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Response to Reviewers 

Reviewer #1 

Based on in situ observation data of plant phenology at 50 sites distributed across Northern 
American, the authors trained a deep learning model LSTM which has the potential to capture 
and model the meteorological memory effects on vegetation phenology. The topic of this study 
is very important and interesting. It provides a new pathway to simulate and investigate the 
complex impacts of environmental factors on plant canopy dynamics. In addition, the 
manuscript is overall well organized, and the methods used in this study have been introduced 
detailedly. 

Author Response (AR): We thank the reviewer for the thoughtful evaluation of our study 
and for the valuable feedback. Below, we address each comment provided by the reviewer 
in our responses point by point. 

Nonetheless, I still have some questions on the method and results of this study: 

• The DeepPhenoMem model in this study is trained at 45 sites, and evaluated at 5 sites. Some 
random factors (e.g. the specific climate and species in the 4 validation sites compared to the 
training sites) might strongly affect the evaluation results. To give a more robust evaluation on 
the model, I would suggest the authors to do a 10-fold (or 5-fold) cross validation. 

AR: Thank you for your valuable suggestion. We recognize the importance of robust 
model validation and appreciate your recommendation for cross-validation to ensure the 
generalizability of our DeepPhenoMem model. 

In response to your concern, we would like to clarify that during the development of 
DeepPhenoMem, we indeed implemented a cross-validation strategy to assess the model's 
performance accurately. Specifically, we employed a leave-one-site-out cross-validation 
approach, which varies in folds depending on the PFT: 25-fold for the DB, 12-fold for the 
EN, and 8-fold for the GR. This method was integral to our process for identifying the 
most effective model architectures and hyper-parameters, ensuring that our model is 
robust across different sites. 

Furthermore, beyond the leave-one-site-out cross-validation, we also designated an 
additional test set, entirely excluded from the model development phase. This test set, 
drawn from 5 separate sites, was not involved in any part of the training or validation 
processes, thereby eliminating the possibility of influencing the model's development. 



We acknowledge the importance of the point raised in your review and realize that our 
initial explanation might not have been sufficiently detailed. In our revised manuscript, 
we will elaborate on our validation strategy.  

• There are 3 unseen sites for deciduous broadleaved forests were used to test the trained model 
in this study. Why not show the evaluation results at all of these 3 sites in Figs. 5 & 6. The 
readers might wonder that only the site with best model performance for PFT DB was showed 
in Figs. 5 & 6. The evaluation results might thus be biased. 

AR: Thank you for your feedback. In our study, we chose to present the results from the 
site with the longest time-series in Figs 5 and 6. This decision was made to demonstrate 
the model's ability to capture changing trends over time. However, we acknowledge your 
concern regarding the potential for biased interpretation of the model's performance. To 
address this, we will include the evaluation results from the two additional unseen sites in 
the supplementary materials. 

• The deciduous broadleaved forests (DB) generally show stronger seasonal variability 
compared to evergreen needle-leaved (EN) forests. I am wondering why the DeepPhenoMem 
model performs better for EN, compared to DB (Table 1, Fig. 3). If it is only because the BD 
has been tested at three sites, while the EN was only tested in 1 sites? In theory, the observed 
and simulated GCC for DB and grassland could be low to 0. Why the GCC for DB and 
grassland are all higher than 0.3. Are there any evergreen plants living in the DB and grassland 
sites. In addition, the EN keeps being green across the year, is it accurate enough to extracted 
the GCC from the digital images photographed by automated and high-frequency digital 
cameras. Even in the end of growing season, the GCC for EN should still be high. 

AR: Thank you for your insightful questions, which have prompted us to refine our 
explanations. Here is the summary response to them. 

1. Better performance of DeepPhenoMem Model in EN compared to DB 

The superior performance in estimating GCC for the EN compared to the DB 
might be attributed to two main factors:  

1) Spring and autumn variability in GCC: The EN exhibits more gradual 
changes in GCC during spring and autumn, facilitating more accurate model 
simulations of GCC. This contrasts with the DB, where abrupt environmental 
changes lead to more volatile GCC values. 

