rainfed soybean yields, there is a clear distinction between stand-alone and coupled 797 

models, especially in the northern and southern regions of the eastern CONUS. The stand-alone 798 

model’s tendency to overpredict yields in rainfed conditions underscores the limitation of using 799 

a simple one-layer leaky bucket approach in regions where water availability is crucial for crop 800 

growthsoybeans, differences were less evident in all the models.  801 

Notably, oneOne-way coupling tends to simulategenerally simulates higher yields for maize 802 

and wheat compared to two-way coupling. This (see Fig 7). As described in Section 3.1 and 803 

Supplementary Information III, this discrepancy arises from the transmission of soil moisture 804 

from the hydrological model to the crop growth model in one-way coupling, without receiving 805 

feedback from crop development to the hydrological model. As stated before (3.1), this may 806 

overestimateThis leads to an overestimation of late-season soil moisture availability under drier 807 

conditions subsequently leading to a likely overestimation of simulated crop yield by the one-808 

way coupling. Clearly, this feedback is more important in the western part of CONUS, which 809 

is likely related to larger interannual climate variability (with more dry conditions) compared 810 

to the eastern part (see the section hereafter). The larger differences in mean yields for rainfed 811 

crops, particularly in the western CONUS, that occur between one-way and two-way coupled 812 
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simulations are further illustrated by looking at the relative differences between the two 813 

coupling methods (see Supplementary Information IVV; Fig. S5S11).  814 

Additionally, the two-way coupling reveals that during dry spells, the interaction between 815 

declining soil moisture and crop growth leads to an earlier onset of crop stress. In contrast, one-816 

way coupling which does not account for feedback from crop stress to soil moisture, tends to 817 

overestimate the severity and timing of water stress on crops. In the two-way coupled 818 

simulations, the slower crop development due to water stress in dry years feeds back into the 819 

hydrological cycle by reducing evapotranspiration rates. This reduction in evapotranspiration 820 

helps conserve soil moisture, thereby influencing the hydrological model's predictions of soil 821 

moisture availability. Such feedbacks are absent in one-way coupling, where the fixed 822 

phenology leads to an overestimation of water uptake by crops, further exaggerating yield 823 

estimates. In some regions of the western CONUS, one-way coupling underestimates yields 824 

for rainfed crops of maize and wheat compared to two-way coupling, as the crop growth model 825 

WOFOST does not influence hydrological processes in the one-way coupling.  826 

 827 
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 829 

 830 
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 831 

Figure 6: Mean irrigated crop yields for maize, soybean, and wheat within CONUS as obtained from stand-alone, one-way and two-way coupled simulations and 832 
differences between one-way and two-way coupled simulations for 1979-2019. Legend in % of values shown on the y-axes. 833 

 834 

 835 

 836 
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 838 

Figure 7: Mean rainfed crop yields for maize, soybean, and wheat within CONUS as obtained from stand-alone, one-way and two-way coupled simulations and 839 
differences between one-way and two-way coupled simulation for 1979-2019. Legend in % of values shown on the y-axes. 840 

 841 

 842 

 843 
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 844 

 845 

 846 

Figure 8: Coefficient of Variation (CV) over 1979-2019 of irrigated crop yields for maize, soybean, and wheat within CONUS as obtained under stand-alone, one-847 
way and two-way coupling and difference between one-way and two-way coupling.  848 
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 851 

Figure  9: Coefficient of Variation (CV) over 1979-2019 of rainfed crop yields for maize, soybean, and wheat within CONUS as obtained under stand-alone, one-way 852 
and two-way coupling and difference between one-way and two-way coupling.  853 
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Spatial patterns of the coefficient of variation (CV) (in % of the mean) across CONUS for 854 

maize, soybean and wheat are shown under irrigated (Fig. 8) and rainfed conditions (Fig. 9) 855 

comparing the simulations of the stand-alone, one-way and two-way coupling. High CV values 856 

entail a larger inter-annual variability in crop yield. 857 

In the eastern part of CONUS, the CV values both in irrigated and rainfed conditions are 858 

notably lower, suggesting a more stable and consistent pattern of crop growth in these regions. 859 

Conversely, in the mid-western and western CONUS, inter-annual variability is higher, owing 860 

to larger inter-annual climate variability in these parts. For irrigated crops, a larger CV is mostly 861 

apparent for maize and wheat. For a small number of instances, this could be caused by 862 

insufficient irrigation water availability during very dry and hot years, but most likely this is a 863 

temperature signal. Also, we note that in these parts of CONUS, some pixels have very low to 864 

minimal cropping areas, resulting in more pronounced fluctuations in yields. As can also be 865 

seen from Supplementary Information IVV Fig. S6S12, the differences between one-way and 866 

two-way coupled runs are generally small, except for some northwestern states. 867 

Rainfed crops show larger values of CV, especially in the western part of CONUS, reflecting 868 

the larger sensitivity of rainfed agriculture to inter-annual climate variability (Fig. 9). It is also 869 

clear that the simulated inter-annual variability of simulated crop yield is larger for two-way 870 

than for one-way coupling, reflecting the importance of including crop phenology, in particular 871 

variation in rooting depth, when simulating available soil moisture. We also refer to 872 

