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Abstract  1 

The Tibetan Plateau (TP) plays a key role in regional environment and global climate change, however, 2 

the lack of vertical observation of atmospheric species, such as HONO and O3, hinders a deeper 3 

understanding of the atmospheric chemistry and atmospheric oxidation capacity (AOC) on the TP. In 4 

this study, we conducted multi-axis differential optical absorption spectroscopy (MAX-DOAS) 5 

measurements at Nam Co, the central TP, to observe the vertical profiles of aerosol, water vapor (H2O), 6 

NO2, HONO and O3 from May to July 2019. In addition to NO2 mainly exhibiting a Gaussian shape 7 

with the maximum value appearing at 300-400 m, other four species all showed an exponential shape 8 

and decreased with the increase of height. The maximum values of monthly averaged aerosol (0.17 9 

km-1) and O3 (66.71 ppb) occurred on May, H2O (3.68×1017 molec cm-3) and HONO (0.13 ppb) 10 

appeared on July, while NO2 (0.39 ppb) occurred on June at 200-400 m layer. H2O, HONO and O3 all 11 

exhibited a multi-peak pattern, and aerosol appeared a bi-peak pattern for their averaged diurnal 12 

variations. The averaged vertical profiles of OH production rates from O3 and HONO all exhibited an 13 

exponential shape decreasing with the increase of height with maximum values of 2.61 ppb/h and 0.49 14 

ppb/h at the bottom layer, respectively. The total OH production rate contributed by HONO and O3 on 15 

the TP was obviously larger than that in low-altitude areas. In addition, source analysis for HONO and 16 

O3 at different height layers were conducted. The heterogeneous reaction of NO2 on wet surfaces was a 17 

significant source of HONO. The maximum values of HONO/NO2 appeared around H2O being 1.0×18 

1017 molec cm-3 and aerosol being lager 0.15 km-1 under 1.0 km, and the maximum values usually 19 

accompanied with H2O being 1.0-2.0×1017 molec cm-3 and aerosol being lager 0.02 km-1 at 1.0-2.0 km. 20 

O3 was potentially sourced from south Asian subcontinent and Himalayas through long-range transport. 21 

Our results enrich the new understanding of vertical distribution of atmospheric components and 22 

explained the strong AOC on the TP. 23 

 24 

1 Introduction 25 
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The TP spans 2.5 million square kilometers with an average altitude of over 4000 m. Therefore, the TP 26 

is called the “Third Pole” of the earth (Ma et al., 2020; Kang et al., 2022). It is the home to tens of 27 

thousands of glaciers and nourishes more than 10 of Asia’s rivers, thus it also acts the role of “Water 28 

Tower of Asia” (Qu et al., 2019; Ma et al., 2022). Due to its special topography, the TP is the heat 29 

source of atmosphere due the strong solar radiation, which as the driven force to profoundly affect the 30 

regional atmospheric circulation, global weather conditions and climate change (Yanai et al., 1992; 31 

Boos et al., 2010; Chen et al., 2015; Liu et al., 2022; Zhou et al., 2022). Monsoon rainfall in Asia, flood 32 

over the Yangtze River valley, and El Niño in the Pacific Ocean are strongly associated with the TP 33 

(Hsu et al., 2003; Li et al., 2016; Lei et al., 2019). In addition, the cyclone circulations caused by the 34 

TP heat source also can inhibit the diffusion of atmospheric pollutants in the areas around the TP, such 35 

as the Sichuan Basin, causing regional pollution (Zhang et al., 2019). Therefore, observations of the 36 

atmospheric species on the TP are essential to enhance the in-depth understanding of its atmospheric 37 

physicochemical processes. 38 

However, deciphering the atmospheric environment of the TP is highly challenging and dangerous, due 39 

to its complex topography and harsh environment (Barnett et al., 2005; Bolch et al., 2012; Cong et al., 40 

2015; Kang et al., 2016). In order to unveil the feature of atmospheric composition over the TP and 41 

their corresponding climate feedback, a large number of field observation stations have been 42 

established, and a series of field campaigns have continued to be carried out recently, especially after 43 

the performance of “the Second Tibetan Plateau Scientific Expedition and Research Program” (Che and 44 

Zhao 2021; Wang et al., 2021; Ran et al., 2022). The China National Environmental Monitoring Center 45 

(CNEMC) has established an in-situ monitoring network with more than 12 stations over the TP, such 46 

as Lhasa, Shigatse, Shannan, Nyingchi, Nagqu, Ngari, Qamdo, Diqing, Aba, Guoluo, Xining, and 47 

Haixi, to continuously monitor the surface concentrations of six atmospheric components (i.e. PM10, 48 

PM2.5, NO2, SO2, O3 and CO) since 2013 (Gao et al., 2020; Li et al., 2020; Sun et al., 2021). The 49 

