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Abstract. Vegetation phenology plays a key role in controlling the seasonality of ecosystem processes that modulate carbon, 

water and energy fluxes between biosphere and atmosphere. Accurate modelling of vegetation phenology in the interplay of 

Earth’s surface and the atmosphere is thus crucial to understand how the coupled system will respond to and shape climatic 

changes. Phenology is controlled by meteorological conditions at different time scales: on the one hand, changes in key 

meteorological variables (temperature, water, radiation) can have immediate effects on the vegetation development; on the 20 

other hand, phenological changes can be driven by past environmental conditions, known as memory effects. However, the 

processes governing meteorological memory effects on phenology are not completely understood, resulting in their limited 

performance of vegetation phenology represented  in land surface models. A deep learning model, specifically a long short-

term memory network (LSTM), has the potential to capture and model the meteorological memory effects on vegetation 

phenology. Here, we apply the LSTM to model the vegetation phenology using meteorological drivers and high temporal 25 

resolution canopy greenness observations through digital repeat photography by the PhenoCam network. We compare a 

multiple linear regression model, a no-memory-effect, and a full-memory-effect LSTM model to predict the whole seasonal 

greenness trajectory and the corresponding phenological transition dates across 50 sites and 317 site-year during 2009-2018, 

covering deciduous broadleaf forests, evergreen needleleaf forests and grasslands. Results show that the deep learning model 

outperforms the multiple linear regression model, and the full-memory-effect LSTM model performs better than no-memory-30 

effect model for all three plant function types (median R2 of 0.878, 0.957, and 0.955 for broadleaf forests, evergreen needleleaf 
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forests and grasslands). We also find that the full-memory-effect LSTM model is capable of predicting the seasonal dynamic 40 

variations of canopy greenness and reproducing trends in shifting phenological transition dates. We also performed a sensitivity 

analysis of the full-memory-effect LSTM model to assess its plausibility, revealing its coherence with established knowledge 

of vegetation phenology sensitivity to meteorological conditions, particularly changes in temperature. Our study highlights 

that 1) multi-variate meteorological memory effects play a crucial role in vegetation phenology, and 2) deep learning opens 

up new avenues for improving the representation of vegetation phenological processes in land surface models via a hybrid 45 

modelling approach. 

1 Introduction 

Vegetation phenology characterizing key plant development stages such as leaf unfolding and leaf senescence, plays a pivotal 

role as primary regulator of ecosystem processes and land-atmosphere interactions (Peñuelas et al., 2009; Richardson et al., 

2013; Piao et al., 2019). In response to the global change, vegetation phenology has shown divergent shifts in the diverse 50 

biomes (Menzel et al., 2006; Cleland et al., 2007; Wolkovich et al., 2012; Fu et al., 2015; Zhang et al., 2022), whilst at the 

same time exerting a substantial influence on ecosystem productivity and functions through the impact on biogeochemical 

processes, especially photosynthesis and carbon sequestration (e.g., Richardson et al., 2010) as well as ecosystem respiration 

(e.g., Migliavacca et al., 2015). Additionally, as green leaves are the primary interface for the exchange of energy, mass, and 

momentum between the terrestrial surface and planetary layer (Richardson et al., 2012), vegetation phenology plays a 55 

fundamental role in controlling seasonal dynamics of water and heat fluxes between the land and the atmosphere (Peñuelas et 

al., 2009; Richardson et al., 2009; Puma et al., 2013; Jin et al., 2017; Buermann et al., 2018; Koebsch et al., 2020; Wu et al., 

2022). Given the significance of vegetation phenology within the Earth system, an accurate representation of vegetation 

phenology in land surface models (LSMs) is crucial to enhance our understanding of ecosystem processes and their dynamics 

in response to climate change. 60 

Over decades, much of the modelling efforts have been made to improve the development of accurate phenological models 

at species-specific and plant-functional-type scale (White et al., 1997; Chuine, 2000; Jolly et al., 2005; Delpierre et al., 2009), 

including understanding the physiological mechanisms and environmental driving factors controlling phenology (Fu et al., 

2020). Currently, vegetation phenological models mainly include statistical models and process-based models. These models 

are developed to simulate phenological events by integrating meteorological variables which are supposed to drive the 65 

processes of vegetation phenology, utilizing ground observations or phenological proxies derived from remote sensing 

vegetation index data. The most popular approach to represent phenology in land surface models is based on the accumulated 

growing-degree-days (GDD) (Lawrence et al., 2019; Asse et al., 2020; Pollard et al., 2020). The GDD model assumes that 

vegetation phenological events occur when the accumulated growing-degree-day sum fulfils a given requirement (i.e., a 

threshold of accumulated temperature over a certain time period). Considering the physiological processes, plants experience 70 

dormancy before entering the growing season, and thus chilling is considered to be essential to break dormancy in phenological 
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models (Chuine, 2000; Zhang et al., 2022). Besides temperature, also the photoperiod, and soil water availability have been 

shown to be important drivers for vegetation phenology (Adole et al., 2019; Borchert et al., 2005; Luo et al., 2020). 

Consequently, models based on GDD models have been improved by incorporating photoperiod and soil water availability 

effects, which have been applied in many LSMs, such as Biome-BGC (BioGeochemical Cycles) model (Thornton et al., 2002; 

Thornton and Rosenbloom, 2005), JSBACH (Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg; (Mauritsen et 80 

al., 2019)), ORCHIDEE (ORganising Carbon and Hydrology In Dynamic Ecosystems; (Krinner et al., 2005a)) and so on. 

