

1 *Supplment*

2 Observations of the vertical distributions of summertime
3 atmospheric pollutants in Nam Co: OH production and source
4 analysis

5 Chengzhi Xing¹, Cheng Liu^{2,1,3,5,*}, Chunxiang Ye^{4,*}, Xiangguang Ji⁷, Jingkai Xue⁶, Jinping
6 Ou¹, Hongyu Wu⁶, and Qihou Hu¹

7
8 ¹ Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes
9 of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China

10 ² Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of
11 China, Hefei, 230026, China

12 ³ Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy
13 of Sciences, Xiamen, 361021, China

14 ⁴ College of Environmental Sciences and Engineering, Peking University, 100871 Beijing

15 ⁵ Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of
16 Science and Technology of China, Hefei, 230026, China

17 ⁶ School of Environmental Science and Optoelectronic Technology, University of Science and Technology of
18 China, Hefei, 230026, China

19 ⁷ Institute of Physical Science and Information Technology, Anhui University, Hefei, 230601, China

20 *Corresponding author. E-mail: chliu81@ustc.edu.cn; c.ye@pku.edu.cn

21
22

25 Figure S1. Averaged spatial distributions of (a) AOD monitored by Himawari-8, (b) O₃ total VCDs monitored by
 26 OMI, (c) NO₂ VCDs monitored by TROPOMI, (and d) HCHO VCDs monitored by TROPOMI from May to July
 27 2019.
 28

29

30 Figure S2. The diurnal variation of PBL in Nam Co from May to July 2019. The top and bottom of the box
31 represented 75th and 25th percentiles, respectively. The lines and dots within the boxes were the median and mean,
32 respectively.

33

34
35 Figure S3. Spatial distributions of 24-h WPSCF values for NO₂ at (a) 300 m, and (b) 400 m height
36 layers from 01 May to 09 July 2019 over CAS (NAMORS).
37

38

39 Figure S4. Ozone vertical profile measure by (a) TROPOMI at Nam Co, (b) lidar at Yangbajing (Feng
40 et al., 2019), (c) ozonesonde at Qaidam (Zhang et al., 2020), and (d) lidar at Lhasa (Yu et al., 2022).
41

42

43 Figure S5. Wind direction and wind speed at (a) 10 m, (b) 500 m, (c) 1000 m, (d) 1300 m, and (e) 1800
 44 m at a range of 25°N-35°N and 85°E-95°E, respectively.

45

46

47 Figure S6. Scatter plots of HONO vs NO_2 at (a-b) 0-0.2 km, (c-d) 0.4-0.6 km, (e-f) 0.8-1.0 km, (g-h)
48 1.2-1.4 km, and (i-j) 1.6-1.8 km coloured by aerosol extinction coefficients and water vapour in the top
49 and bottom row, respectively, from 01 May to 09 July 2019.

50

51
52
53
54
55

Figure S7. The percentage of allocation to each mean 48-h backward trajectory cluster arriving at CAS (NAMORS) at (a) 200 m, (b) 600 m, (c) 1000 m, (d) 1400 m, and (e) 1800 m height layers from 01 May to 09 July 2019.

56

57 Figure S8. Spatial distributions of 48-h WPSCF values for O₃ at (a) 200 m, (b) 600 m, (c) 1000 m, (d)

58 1400 m, and (e) 1800 m height layers from 01 May to 09 July 2019 over CAS (NAMORS).

59

60
61
62

Figure S9. The spatial distribution of fire point in south Asian subcontinent from May to July 2019.

63 Appendix: WRF model configurations

64 The Weather Research and Forecasting (WRF) model was used to simulate the planetary boundary layer (PBL) height
65 on the Tibetan Plateau. The detailed description of WRF model was given in the WRF website
66 (<http://www.wrf-model.org/index.php>). In this work, the simulation domain covered 25°N-35°N and 80°E-100°E. The
67 horizontal resolution of this simulation was set to $20 \times 20 \text{ km}^2$, and we set 26 hybrid pressure-sigma levels in the
68 vertical direction. We selected the 6-h final operational global analysis (FNL) data as the initial meteorological fields
69 and boundary conditions. The data were provided by the National Centers for Environmental Prediction (NCEP) with
70 a $1^\circ \times 1^\circ$ spatial resolution. Moreover, the NCEP Administrative Data Processing (ADP) Global Surface
71 Observational Weather Data (ds461.0) and Upper Air Observational Weather Data (ds351.0) with 6-h temporal
72 resolution were used to accurately reproduce the methodology. The physical parameterization schemes adopted in this
73 study were described in Table S1.

74 Table S1. Model physical parameterization schemes.

Schemes	Description
Microphysics	Purdue Lin Scheme (Chen et al., 2002)
Longwave radiation	Rapid radiative RRTMG Scheme (Iacono et al., 2008)
Shortwave radiation	RRTMG Scheme (Iacono et al., 2008)
Cumulus parameterization	Grell-Freitas Ensemble Scheme (Grell et al., 2014)
Land surface	Unified Noah Land Surface Model (Tewari et al., 2004)
Planetary boundary layer	Yonsei University Scheme (Hong et al., 2006)

75
76

77 References

78 [1] Fang, X., Li, T., Ban, C., Wu, Z., Li, J., Li, F., Cen, Y., and Tian, B.: A mobile differential
79 absorption lidar for simultaneous observations of tropospheric and stratospheric ozone over Tibet, Opt.
80 Express, 2019, 27(4), 4126-4139, doi:10.1364/OE.27.004126.

81 [2] Yu, J., Meng, L., Chen, Y., Zhang, H., and Liu, J.: Ozone profiles, precursors, and vertical
82 distribution in urban Lhasa, Tibetan Plateau, Remote Sens., 2022, 14(11), doi:10.3390/rs14112533.

83 [3] Zhang, J., Xia, X., and Wu, X.: First in situ UV profile across the UTLS accompanied by ozone
84 measurement over the Tibetan Plateau, J. Environ. Sci., 2020, 98, 71-76, doi:10.1016/j.jes.2020.05.020.