2) Memory effect: The EN may have a longer memory effect, meaning its GCC 
values are influenced by past conditions over a longer period. In contrast, the GCC 
for DB respond more immediately to current environmental factors. 

2. GCC values 

We would like to clarify that the statement "GCC for DB and grassland could be 
as low as 0" is untrue. GCC is calculated as the relative intensity of green 
compared to the total intensity from red, green, and blue (RGB) channels. A GCC 
value of 0 would imply the absence of green light, which is not representative of 
any natural vegetation state. In reality, a balanced mix of RGB, resulting in a 



"grey" appearance, corresponds to a GCC value of approximately 0.33 (below). 
Therefore, a GCC of 0 (below), indicating the presence of only red, only blue, or a 
mix of red and blue with no green, does not accurately describe the appearance of 
barren or dormant vegetation. 

GCC ≈ 0.33, corresponding to “grey”: 

   
  

 
RGB = 100, 100, 100             RGB = 50, 50, 50              RGB = 200, 200, 200  

GCC = 0: 

   

 

RGB = 100, 0, 0             RGB = 100, 0, 100        RGB = 0, 0, 100 

3. Seasonal changes of GCC in EN forest in Phenocam data 

While PhenoCam data are not perfect, the ability of GCC and other derived 
indices to parallel EN canopy changes in canopy photosynthetic capacity, pigment 
ratios, and other vegetation indices, suggests that these data are sufficiently 
“accurate enough to extracted the GCC from the digital images photographed by 
automated and high-frequency digital cameras”. See Seyednasrollah et al. 2019 
for more information.  

The PhenoCam dataset, despite its limitations, effectively captures changes in 
canopy photosynthetic capacity, pigment ratios, and other vegetation indices. This 
suggests that GCC and similar indices derived from high-frequency, automated 
digital camera images are reliable for tracking vegetation phenology across 
diverse biomes. For more detailed information, we refer to the study by 
Seyednasrollah et al. (2019), which supports the accuracy of PhenoCam data in 
monitoring vegetation changes. 

The seasonal changes in pigment ratios in EN forests result in a canopy that is 
much less green in the winter than it is in the summer, in terms of GCC. As shown 
in the plot below, when GCC decreases during the winter season (data for 
Howland AmeriFlux site), the relative “blueness” and “redness” of the canopy are 
increasing, reflecting photoprotective pigment changes (more carotenoids, change 
in xanthophylls). As demonstrated in our response to the question about L126 (see 
Reviewer #2), human eyes appear to be much more sensitive to the overall 
intensity of a particular (e.g., green) color channel, than the relative intensity of 
that color. 



 

• Based on the observed data, the authors can actually calculate the sensitivities of SOS and 
EOS to warming using linear regression (e.g. Fu et al., 2015, Nature). I am wondering if the 
temperature sensitivities simulated from the trained DeepPhenoMem model in this study are 
comparable to the values calculated based on observations. I would suggest the authors to do a 
comparison/evaluation. 

AR: Thank you for your suggestion. We did not compare the sensitivities of SOS/EOS to 
warming with Fu et al. 2015, because we also consider that 1) Fu et al. 2015 is based on 
leaf unfolding data, our study used SOS/EOS from PhenoCam, which is a more integrated 
measure of land surface phenology. Given that PhenoCam data may cover multiple 
individuals within the region of interest, the signal may not be as distinct as that from leaf 
unfolding data; 2) Fu et al. 2015 used very long archives of data, whereas PhenoCam data, 
with the exception of few long term’s sites, has shorter data record. The length of the 
period can affect the estimated SOS/EOS sensitivity to temperature, which can lead to 
spurious differences in temperature sensitivity of phenology (Keenan et al., 2020). 