Large uncertainties and biases in modelling phenology following this ad-hoc concepts have been identified within LSMs and 

Earth system models (Richardson et al., 2012; Jeong et al., 2012; Murray-Tortarolo et al., 2013; Lawrence et al., 2019; Peano 

et al., 2021), resulting in inaccurate estimations of primary productivity and the terrestrial ecosystem carbon and water cycle 

(Migliavacca et al., 2012).  85 

To improve such phenology model performance, one has to consider more complex interactions of meteorological 

conditions that drive the vegetation phenological development. Phenology is triggered by meteorological conditions at various 

time scales. Instantaneous meteorological conditions like day-to-day variations in temperature, water, radiation can directly 

impact vegetation development. Additionally, longer-term and past meteorological conditions from the previous month / year, 

have legacy effects on phenological changes. For example, a plant might face delays in budburst if the chilling requirements 90 

are not fulfilled (Ren et al., 2021). These lasting or delayed impacts are often referred to as memory effects, representing the 

impact of previous climate conditions on the present or future vegetation development. Studies have revealed that besides the 

well-known memory effect from temperature like GDD or chilling, other meteorological variables like precipitation or drought 

also have the memory effects on vegetation growth and subsequent phenological appearance (Walter et al., 2011; Ogle et al., 

2015; Ettinger et al., 2018; Liu et al., 2018b; Lian et al., 2021). Due to the complexity and the interplay of various 95 

meteorological factors, current modelling efforts face a challenge in incorporating these multi-variate memory effects (that 

refers to the different memory effects that can be associated to different meteorological drivers) in a mechanistic manner.  

Recently, data-driven methods including deep learning techniques have been used to investigate the influence of climatic 

factors on land surface processes (Forkel et al., 2017; Reichstein et al., 2019; Besnard et al., 2019; Kraft et al., 2019; Callaghan 

et al., 2021; Zhou et al., 2021), demonstrating their potential in capturing long-term temporal dependencies (Sutskever et al., 100 

2014; Bahdanau et al., 2016). Deep learning models aim to consider the full spectrum of meteorological inputs making 

predictions and thus hold promise in capturing long-term temporal dependencies from multiple variables (Besnard et al., 2019; 

Kraft et al., 2019). A recent study already indicated that the deep learning technique is capable of improving the predictability 

skill of vegetation phenology with respect to conventional methods (Zhou et al., 2021). The long short-term memory network 

(LSTM), a type of deep learning neural network, designed specifically for sequence prediction problems that deal with the 105 

memory effect (Hochreiter and Schmidhuber, 1997). Also, time series of consistent and widely distributed phenological near-

surface observations are now long enough so that they reflect short- as well as long-term sensitivities to meteorological 

conditions. Specifically, the continuous daily dataset from the PhenoCam initiative (Richardson et al., 2018), obtained from 

images of near-surface digital cameras, offers opportunities to apply deep learning methods for developing vegetation 
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phenology models that account for the memory effects of multiple meteorological variables (Richardson et al., 2018; 110 

Seyednasrollah et al., 2019).  

We propose to use the PhenoCam data and the LSTM framework to develop a deep learning model that not only is capable 

of predicting specific transition dates, but also in forecasting the state of the canopy greenness throughout the entire year. Most 

current phenology modelling studies focus on phenological transition dates only, such as the onset of budburst, flowering, or 

leaf senescence (Chuine, 2000; Delpierre et al., 2009; Fu et al., 2020). These phenological models effectively capture the 115 

processes that lead to individual phenological events, but fail to overlook the dynamical nature characterizing the continuous 

phenological development throughout the entire annual cycle, where the phenological state itself could influence the 

subsequent phenological development (Fu et al., 2014). Conversely, models targeting the whole seasonal trajectory (White et 

al., 1997) possess the capability to provide continuous predictions of the phenological development state that decisively 

influence other biogeochemical and –physical processes at the land surface.  120 

More specifically, in this study, we focus on the modelling of the whole seasonal trajectory of canopy greenness, but also 

the prediction of transition dates in the annual cycle of canopy greenness. Overall, our key objective is to develop a robust 

deep learning vegetation phenology model on the basis of a LSTM to characterise the memory effects of multiple 

meteorological variables on canopy greenness using the PhenoCam observations. We also build a statistical model as the 

baseline to evaluate the performance of our machine learning model. Our study focuses on addressing the following research 125 

questions: (1) Can deep learning model perform better than statistical model? And can deep learning model accounting for 

memory-effects of multiple meteorological variables outperform models without accounting for such memory effects? (2) 

Does deep learning model successfully capture temporal variations on different time scales of canopy greenness and vegetation 

phenology? (3) Can deep learning model provide meaningful interpretations of the underlying physical and biological 

relationships between vegetation greenness, phenology, and a changing climate? 130 

2 Materials and methods 

2.1 PhenoCam data 

The phenological data used in this study are acquired from the PhenoCam dataset v2.0 

(https://daac.ornl.gov/VEGETATION/guides/PhenoCam_V2.html, (Seyednasrollah et al., 2019)). The dataset is derived from 

digital images photographed by automated and high-frequency digital cameras at half-hour intervals. These images are 135 

analysed to calculate the green chromatic coordinate (GCC), which is the ratio of the green channel digital numbers to the total 

digital values of the digital Red-Green-Blue images within a predefined region of interest. GCC serves as an indicator of 

canopy greenness, with variations primarily due to changes in photoprotective pigments, which cause the variation in canopy 

greenness. For example, the changes in photoprotective pigments cause the canopy to appear more ‘red’ in winter (indicating 

low GCC) compared to summer.  140 

To construct a daily GCC time series, we use the 90th percentile of daily GCC values, reducing the impact of atmospheric 

conditions on illumination. This daily GCC time series is used in this study to represent the canopy greenness development 
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and senescence. Specifically, we select the GCC time series from Type I observation sites that follow a standard protocol to 

ensure data quality and continuity (Richardson et al., 2018). To ensure robust data, we exclude yearly GCC data for years with 

more than 20 days of missing digital images. We further select sites with continuous observations available for more than 5 155 

years. Missing data in the GCC time series are interpolated using cubic spline interpolation method (Hall and Meyer, 1976). 

Additionally, we apply a locally weighted scatterplot smoothing method to reduce noise in the GCC time series (Cleveland, 

1979). Our study focuses on three main plant functional types (PFT): deciduous broadleaf forest (DB), evergreen needleleaf 

forest (EN), and grassland (GR), with observed GCC ranges of 0.30-0.46 for DB, 0.32-0.43 for EN, and 0.30-0.43 for GR. 

Ultimately, a total of 50 sites and 317 site-year observations during 2009-2018 are used in the analysis. Of these, 28 sites with 160 

178 site-year observations are DB sites, 13 sites with 82 site-year observations are EN sites and 9 sites with 57 site-year 

observations are GR sites. The spatial distribution of the study sites and test sites for each PFT is shown in Fig. 1. 