Supplementary Information IVV Fig. S6S12 for relative differences between the two model 873 

coupling approaches. This larger inter-annual variability also partly explains the lower mean 874 

yields for rainfed crops and two-way coupling as was shown in Fig 7.  875 

3.4 Irrigation water use 876 

The scatter plot (Fig. 10) shows the relationship between reported USGS (after correction for 877 

area and irrigation efficiency – see 2.5.2) and simulated irrigation water withdrawals under 878 

one-way and two-way coupling. The plot shows that the simulated irrigation water withdrawals 879 

are correct in order of magnitude when compared to reported data across different states. The 880 

temporal variations (Fig. 11) illustrate that year-to-year changes in total irrigation water 881 

withdrawal over time are small for both one-way and two-way coupling and the reported totals. 882 

Figures 10 and 11 show that irrigation water withdrawal is underestimated in total and for most 883 

states. The underestimation of irrigation water use by PCR-GLOBWB 2 was previously noted 884 

by Ruess et al., (2023). This underestimation was partly accounted for when using more 885 



 

41 
 

detailed crop cover data, irrigation efficacies and meteorological forcing than currently used in 886 

the global version of PCR-GLOBWB 2.  887 

 888 

Figure 10: Spatial variation of one-way and two-way irrigation water withdrawal compared with USGS-889 
reported water withdrawal data per state for all crops across the CONUS region with a logarithmic scale  890 
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 891 

Figure 11: Temporal variation of one-way and two-way irrigation water withdrawal compared with USGS 892 
water withdrawal data of 5-year intervals across the CONUS region with a logarithmic scale.  893 

4 Discussion and Conclusion 894 

In this study, we developed a coupled hydrological-crop model framework to investigate the 895 

intricate feedbacks between water availability and crop growth within the CONUS region 896 

focusing on maize, soybean and wheat. This discussion delves into the implications of the 897 

findings, emphasizing their significance and addressing both methodological considerations 898 

and inherent uncertainties. 899 

The spatiotemporal analysis of hydrological impacts on crop growth reveals distinctive patterns 900 

for both irrigated and rainfed conditions. Notably, the improved performance of the two-way 901 

coupling in capturing more realistic yield outcomes for rainfed conditions highlights the 902 

importance of incorporating the full feedback loop between hydrology and crop growth. The 903 

discrepancy in one-way coupling results, leading to overestimation in simulated compared to 904 

reported yields, underscores the importance of feeding back the actual crop phenology to the 905 

hydrological model in coupled hydrological-crop growth modelling.  906 

We hypothesized that a more realistic representation of soil moisture dynamics and water 907 

availability will lead to better estimates of water stress and yield outcomes. Validation against 908 

reported yields however did not show a notable improvement compared to the stand-alone 909 

WOFOST, both for rainfed as well as for irrigated agriculture. Thus, if the focus is on yield 910 

only, coupling with a hydrological model such as PCR-GLOBWB 2 seems not needed. 911 

However, although not picked up by the validation exercise, the coupling still allows the 912 
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inclusion of the impact of limited irrigation water availability as well as the impact of crop 913 

development on the hydrological system. Our study also shows that if the focus is on these 914 

impacts, it is necessary to use a two-way coupling to make sure that crop developments feeds 915 

back on evaporation and soil moisture. 916 

 917 

Another hypothesis we tested is whether integrating real-time crop growth information into 918 

hydrological models will enhance the accuracy of predictions regarding irrigation needs and 919 

water resource allocation. Although it can be expected that feeding back crop information to 920 

PCR-GLOBWB 2 in the two-way coupling would improve estimates of irrigation water 921 

withdrawal, this could not be substantiated by comparison with reported water withdrawal 922 

statistics.  One possible explanation is the use of constant crop area data across all years, which 923 

introduces uncertainties and limits the model's responsiveness to actual land-use dynamics. 924 

The spatiotemporal analysis of hydrological impacts on crop growth confirms the results shown 925 

from the comparison with reported values. Notably, for rainfed crops, the estimated yield is 926 

mostly higher for one-way coupled simulations compared to two-way and stand-alone 927 

simulations. Also, the inter-annual variation of yield, that is, the sensitivity to drier and wetter 928 

years, is notably higher for the two-way coupled and stand-alone simulations than the one-way 929 

coupled simulations. This suggests that for a correct sensitivity to drought, a two-way coupling 930 

that includes the feedback of crop status to the hydrological system is needed. 931 

Our studies adds to previous work by Droppers et al., (2021), which investigated worldwide 932 

water constraints and sustainable irrigation by coupling the Variable Infiltration Capacity 933 