Specific comments: 

L147-148: Is it accurate enough to use the sum of precipitation over the previous month as a 
proxy of daily SW? Is there any reference of Eq. 3. Maybe it is better to simply say the sum of 
precipitation over the previous month has been included in the model, without mentioning the 
SW. 

AR: We agree with the reviewer that the use of the term “soil water available” might lead 
to misunderstanding. Given the unavailability of direct soil moisture data, we have used 
a 30-day backward running mean of precipitation, assigning decreasing weights (ranging 
from 0 to 1) to days further back in the preceding month, to serve as a proxy for soil 
moisture. This index has been demonstrated to serve effectively as a proxy for soil 
moisture where direct soil moisture measurements are lacking (Migliavacca et al. 2011). 
Therefore, we have adopted it as a feasible workaround for estimating soil moisture levels 
within our model. We acknowledge the necessity of elucidating this methodology in our 
revised manuscript. 

L163-164: Why not conduct a cross-validation? 

AR: We apologize for any confusion caused by our initial description in the methods 
section. To clarify, we indeed conducted a leave-one-site-out cross-validation, which was 
implemented as a 25-fold for DB, a 12-fold for EN, and an 8-fold for GR. This procedure 
is detailed in lines 178-179 of our manuscript. We will amend the methods section to 
ensure this is clearly communicated. 

Table 1: Please add RMSE of each model for each vegetation type 



AR: Thank you for your advice. We will include the RMSE values for each model and 
vegetation type in Table 1. 

Fig. 4: What does the rhombus represent here? The significance of difference between two 
versions of the model? If no, please provide a significance test between results from the M0 
and Mfull. The sub-plots a, b, c show results for DB, EN, GR, respectively? 

AR: In Fig. 4, the rhombus represents the outliers, which are defined as the points beyond 
1.5 times the interquartile range (the difference between the 75th and 25th percentiles). 
You are correct that the sub-plots labeled a, b, and c correspond to the results for DB, 
EN, and GR, respectively. We will ensure to include this information in the caption of Fig. 
4 for clarity. 

Regarding the significance of the difference between the results from models M0 and Mfull, 
we will conduct a significance test and provide the relevant statistical analysis. Thank you 
for bringing this to our attention. 

Figs. 5 & 6: There are 3 unseen sites for DB (Fig. 1), why only results for harvardbarn2 was 
presented? 

AR: We appreciate your observation. The results for the two other unseen sites for DB 
will indeed be included in the supplementary materials. Please also refer to our response 
to the second general comment for further clarification.  

L376-378:  I did not find what result in this study indicate the cumulative thermal summation, 
rather than daily temperature alone, determines vegetation phenology 

AR: Our findings indicate that the full-memory-effect model (Mfull), which accounts for 
the memory effect of temperature, outperforms the no-memory-effect model (M0), which 
only considers the instantaneous effect of daily temperature. This suggests that 
temperature memory, or cumulative thermal summation, plays a crucial role in driving 
vegetation phenology, rather than relying solely on daily temperature. We will improve 
the formulation in the revised manuscript. 

L406-411: Not fully true. The phenology module of Earth System models (ESMs) indeed only 
focuses on a few specific phenological events (e.g. start and end of the growing season). 
However, the ESMs also simulate the whole time series of canopy development/evolution 
across the whole growing season, by mechanically simulating the photosynthesis, autotrophic 
respiration, carbon allocation, etc. To have a closed mass balance of carbon, the canopy 
evolution has to be simulated mechanically, rather than using an empirical model or machine 
learning model. 