 
Fig. 1 Geographical distribution of study sites for deciduous broadleaf forest (orange circle), evergreen needleleaf (blue 

triangle) and grassland (green square). The test sites are specifically highlighted within a red frame. 165 

2.2 Explanatory variables 

The daily meteorological variables were obtained from the station-level Daymet dataset (https://daymet.ornl.gov/). These 

variables include daily minimum temperature (Tmin), daily maximum temperature (Tmax), daily daylength (DL), daily 

precipitation (P), daily water vapour pressure of the air (𝑒!), and daily shortwave radiation (R). We extracte time-series of 

these meteorological variables for each studied Phenocam site. Given that the soil moisture might have memory effects on 170 

vegetation canopy greenness development, it should be included as a driver in the model. In our study, six dynamic variables 

are used, including Tmin, Tmax, DL, R, vapour pressure deficit (VPD) and soil moisture index (SMI). The daily VPD is the 
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difference between the saturation pressure of water (𝑒", calculated from the daily mean temperature) and the actual water 

vapour pressure of the air (𝑒!), calculated following Eq. (1) & (2) (Alduchov and Eskridge, 1997). Due to the lack of measured 

soil moisture data, we have utilized a 30-day backward running mean of precipitation, applying decreasing weights (from 0 to 

1) to days further in the past one month, as a proxy for soil moisture. This index has been demonstrated to serve effectively as 

a proxy for soil moisture where direct soil moisture measurements are unavailable (Migliavacca et al. 2011).  The daily SMI 180 

is computed using a proxy of the sum of precipitation over the previous month (Eq. (3)). Additionally, two static variables, 

mean annual temperature (Tmean), and mean annual precipitation (Pmean), are derived from the records of these two variables in 

PhenoCam dataset. 

𝑉𝑃𝐷	 = 𝑒" − 𝑒!            (1) 

𝑒" = 0.61094	 ×	𝑒
!".$%&'
'(%)*.+)           (2) 185 

Where 𝑒"	and 𝑒! are saturated and actual vapour pressure, respectively (𝑘𝑃𝑎). 𝑇 is the mean daily air temperature (°C). 

𝑆𝑀𝐼# =	
∑
*+
,-+ (&./,	×	

*+/,
*+ )

*+
           (3) 

where 𝑆𝑀𝐼#	is the soil moisture index on day 𝑡, 𝑃#,- is the precipitation on day (𝑡 − 𝑖), 𝑖 is the number of days away from the 

day of 𝑡. 

2.3 LSTM modelling approach 190 

Our goal is to predict the whole seasonal trajectory of canopy green chromatic coordinate (GCC) from the time series of the 

eight predictor variables using one model per PFT for multiple sites. To make this task feasible, we subtract the winter baseline 

value (the mean of the minimum GCC values in available years) of GCC at each site and PFT, making the measurements more 

comparable across sites. Further, the predictor variables and targets (GCC) are globally normalized using a min-max 

transformation for each PFT. 195 

To ensure that our models learn relationships that can be generalized, we evaluate them on unseen data in space and time. 

For the spatial generalisation, we hold out 10% of all studied sites as unseen test sites. Furthermore, we use all data from the 

year of 2018 for each PFT as our temporal test dataset. The division of the data is illustrated in Fig. S1. Additionally, we divide 

the dataset into samples consisting of two years of input predictor variables (accounting for potential memory effects of 

meteorological variables from previous one year to current-year), along with one year of GCC observations corresponding to 200 

the second year of input. 

To capture the relationship between the meteorological variables and the GCC, we employ a LSTM network (Hochreiter 

and Schmidhuber, 1997). We choose this method for several reasons. Firstly, we expect a highly non-linear relationship 

between the meteorological variables and observed canopy greenness, necessitating a flexible, nonparametric model such as a 

neural network (Hornik et al., 1989). Secondly, the representation of dynamic meteorological memory effects on canopy 205 
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greenness, requires a model that can represent temporal interactions across scales. For this purpose, we utilize a recurrent 

neural network (RNN), specifically the LSTM which have demonstrated strong performance in prediction related problems 210 

involving time series data (Wu et al., 2017; Besnard et al., 2019; Kraft et al., 2019, 2022). 

In our study, we employ a single-layer LSTM with 128 nodes, followed by one fully connected (output-) layer and preceded 

by one fully connected (input-) layer. The mean squared error between the predicted and the observed GCC is optimized using 

the gradient based AdamW (Loshchilov and Hutter, 2019), an algorithm that adds decoupled weight decay to the Adam 

(Kingma and Ba, 2017) optimizer. We train an ensemble of models to reach a more stable prediction. During the model 215 

development phase, we utilized a leave-one-site-out cross-validation strategy, applying 25-fold for the DB, 12-fold for the EN, 

and 8-fold for the GR datasets. This approach was integral to identifying the most effective model architectures and 

hyperparameters, ensuring robustness across various sites. Additionally, we employed these validation datasets for early 

stopping to prevent overfitting. Specifically, we stop the training when the performance no longer improves on the left-out 

validation set of 150 epochs (an epoch refers to one complete pass through the entire training dataset). Furthermore, we decay 220 

the learning rate (a hyperparameter that determines the size of the steps taken during the optimization of a model) of, initially, 

0.01 by a factor of 0.9 after each epoch. For testing we use the mean of the ensembled LSTMs as the prediction for the GCC. 

To quantify the importance of the memory effects in the model, we additionally train our model on the same dataset with 

all data being randomly shuffled in the time dimension (Besnard et al., 2019; Kraft et al., 2019). In this dataset the 

“instantaneous” relation between the inputs and outputs of the current day is unimpaired but the effects of previous days cannot 225 

be learned, as these days are random. This LSTM model does not consider the memory effects, referred to as no-memory-

effect LSTM model M0. In contrast, the original model, which has access to the full history of the input variables, is referred 

to as the full-memory-effect LSTM model Mfull. The framework of our LSTM model in predicting canopy greenness GCC 

using six dynamic and two static predictors is illustrated in Fig. 2. 
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Fig. 2 The framework of canopy greenness modelling using LSTM. The LSTM is composed of a forget gate, input gate, 235 

output gate and a candidate and hidden state. The LSTM networks are adapted from Christopher Olah, 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/. 