(VIC) hydrological model with WOFOST and Zhang et al. (2021) who focused on refining the 934 

coupled VIC hydrological model with a crop growth model EPIC by incorporating the 935 

evapotranspiration module at a regional scale. In comparison, our research extends the analysis 936 

to a finer spatial scale and places a stronger emphasis on the comprehensive integration of 937 

feedback loops between hydrology and crop growth. Particularly, we demonstrate the 938 

importance of two-way coupling in capturing realistic yield outcomes, which is particularly 939 

evident for rainfed crops. This is mainly because the two-way coupled system addresses the 940 

influence of crop status on evapotranspiration and rooting depth, thereby impacting soil 941 

moisture content, which in turn feed backs on crop growth. The two-way coupling approach 942 

provides a more realistic depiction of water availability for crops, which results in larger inter-943 

annual variability and lower mean crop yields when inter-annual climate variability is 944 
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significant. Including this two-way interaction is particularly important under drier conditions 945 

(see section 3.2) or if the coupled framework is used to assess reduced surface water availability 946 

under climate change or the impact of environmental constraints on groundwater and surface 947 

water use. The significance of implementing a two-way coupling between hydrology and crop 948 

growth is also evident when calculating high-resolution long-term mean crop yields and inter-949 

annual variability of yield, as measured by the coefficient of variation (CV) of simulated yield. 950 

In irrigated conditions, both one-way and two-way coupling yield similar results, 951 

demonstrating the stability in water availability.  952 

Validation results affirm the reliability of the coupled PCR-GLOBWB 2 – WOFOST model 953 

framework, demonstrating close agreement with observed data through overall strong positive 954 

correlations, low normalized RMSE, and minimal bias. Here, the difference in performance 955 

between one-way and two-way coupling is small. In rainfed conditions, where variability is 956 

inherent, the better performance of two-way coupling emphasizes the added value of dynamic 957 

feedback mechanisms for more accurate simulation results. Even though the stand-alone 958 

WOFOST performed similarly to the two-way coupled model framework, the latter is still 959 

beneficial for comprehensively understanding the joint impacts on both crop growth and 960 

irrigation water use, particularly in situations of limited water availability. 961 

While the results of this study offer valuable insights into the coupled hydrological-crop model 962 

framework, it is essential to recognize and address the uncertainties associated with the 963 

structure and parametrization, as well as inherent limitations in the research. A significant 964 

limitation is that the study does not account for potential advancements in agricultural 965 

technology and evolving farming practices, which could impact crop yields, This becomes 966 

evident when comparing yield estimates with observations over time (section 3.1; Fig. 2). The 967 

ignorance of technological innovations may contribute to discrepancies between simulated and 968 

actual yields.4).  969 

Furthermore, uncertainties linked to input datasets (Porwollik et al., 2017; Roux et al., 2014) 970 

such as crop calendars, cultivars and land-use changes introduce potential limitations and 971 

implications for the study results. Accurate representations of crop growth dynamics hinge on 972 

accurate crop calendar definitions (Wang et al., 2022), encompassing planting, maturation, and 973 

harvesting periods. Variations in these timelines due to climate change or evolving agricultural 974 

practices potentially introduce uncertainties in yield predictions. Additionally, the assumption 975 

of static cultivars neglects potential shifts in agricultural practices or the introduction of new 976 
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varieties, influencing crop growth responses to environmental stressors over time. Land-use 977 

changes further contribute to uncertainties (Prestele et al., 2016; Eckhardt et al., 2003; 978 

Dendoncker et al., 2008) as dynamic shifts in agricultural practices alter water demand, 979 

evapotranspiration patterns, and overall hydrological dynamics. Ignoring these potential shifts 980 

limits the model's ability to capture the complex interactions between water and crop systems, 981 

and this should be considered in future development steps.  982 

Hence, future work should also consider representing the dynamic nature of crop areas, 983 

including both irrigated and rainfed crop harvest areas, as well as the total crop area. The 984 

assumption of constant areas, as made in prior studies (Müller et al., 2017; Ai and Hanasaki, 985 

2023; Jägermeyr et al., 2021) was based on data availability constraints, but acknowledging 986 

the potential variability in these factors over time. Addressing this aspect is crucial for 987 

enhancing the accuracy of yield calculations and, consequently, advancing the overall 988 

understanding of hydrological-crop growth interactions. The integration of such variability into 989 

modelling frameworks is not only essential for improving the accuracy of assessments but also 990 

for contributing to an enhanced understanding of the broader water-food nexus. Additionally, 991 

within the nexus context, the developed coupled framework can be integrated into various 992 

models across different programming languages, providing a flexible and adaptable tool to 993 

address a wide range of research needs.  994 

In conclusion, the development and application of the two-way coupled hydrological-crop 995 

growth model framework presented in this study represents a significant advancement in our 996 

ability to understand the cascading mechanisms and feedbacks between water and crop 997 

systems. This versatileAlthough it does not show an improvement of yield estimates per se, the 998 

coupling framework not only enhances our understanding of the interplay between hydrology 999 

and crop growth but. Also, through the sectoral water use modules of PCR-GLOBWB 2, hasit 1000 

contains the necessary components to evaluate large-scale water use management strategies, 1001 

and simulate the large-scale impacts of informed decision-making under change, particularly 1002 

when dealing with hydroclimatic extremes.  1003 
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