AR: In many Earth system models, such as CLM 4.5 and LPJ (Peano et al. 2021),  
phenology is modeled as a function of climatic drivers only using PFT-specific thresholds 
for chilling, growing degree days, etc. Some models also more realistically connect to the 
carbon cycle, i.e., leaves grow at a carbon cost. For the first type of ESM, where phenology 
is derived only as a function of climate, our data-driven approach can be directly used as 
a substitution for the empirical formulations. For the second type of ESM, where 
phenology also is dependent on the available carbon resources, one would have to extend 
our data-driven approach to a hybrid approach (e.g., ElGhawi et al. 2023 for land-



atmosphere fluxes) where the carbon resources are also considered in the input and the 
loss function, i.e., leaf growth depletes carbon resources from the reserve pool and 
dropped leaves are added to the humus pool, satisfying carbon mass balance. The carbon 
mass balance then acts as a constraint on the data-driven phenology model. 

 

Reviewer #2 

General comments: 

This study aims to train an LTSM model to simulate the temporal evolution of a measure of 
canopy greenness observed with in-situ repeat, digital photography across three plant 
functional types, testing performance against the final year of observations at the ~50 training 
sites, and across multiple years at several sites not used in training. This is an interesting 
proposal and, given the current limitations in long established phenology models, potentially 
very useful to a wide community of vegetation modelers. The primary conclusions that the 
LTSM model seems to capture some of the underlaying controls on phenology, that 
incorporating meteorological memory effects improves performance, and the models exhibits 
plausible relationships are sound. 

However, the results as presented are difficult to interpret beyond this – the reliance on R2 
statistics is potentially misleading considering the marked biases exhibited by the model.  
Incorporating RMSE or some other measure of bias throughout the results and discussion is 
required to better understand where and when the model performs well or otherwise. 
Contrasting and explaining (lack of) model performance across space/time/PFT would 
potentially be more informative than the current approach which tends towards endorsing 
model performance in very vague terms. At a minimum, this would include adding RMSE 
values to Table 1 and including in Figure 4 and moving Figure 9 from the Discussion to the 
Results and maybe incorporating more discussion of Figure S2, as well as adding additional 
interpretation and discussion of these results related to the bias.  

AR: We appreciate your detailed review and valuable feedback. Recognizing the 
significance of including more comprehensive indices, such as RMSE, for enhanced 
evaluation and interpretation of model performance, we have revised Table 1 and Figure 
4 to incorporate RMSE values. In the following sections, we will address each of your 
specific comments in detail. 

Specific comments: 

L126: Need some additional information that explains the limited and very similar dynamical 
range in GCC across the three PFTs. Why is there not more annual variation in deciduous v. 
evergreen trees in particular? 

AR: Thanks for your question. Firstly, GCC ranges observed are as follows: 0.30-0.46 for 
Deciduous Broadleaf (DB), 0.32-0.43 for Evergreen Needleleaf (EN), and 0.30-0.43 for 
Grassland (GR). This data indicates a relatively higher variation in GCC for deciduous 
trees compared to evergreen trees, approximately 50% more. 



However, it's important to note that "evergreen trees", particularly those in seasonally 
cold conifer forests, exhibit significant seasonal variation in canopy color. This variation 
is largely due to changes in photoprotective pigments, which cause the canopy to appear 
"more red" (indicating a lower GCC) in winter compared to summer. This phenomenon 
is supported by the work of Seyednasrollah et al. (2019) and further illustrated by Keenan 
et al. (2014), which demonstrates how canopy color in Deciduous Broadleaf Forests can 
be modeled as a nonlinear mixing model with two endmembers, one the color of the 
leafless canopy and the other the color of individual leaves.  

In winter, the canopy of an EN forest is slightly "more green" compared to the grey 
branches of a DB forest. Conversely, in summer, the EN canopy is "less green" than the 
bright emerald green of new foliage in DB. Therefore, the dynamical range in GCC is not 
identical across these forest types. 

Additionally, the GCC index does not necessarily correspond to what human eyes would 
perceive as the brightest green, but rather characterizes the relative brightness of green 
relative to other colors. For instance, an RGB signature of 0, 50, 0 results in a GCC of 1.0 
(left panel), while an RGB signature of 50, 150, 50 has a GCC of 0.60 (right panel). To the 
human eye, the right panel probably looks "more green" due to its brighter intensity, 
despite having a lower GCC value. This discrepancy highlights the importance of 
considering both the quantitative GCC values and the qualitative aspects of color 
perception in analyzing canopy dynamics. 