2.4 Model evaluation 

To assess the modelling ability of deep learning model, we develop a baseline model using multiple linear regression (MLR) 

between the eight predictor variables and GCC (Eq. (4)). The MLR model is trained and tested in the same training and testing 240 

dataset as the LSTM models.  

𝐺𝐶𝐶 = 	𝑎 ∗ 𝑇.-/ + 	𝑏 ∗ 𝑇.!0 + 𝑐 ∗ 𝐷𝐿 + 	𝑑 ∗ 𝑅 + 	𝑒 ∗ 𝑉𝑃𝐷 + 	𝑓 ∗ 𝑆𝑊 + 	𝑔 ∗ 𝑇.1!/ + 	𝑘 ∗ 𝑃.1!/ + 𝑟𝑒𝑠          (4) 

where 𝐺𝐶𝐶 is our target,	𝑇.-/, 𝑇.!0, 𝐷𝐿, 𝑅, 𝑉𝑃𝐷, 𝑆𝑊, 𝑇.1!/, and 𝑃.1!/ are predictor variables, 𝑟𝑒𝑠 is the residual. 

For model evaluation, we primarily use root mean square error (RMSE) and the coefficient of determination (R2) for model 

evaluation. These metrics are calculated based on the predicted and observed GCC at each site for each PFT. We compare the 245 

model performance of all models in the testing dataset, and select the best model for each PFT by R2. For the best models, we 

evaluate their performance in simulating: 1) GCC observations; 2) GCC temporal variation; 3) phenological transition dates 

in testing datasets. GCC temporal variation includes three time-scales variation: daily variation, monthly mean GCC variation, 

and interannual variation of the anomalies of median GCC. For daily variation, we also calculate the daily anomalies for 

observations and LSTM models. For the monthly GCC variation, we further compare the mean monthly canopy development 250 
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rate (𝑉233) during studied years between observed and predicted GCC time series. The rate of canopy development for each 

month (from February to December) is calculated at the monthly scale from the GCC time series using Eq. (5).  

𝑉233(#) = 𝐺𝐶𝐶# − 𝐺𝐶𝐶#,+                   (5) 

where 𝑡 is time (month), 𝐺𝐶𝐶#	and 𝐺𝐶𝐶#,+	is the mean 𝐺𝐶𝐶 for a given year at month 𝑡 and 𝑡 − 1, respectively. 255 

The phenological transition dates are estimated intending to define the start of season (SOS) and the end of season (EOS) 

for one year. We choose the dates corresponding to a 30% of the seasonal amplitude (from the 5th percentile to the 95th 

percentile) through greening rising and falling to represent the start of season (SOS) and end of season (EOS). SOS and EOS 

transition dates are estimated from both the predicted and observed GCC time series. 

2.5 Model sensitivity analysis 260 

In order to gain insights into the physical implications of deep learning models, we conduct two simple experiments to assess 

the model sensitivity to meteorological drivers. First, we increase (warming) and decrease (cooling) temperature (Tmin and 

Tmax) by 4 °C throughout the year while keeping all other predictors unchanged. Another experiment involves the same 

temperature adjustments for Tmin and Tmax, but with the VPD varying based on mean temperature while keeping other predictors 

constant. We then compare the annual canopy greenness cycles under warming and cooling conditions with the actual 265 

observations. Furthermore, to better understand how vegetation phenology shifts in response to a warming environment 

according to the LSTM models, we estimate the SOS and EOS in these two experiments. We evaluate the differences between 

the treatment of 1°C warming and the observations for SOS and EOS. 

 

3 Results 270 

3.1 Model performance 

A comparison of the model performance is conducted between the statistical MLR model and the LSTM models (including 

the no-memory-effect LSTM model M0 and the full-memory-effect LSTM model Mfull) on the test dataset for deciduous 

broadleaf (DB), evergreen needleleaf (EN) and grassland (GR) (Table 1). The LSTM models achieve a better performance for 

predicting the GCCs than the MLR model for all PFTs (Table 1). The coefficient of determination R2 between modelled and 275 

observed canopy greenness GCC are much higher in LSTM models than MLR, with the median R2 increased from MLR to 

LSTM from 0.779 to more than 0.806 for DB, from 0.777 to more than 0.830 for EN, and from 0.646 to more than 0.914 for 

GR. Similarly, the Root Mean Square Error (RMSE) values corroborated the R² findings, demonstrating that LSTM models 

generally exhibit lower prediction errors than the MLR model. In conclusion, LSTM models significantly enhance the accuracy 

of GCC predictions across all three PFTs when compared to the baseline MLR model. 280 

Metric Model DB EN GR 
R2 MLR 0.779 (± 0.052) 0.777 (± 0.115) 0.646 (± 0.110) 
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M0 0.806 (± 0.073) 0.830 (± 0.155) 0.914 (± 0.033) 

Mfull 0.878 (± 0.107) 0.957 (± 0.071) 0.955 (± 0.030) 

RMSE 

MLR 0.021(± 0.005) 0.019(± 0.008) 0.018(± 0.003) 
M0 0.030 (± 0.015) 0.017 (± 0.006) 0.012 (± 0.003) 

Mfull 0.028 (± 0.016) 0.012 (± 0.006) 0.009 (± 0.002) 
 

Table 1 Coefficient of determination (R2) and root mean squared error (RMSE) comparisons (ensemble median ± std estimate of all study 285 
sites) for multiple linear regression model (MLR), no-memory-effect LSTM model (M0) and full-memory-effect LSTM model (Mfull) on 

test dataset for deciduous broadleaf (DB), evergreen needleleaf (EN) and grassland (GR). 

 

Furthermore, comparing the two different LSTM models, the full-memory-effect model Mfull exhibits superior performance 

in simulating GCC than no-memory-effect model M0 across all three PFTs (Fig. 3). The median R2 of all studied sites in the 290 

full-memory-effect model exceeds 0.85, specifically 0.878 for DB, 0.957 for EN, and 0.955 for GR. This represents an 

improvement in model performance of 8.9% for DB, 15.3% for EN, and 4.5% for GR, compared to the no-memory-effect 

model with R2 of around 0.806 (DB), 0.830 (EN) and 0.914 (GR). Similarly, there is a reduction in bias of 12.5% (RMSE 

decreased from 0.036 in M0 to 0.032 in Mfull) for DB, 15.4% (RMSE decreased from 0.015 in M0 to 0.013 in Mfull) for EN, and 

37.5% (RMSE decreased from 0.011 in M0 to 0.008 in Mfull) for GR in full-memory-effect models. These findings suggest 295 

considering memory effects from multiple meteorological factors can enhance the model performance in simulating GCC 

compared to models without considering memory effects. 
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Fig. 3 Model performance of GCC time-series estimation using no-memory-effect model (M0: a, b, c) and full-memory-effect model 300 
(Mfull: d, e, f) in all test dataset for deciduous broadleaf (DB), evergreen needleleaf (EN) and grassland (GR). The colour indicates the 

density of points (light blue is lower density, dark blue is higher density). The solid grey lines denote the 1:1 line. 

 

The performance of LSTM models on unseen test sets, both spatially and temporally, shows that full-memory-effect 

LSTM model Mfull outperforms no-memory-effect LSTM model M0 in predicting GCC for unseen site(s) and unseen year 305 

across all three studied PFTs (Fig. 4). Specifically, when evaluating performance on unseen sites, Mfull consistently exhibits 

higher median R2 values compared to M0, with improvements of 9.3%, 13.5%, and 3.5% for DB, EN, and GR respectively.  

Similarly, for predictions across unseen years, Mfull demonstrates substantial enhancement in predictive accuracy, with 

median R2 values increasing from 0.805 to 0.874 (an 8.6% improvement) for DB, from 0.824 to 0.956 (a 16% improvement) 

for EN, and from 0.914 to 0.964 (a 5.5% improvement) for GR. The t-test comparing M0 and Mfull across all test sets and 310 

PFTs indicate a significant difference (P < 0.05), confirming Mfull's superior performance. These findings underscore the 

robustness of the model in accurately forecasting GCC time series, even when face with previously unobserved spatial and 

temporal contexts. 
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Fig. 4 Coefficient of determination (R2) comparisons between no-memory-effect model (M0: blue box) and full-memory-effect model 

(Mfull: red box) in all test sets, unseen site and unseen year for deciduous broadleaf (DB, a), evergreen needleleaf (EN, b) and grassland 

(GR, c). The rhombus in the figure represents the outliers, which are defined as the points beyond 1.5 times the interquartile range (the 

difference between the 75th and 25th percentiles). 325 
 

3.2 Modelling temporal variability of GCC at unseen sites: daily to interannual time scales 

LSTM models can capture the GCC canopy greenness temporal dynamics, with an initial increase followed by a decrease 

during the growing season. This is illustrated in Fig.4, which displays the observed and predicted daily variability of GCC, 

daily GCC anomaly, seasonal variability of GCC and its development rate, and interannual variability of GCC anomalies at 330 

unseen sites from 2009 to 2018 using LSTM models. The predicted daily variability of GCC shows a strong correlation with 

observations across multiple years, with a significant correlation coefficient (r) above 0.9 (Fig. 5 a – c) in Mfull. Conversely, 

M0 shows increased noise in daily GCC variability, displaying larger biases in predicting both GCC peaks and minimum values, 

particularly evident for DB (Fig. 5 a). From the predictions of daily GCC anomalies which remove the mean seasonal cycle 

(Fig. 5 d – f), we can further find Mfull performs better than M0 in capturing the daily fluctuation though they are still not good 335 

at predicting the daily GCC anomalies as we expected. The R2 between observed and predicted GCC anomalies are higher in 

Mfull than in M0 for DB (M0: 0.0007, Mfull: 0.02), EN (M0: 0.03, Mfull: 0.22), and GR (M0: 0.07, Mfull: 0.32). However, a 

discrepancy between observed and predicted absolute GCC at the daily scale is observed for EN in the unseen site, where the 

predicted GCC is overestimated compared to the observation in both Mfull and M0 (Fig. 5 b). 

The overall seasonal cycle of monthly GCC shows good match between the observation and prediction by LSTM models. 340 

The observed GCC typically starts to increase in March (GR) or April (DB and EN), peaks in June (DB and GR) or July (EN), 

and gradually decreases until November (DB and GR) or December (EN) (Fig. 5 g – i). Both Mfull and M0 can effectively 

capture this seasonal pattern for EN and GR. However, for DB, the Mfull model predicts a similar seasonal dynamic pattern of 

GCC to observations, depicting greening up before June or July followed by greening down until November or December, 

while M0 predicts a peak in greenness occurring in July which diverges from observation (Fig. 5 g). Similarly, the development 345 
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rate of monthly GCC shows similar performance as seasonal cycle of monthly GCC. The largest increase in observed GCC 

occurs in May during the greening-up period for all three vegetation types, while the speed of greenness decreases significantly 360 

accelerates around October (grey box in Fig. 5 g – i). The LSTMs predict developed rates in greening up and down exhibit a 

similar pattern to the observations for EN and GR (red box in Fig. 5 g – i). However, for DB, both Mfull and M0 predict the 

highest development rate in June during the green-up period and in September during the green-down period, in contrast to 

observations which indicate peak rates in May and October, respectively.  

The predicted interannual variability of maximum GCC anomalies shows that both LSTM models with full-memory effects 365 

and no-memory effects can generally forecast trends of interannual variability of maximum GCC for EN and GR (Fig. 5k – l). 

However, an increasing trend (0.026 per decade) in greenness is observed in maximum GCC anomalies from harvardbarn2 for 

DB during the period from 2012 to 2018 (see Fig. 5j), and this trend is well predicted by the Mfull model (0.015 per decade) 

but failed in the M0 model (-0.004 per decade). Specifically, from 2012 to 2015, the observed maximum GCC exhibits a 

continual increase, whereas M0 indicates a continual declining maximum GCC (see Fig. 5j). Furthermore, a larger bias is found 370 

in M0 compared to Mfull in predicting the annual maximum GCC for DB.  
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Fig. 5 Observed (obs, grey) and predicted (M0: blue, Mfull: red) daily (a, b, c), seasonal (g, h, i), and interannual (j, k, l) variability of 

canopy greenness (GCC) and daily GCC anomaly (d, e, f) for deciduous broadleaf (DB), evergreen needleleaf (EN) and grassland (GR) in 
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unseen sites (DB: harvardbarn2, EN: howland1, GR: bullshoals). In panel d - f, the solid grey lines denote the 1:1 line. In panel g - i, the 375 
development rate of monthly GCC (VGCC) is represented by bar plots (right y-axis; red bar: observed VGCC; red bar: predicted VGCC). In 

panel j - l, the interannual variability of annual maximum GCC anomalies are shown. 