      GCC = 1.0                         GCC = 0.6 

    

 

    RGB = 0, 50, 0                 RGB = 50, 150, 50 

L153: It doesn’t seem appropriate to call weighted mean monthly precipitation “soil water” – 
it isn’t and should be renamed. Also, it was an unfortunate choice of variable to include when 
trying to tease out the difference between models with and without memory effects as by design 
it will capture an approximation of soil moisture memory that won’t be removed by the 
shuffling in the M0 model and leads to a mixture of instantaneous and time integrating variables 
in the regression model. If this can be included, then why not some cumulative temperature 
term, or day of year etc. which are known to strongly influence phenology. 

AR: We acknowledge the concern regarding the terminology used for weighted mean 
monthly precipitation and its designation as "soil water availability". To clarify, this 
index is calculated by determining the weighted mean precipitation, with the values 
decreasing to zero one month before the date of interest. Given its calculation method and 
application, we will rename the terminology in our revised manuscript. This index has 
been demonstrated to serve effectively as a proxy for soil moisture where direct soil 
moisture measurements are unavailable (Migliavacca et al. 2011).  

In our paper, the inclusion of soil moisture's influence is essential. However, due to the 
lack of measured soil moisture data, we opted for this proxy to represent soil moisture 



conditions. We agree that this proxy can have the memory effect, which is like the 
memory effect of soil moisture.  

Furthermore, we acknowledge the recommendation to consider additional factors such 
as cumulative temperature, which also significantly influence phenology. In theory, the 
LSTM approach is capable of inherently assimilating this temperature-related memory 
information. Therefore, we directly incorporate temperature as an input. 

L251: Figures 1, 4 and Figure S1 indicate there are three deciduous test sites? It’s unclear which 
(maybe all?) are being shown in Figure 3 

AR: You are correct that there are 3 unseen sites and the data in 2018 from each site as 
the test data for DB. In Fig. 3, we indeed present the results for all test data, including 
those from the three deciduous sites. We will clarify this point in the manuscript to avoid 
any confusion. Thank you for your feedback. 

L270: Here, and elsewhere in several places in the manuscript, reference to figure numbers is 
incorrect. Please check all these carefully. 

AR: Thanks for your kind reminder. We have renumbered the figures throughout the 
manuscript to ensure they are consecutive. 

L276: There is evidently zero/minimal skill in simulating daily anomalies, whilst overall R2 
values indicate some skill in seasonal variability/monthly times scales. Is attempting to 
simulate what are presumably noisy daily data a valuable test? Can some smoothing be applied 
to investigate if there is any model skill between daily and monthly time scales. Or is there 
only really skill in seasonal variability - making additional analysis of variation of a few days 
in SOS and EOS difficult to interpret? 

AR: We acknowledge the challenges in simulating daily anomalies, as indicated by the 
minimal skill observed in our LSTM models. Despite the difficulty associated with 
modeling daily variability, our findings reveals that the full-memory-effect model (Mfull) 
performs better in predicting daily anomalies compared to the no-memory-effect model 
(M0). This finding indicats the significance of memory effects in enhancing the model's 
capability to simulate daily anomalies.  

As you mentioned there might be noise in daily data, in this study we have applied a 
locally weighted scatterplot smoothing method to reduce noise in the daily data. 

L280: Here is a clear example of the bias that needs to be quantified and examined more 
thoroughly throughout the whole analysis. 

AR: We acknowledge that our models have limitations in simulating absolute GCC values 
accurately, as discussed in lines 415-428. However, it's important to note that the bias in 
absolute values is less significant compared to the seasonal dynamics of GCC which is 
used for detecting phenology. 
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