3.3 Modelling the vegetation canopy phenological transition dates in unseen sites 

Figure 6 illustrates that Mfull can capture the interannual variability of phenological transition dates, outperforming M0. 

Regarding the start of season (SOS) (Fig. 6 a, b, c), Mfull consistently exhibits the same shift direction (sign of the anomaly) 380 

as observations in the majority of years. Specifically, we observe concordance in the direction of advance or delay between 

prediction and observation in 5 out of 7 years (71% of the years) for DB. Similarly, the predicted SOS shifts agreed well with 

the observations in more than 80% years for EN (89% of the years) and GR (80% of the years). Moreover, a high correlation 

is evident between the Mfull predicted interannual variability of SOS anomaly and the observed interannual variability of SOS 

anomaly. The correlation coefficient between observed and predicted interannual variability of SOS anomaly reaches up to 385 

more than 0.9 for EN and GR. In further, the observed delay of SOS with the trend of 2.1 days per year is also reproduced well 

by the Mfull (predicted trend is 1.2 days/year) in howland1 for EN during 2010 to 2018 (Fig. 6 b). Conversely, compared to 

Mfull, M0 exhibits poor performance in capturing the shift direction and lower correlation between the predicted interannual 

variability of SOS anomaly and the observed interannual variability of SOS anomaly. 

As for EOS, good agreements between the predicted interannual dynamics of EOS anomalies by Mfull and the observed ones 390 

are found in DB and EN, although not in GR (Fig. 6 d – f). Firstly, Mfull predicted shift directions of EOS in most years (over 

80%) are consistent with the observed shifts for each PFT. For DB, there are 86% of years showing the same shift direction of 

advance or delay between observed and predicted EOS. For EN and GR, the percentages are 89% and 80% respectively. On 

the other hand, we find a positive correlation between observed and Mfull predicted EOS anomalies for DB and EN. The 

observed delayed trend (2.7 days/year) for DB in harvardbarn2 is also well predicted (1.6 days/year) by the Mfull. Interestingly, 395 

Mfull also captures the larger advancement of EOS observed in 2018 compared to the mean EOS for EN, indicating its capability 

to capture extreme interannual anomalies. Compared Mfull, M0 shows a relatively poor performance, displaying larger bias in 

its predictions.  
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Fig. 6 Observed (obs, black line) and predicted (M0: blue, Mfull: red) the interannual variability in anomaly of start of season (SOS, a, b, c) 400 

and end of season (EOS, d, e, f) for deciduous broadleaf, evergreen needleleaf and grassland in unseen sites (DB: harvardbarn2, EN: 

howland1, GR: bullshoals). 

3.4 The model sensitivity analysis 

The model sensitivity analysis indicates that full-memory-effect model Mfull can simulate well the GCC response to 

temperature. Fig. 7 illustrates the temperature sensitivity of GCC in the LSTM model Mfull for all three PFTs studied here. 405 

Comparison of warming (red line, Fig. 7 a, b, c) and cooling (blue line, Fig. 7 a, b, c) alone treatments (increasing or decreasing 

4 °C) to the unchanged temperature (± 0 °C) control (grey line, Fig. 7 a, b, c) reveals that warming led to greener and longer 

greenness season, while cooling caused to the less greening and shorter vegetation season for studied three PFTs (Fig. 7 a, b, 

c). When VPD varies with temperature, high temperature along with the high VPD does not have a significant effect on the 

greenness and length of vegetation period. During the greenness rising and falling period, the canopy greenness is very similar 410 

to the actual GCC cycle (the control) for the three PFTs, but the peak greenness is lower than the actual GCC peak values, 

especially for DB and GR (Fig. 7 d, e, f). In the cooling and lower VPD treatment, it shows similar trends with the cooling 

condition but unchanged VPD. Cooling and lower VPD result in declining canopy greenness and shortened vegetation periods 

during the growing season. 
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 415 
Fig. 7 The sensitivity of canopy greenness (GCC) to temperature change only and both temperature and VPD change under 4 °C warming / 

cooling (red line / blue line) in the all year using Mfull for deciduous broadleaf (in howland2), evergreen needleleaf (in laurentides) and 

grassland (in bullshoals). 
Furthermore, we also examine the temperature sensitivity of phenological events (SOS and EOS) (Fig. 8). A one-degree 

increase in temperature throughout the year resulted in an earlier start of the season (Fig. 8 a) and delayed end of the season 420 

(Fig. 8 b), regardless of low or high VPD. Under warm conditions alone, SOS appears to be one day earlier on average, while 

under warm and high VPD conditions, it shiftes to two days earlier. The one-degree temperature increase has a similar effect 

on EOS compared to the one-degree increase accompanied by varied VPD. Through student t-tests on means of the two 

distributions, no statistically significant (p = 0.12 (SOS), p = 0.69 (EOS)) differences in means are found, indicating that 

temperature is the most influential meteorological factor affecting the start and end of the season. 425 
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Fig. 8 Temperature sensitivity of start of season (SOS, Fig. 8 a) and end of season (EOS, Fig. 8 b) under warm alone (red) and warm and 

high VPD conditions (blue) over all three PFTs. 

4 Discussion 

4.1 Meteorological memory effects on vegetation canopy greenness 430 

In our study, we have presented a new way to simulate canopy greenness dynamics by applying a data-driven LSTM model 

accounting for multi-variate meteorological memory. We find that multi-variate meteorological memory is of importance in 

developing vegetation phenological models. The impact of meteorological factors on vegetation phenological development 

encompasses both instantaneous and memory effects. Through a comparison of models accounting solely for instantaneous 

effects (MLR and M0), with those considering both instantaneous and memory effects of multiple meteorological variables 435 

(Mfull), we have demonstrated that models involving memory effects do outperform models without memory effects (Table 1 

& Fig. 3). This suggests that considering both instantaneous and memory effects provides a more comprehensive explanation 

for vegetation development compared to solely instantaneous effects.  

But what specific advantages does the full-memory-effect model offer over the no-memory-effect model? We will explore 

this question from several perspectives. Firstly, full-memory-effect model exhibits good performance in spatial and temporal 440 

extrapolation of canopy greenness. By comparing the model performance of Mfull and M0 in unseen site(s) and unseen years 

(Fig. 4), it becomes clear that the full-memory-effect model outperforms the no-memory-effect model in both unseen site(s) 

and unseen years for all three PFTs. This indicates that incorporating memory effects into the model enhances performance in 

unseen sites and years, a challenging task in modelling, especially for unseen sites. 

Secondly, the inclusion of memory effects in models improves performance in predicting variabilities across different time 445 

scales for unseen sites. At the daily scale, the full-memory-effect model reduces noise on each day and predicts daily anomalies 

more accurately than the no-memory-effect model (Fig. 5). This underscores that daily changes in canopy greenness are 

influenced not only by instantaneous climate but also by the memory effects of previous climate on the canopy. Our results 

align with previous studies indicating that temperature memory (cumulative thermal summation), rather than daily temperature 
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alone, determines vegetation phenology (Hänninen, 1990; Chuine, 2000). In addition, for the challenges in simulating daily 450 

anomalies, our findings reveals that full-memory-effect model performs better in predicting daily anamalies compared to no-

memory-effect model (Fig. 3). This finding indicates the significance of memory effects in enhancing the model's capability 

to simulate daily anomalies. Regarding seasonal dynamics and interannual variability, our study finds that memory effects 

vary among PFTs. For deciduous broadleaf trees, the full-memory-effect model demonstrates a significant advantage in 

predicting seasonal and interannual dynamics (Fig. 5 g – l). It can capture well the seasonal dynamic pattern and the greening 455 

trend, which the no-memory-effect model fails to predict. This suggests that changes in canopy greenness over long time scales 

for deciduous broadleaf trees are sensitive to relatively long-term meteorological changes. This may be attributed to lagged 

effects of precipitation (Joshi et al., 2022), drought (Peng et al., 2019) and other factors (Gömöry et al., 2015; Ding et al., 2020; 

Joshi et al., 2022; Zhou et al., 2022; Liu et al., 2018, GCB) from previous months on canopy greenness. However, for evergreen 

and grasslands, both the full-memory-effect model and the no-memory-effect model show similar performance in predicting 460 

seasonal dynamics and interannual variability. It is noteworthy that the memory effect of precipitation in our study is already 

included in the no-memory-effect model, as the meteorological variable of soil moisture is calculated based on the weighted 

mean of precipitation in the previous month (due to not available soil moisture data). This implies that such memory effects 

may offset the performance difference between the full-memory-effect model and the no-memory-effect model.  

Lastly, incorporating multi-variate meteorological memory effects into the LSTM model improves performance in 465 

predicting vegetation phenology (Fig. 6). Our results suggest that phenological shifts are influenced by meteorological memory 

effects, consistent with the notion that vegetation phenology is highly variable and responsive to long-term variation in climate 

(Sparks and Carey, 1995). Specifically, winter chilling (Chuine et al., 2016; Ettinger et al., 2020; Zhang et al., 2022), and the 

growing season temperature (Liu et al., 2018, GCB) can impact on the spring phenology and autumn development. However, 

unlike models primarily accounting for temperature memory effects alone, such as GDD (Hänninen, 1990; Chuine, 2000), our 470 

LSTM memory effect model shows promise in the incorporation of multiple memory effects from different meteorological 

variables.   

It should be noted that although our study emphasizes the importance of memory effects of multiple meteorological 

variables, the specific contributions of different meteorological factors to memory effects on vegetation development remain 

unclear. Further in-depth studies of memory effects are still needed to discern the relative importance of memory for each 475 

meteorological factor, and their memory length across various developmental stages. 

4.2 Machine learning modelling of vegetation phenology 

In our study, we explore the potential of a deep learning approach using LSTM to predict vegetation phenology based on 

canopy greenness, specifically GCC annual cycles, using only meteorological variables as inputs. The results indicate that the 

superior performance of our deep learning model compared to a multiple linear regression model (Table 1), highlighting that 480 

deep learning models are capable of capturing nonlinear relationships between inputs and targets. This holds promises for 

improving the performance of current vegetation phenology models and a significant step toward a better representation of 
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phenology on earth system models using deep learning approaches. However, comparing our deep learning model with 485 

process-based model is still challenging, as their modelling targets are different in many cases. Our deep learning models focus 

on the whole annual cycle of canopy greenness, whereas most process-based models concentrate on specific phenological 

events. 

The deep learning model performance across PFT (Table 1, Fig3) shows that the model performs better for EN compared 

DB. The superior performance in estimating GCC for the EN compared to the DB might be attributed to two main factors: 1) 490 

Spring and autumn variability in GCC: The EN exhibits more gradual changes in GCC during spring and autumn, facilitating 

more accurate model simulations of GCC. This contrasts with the DB, where abrupt environmental changes lead to more 

volatile GCC values. 2) Memory effect: The EN may have a longer memory effect, meaning its GCC values are influenced by 

past conditions over a longer period. In contrast, the GCC for DB respond more immediately to current environmental factors. 

Our findings demonstrate that full-memory-effect LSTM model can generally explain daily-scale variations and seasonal 495 

dynamic changes, as evidenced by the high correlations between predicted and observed GCC (Fig. 5). This is likely because 

the full-memory-effect LSTM model can better learn the complex relationship between climatic dynamics and canopy 

greenness dynamics. However, our deep learning model has had less success in accurately predicting absolute GCC values 

and peak values (Fig. 5, Fig. S2). For instance, in the case of “howland1” site for evergreen needleleaf, the full-memory-effect 

LSTM model can predict the dynamics of canopy greenness well, but the absolute GCC values are overestimated (Fig. 5 b). 500 

Indeed, although full-memory-effect model show a good performance, it also overestimates canopy greenness in some sites 

(Fig. 5 b, Fig. 8 a & c, Fig. S2), and underestimates in other sites (Fig. 9 b & d), Fig. S2). Possible reasons for this discrepancy 

could be: 1) different climatic drivers for different species among PFTs, 2) incomparable GCC data among sites, and 3) 

inadequate learning of site-specific characteristics. We aim to build a more general model in this study, but it should be noted 

that even within species, GCC can respond to climate differently to meteorological conditions (Denéchère et al., 2021). 505 

Additionally, the combination of GCC data from all sites for a specific PFT in building the model may introduce errors and 

bias, as GCC data is not consistently calibrated and the colour signals can be sensitive to various parameters, such as camera 

type, species (foliage colours are different colours of green) or spectral properties of incoming light (Wingate et al., 2015; 

Richardson et al., 2018). Moreover, the use of static variables (climatological mean temperature and precipitation) to indicate 

spatial differences may not sufficiently capture site-specific information, leading to overestimation or underestimation of 510 

specific sites. Although the deep learning models have limitation in simulating absolute GCC values accurately, it's important 

to note that the bias in absolute values is less significant compared to the seasonal dynamics of GCC which is used for detecting 

phenology. Regarding interannual variability, we find that the predicted changes (increase or decrease) in peak GCC are 

consistent with observations in most years (Fig. 5 g – i), indicating that the model’s capability to reproduce basic response of 

canopy greenness to climate changes. Furthermore, our models can also capture well the interannual variability in GCC (Fig. 515 

5 k), and also the trends of interannual variability in anomalies of peak GCC were generated well by our data-driven models 

(Fig. 5j). Overall, these results demonstrate the ability of the LSTM model to reliably predict temporal variability. In terms of 

spatial performance, we find that the LSTM model has a good agreement with observations in most studied sites for all three 
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PFTs (Fig. S3). This means our model is able to capture spatial variation within each PFT providing support that the model 

might represent a general model for each PFT.  520 

 
Fig. 9 The overestimated and underestimated canopy greenness (GCC) by the LSTM model in some sites (umichbiological2, alligatorriver, 

caryinstitute, umichbiological) for deciduous broadleaf (DB) and evergreen needleleaf (EN). 

 

The modelling results of vegetation phenology reveal that the full-memory-effect LSTM model is also capable of predicting 525 

the shift in phenological transition dates (advance or delay of start of season (SOS) and end of season (EOS)) in most years in 

the unseen dataset (Fig. 7). The ability to predict the advancement or delay in phenology is crucial for estimating other key 

processes in the ecosystem functioning, such as ecosystem productivity, as the advancement of spring phenology and the delay 

of autumn phenology are typically associated with higher productivity (Richardson et al., 2010). Overall, our model’s skill to 

accurately predict the average advance or delay in phenology is encouraging, although, it remains challenging to predict the 530 

exact phenological dates given the potential and systematic overestimation or underestimation in the GCC cycle (Fig. S4).  

4.3 Can the deep learning model of vegetation phenology learn physically plausible relationships? 

The sensitivity analysis of our deep learning model sheds light on its ability to learn meaningful physical insights. The 

model responds to warmer temperatures by predicting an earlier spring onset and later autumn senescence, which is in line 

with findings from other studies (Menzel et al., 2006; Jeong, 2020). These results underscore the capability of our deep learning 535 

framework to reproduce the sensitivity of canopy greenness and phenology to temperature. Our current study primarily focuses 

on developing the deep learning model. We also conduct a basic sensitivity analysis that has the potential to dismantle the 

LSTM model and learn from the identified relationship in the data how the response (i.e. GCC. A more extensive and 
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comprehensive sensitivity analyses of the LSTM model, as well as interventional experiments, could offer insights into 

understanding phenology by identifying which predictors are influential and when. Especially, such approach might help to 

uncover the control of autumn phenology and its modelling – a long-standing challenge faced by process-based models that 

may struggle due to inadequate predictors inclusion or response functions (Delpierre et al., 2009; Liu et al., 2019). Moreover, 

the hybrid models by the integration of physic knowledge into the deep learning models might enhance our understanding of 545 

how climate change impact on phenology and associated consequences for the ecosystem, another key challenge in phenology 

modelling. In numerous Earth system models, such as CLM 4.5 and LPJ (Peano et al. 2021), phenology is modelled based 

solely on climatic drivers, employing PFT-specific thresholds for factors like chilling and growing degree days. Some models 

also integrate a more realistic connection to the carbon cycle, where leaf growth incurs a carbon cost. For the phenology 

representation strictly from climate variables in ESMs, our data-driven approach can serve as a direct replacement for 550 

traditional empirical formulations. However, for ESMs that consider phenology to be dependent on available carbon resources, 

it becomes necessary to evolve our data-driven method into a hybrid model (e.g., ElGhawi et al. 2023 for land-atmosphere 

fluxes) that also accounts for carbon resources in its inputs and loss function. This entails modelling leaf growth as depleting 

carbon from the reserve pool and adding dropped leaves to the humus pool, thereby ensuring carbon mass balance. 

Consequently, carbon mass balance serves as a critical constraint for the data-driven phenology model. 555 

 

5 Conclusions 

In this study, we develop a novel deep learning modelling framework incorporating multiple meteorological memory effects 

to predict the whole seasonal trajectory of canopy greenness and transition dates for each plant functional type using LSTM. 

Our key findings can be summarized as follows: 560 

1) The general deep learning model, trained for each PFT using LSTM, demonstrates the ability to generalize to unseen 

sites, indicating that the deep learning approach effectively captures the underlying mechanics of canopy greenness 

development. 

2) The incorporation of multi-variate meteorological memory effects proves crucial in canopy greenness modelling. The 

LSTM model, accounting for these memory effects, can reproduce general temporal dynamics of canopy greenness across 565 

various time scales, from daily to inter-annual variability. Furthermore, it captures phenological shift directions, enhancing the 

model's comprehensive representation. 

3) Our sensitivity analysis demonstrates the LSTM model's capability to learn plausible relationships, revealing its 

proficiency in acquiring fundamental physical knowledge about vegetation greenness and phenological development. 

Our deep learning model accounting for multi-variate memory effects holds promise for improving our understanding of 570 

vegetation responses to climatic variability. In future, the integration of deep learning phenology models into coupled land-
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surface and earth system models, may further enhance our ability to comprehend and simulate complex interactions and 

feedback within these systems. 
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