Institute of Tibetan Plateau Research, Chinese Academy of Sciences, has also established six long-term 50 

field observation stations to measure meteorological parameters and small amounts of atmospheric 51 

composition (i.e. black carbon, aerosol optical density (AOD)) (Ma et al., 2020). In addition, scientists 52 

are relying on advancements in satellite remote sensing technology, such as the tropospheric 53 

monitoring instrument (TROPOMI), the ozone monitoring instrument (OMI), the moderate-resolution 54 

imaging spectroradiometer (MODIS) and the cloud-aerosol lidar and infrared pathfinder satellite 55 

observation (CALIPSO), to monitor the spatial and temporal evolutions of atmospheric composition on 56 

the TP (Zhu et al., 2019; Li et al., 2020; Rawat and Naja 2022). Their advantage is to obtain the column 57 

densities of pollutants in a large-scale space of the TP. Although CALIPSO could detect aerosol 58 

vertical profiles, the spatiotemporal resolution (i.e. ~5.0 km horizontal resolution, 0.06 km vertical 59 

resolution and ~16 d temporal resolution) is limited and the data uncertainty in the planetary boundary 60 

layer (PBL) is large due to the low signal-to-noise ratio (Huang et al., 2007). However, several studies 61 

also revealed that the formation, aging and transport processes of atmospheric composition on the TP 62 

occurs not only near the ground surface but also at high altitudes (Xu et al., 2020; Xu et al., 2022). The 63 

high PBL on the TP caused by its strong solar radiation and undulating terrain promotes the 64 

atmospheric exchange between the bottom troposphere and stratosphere (Yang et al., 2003; Seidel et al., 65 

2010). Therefore, the lack of vertical profiles of hinders the understanding of the evolution of trace 66 

gases and their environmental and climate effects over the TP. In recent years, balloon and lidar 67 

vertical measurements on the TP are occasionally carried out (Fang et al., 2019; Zhang et al., 2020; 68 

Dong et al., 2022), but their limited detection species (i.e. aerosol and O3) and high cost are obstacles 69 

that limit long-term continuous observation and the conduction of more in-depth scientific research. 70 

MAX-DOAS has the technical advantage of low-cost continuous observation of multiple atmospheric 71 

components (i.e. aerosol, O3 and their precursors) (Wang et al., 2018; Ma et al., 2020; Cheng et al., 72 

2021; Xing et al., 2021; Li et al., 2022; Cheng et al., 2023a, 2023b). Combining these data with better 73 

scientific models can reduce the modeling bias and promote to better understand the physical, chemical 74 

and dynamical processes. 75 

The strong convergent airflow formed under the combined action of monsoon, subtropical anticyclone 76 

and the airflow of subtropical westerlies could promote the accumulation of O3 on the TP in summer 77 
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(Ye and Gao 1997). Therefore, several studies have revealed the high O3 concentration on the TP (Li et 78 

al., 2022; Yang et al., 2022; Yu et al., 2022). The strong solar radiation, high O3 concentration and 79 

relatively high humidity on the TP provide great potential for high OH production. Lin et al. (2008) and 80 

Ye (2019) also confirmed that the high OH over the TP is mainly related to the reaction between O(1D) 81 

and H2O. The O(1D) is produced from the photolysis of O3 by UV radiation. Therefore, a hypothesis of 82 

“strong AOC over the TP” was put forward. Previous studies pointed out that HONO also play an 83 

important role in AOC at low-altitude areas, and its contribution to OH can reach 40-60%, and even 84 

more than 80% in the early morning (Michoud et al., 2012; Ryan et al., 2018; Xue et al., 2020). 85 

However, few HONO studies on the TP have been reported. Our previous study operated at the 86 

Qomolangma Atmospheric and Environmental Observation and Research Station, Chinese Academy of 87 

Sciences (QOMS-CAS) revealed that the HONO mainly distributed in the lower PBL and peaked in 88 

summer with 1.11 ppb, which is comparable to the average level of HONO in other low-altitude areas 89 

(Luo et al., 2010; Xing et al., 2021a, 2021b; Yang et al., 2021). It indicates that it is also necessary to 90 

study the contribution of HONO to AOC on the TP. Furthermore, understanding the vertical 91 

distribution of OH is of great significance for learning about the atmospheric chemical processes and 92 

the evolution of atmospheric components on the TP (Zhou et al., 2015). Identifying the sources of O3 93 

and HONO is the basis for studying the AOC on the TP. The limited researches concluded that the 94 

atmospheric HONO on the TP is mainly sourced from the emissions of vehicles, biomass burning and 95 

soil, except for the NO2 heterogeneous reaction on aerosol surfaces (Xing et al., 2021). The lower 96 

tropospheric O3 on the TP is mainly dominated by local photochemical reactions, regional horizontal 97 

transport, vertical mixing and the intrusion from stratosphere (Yin et al., 2017; Xu et al. 2018). 98 

In this study, we firstly analyzed the temporal and vertical characteristics of several atmospheric 99 

components (i.e. aerosol, H2O, NO2, HONO and O3) based on MAX-DOAS observations in Nam Co. 100 

Afterwards, the contributions of O3 and HONO to OH in the vertical space were discussed through the 101 

tropospheric ultraviolet and visible (TUV) radiative transfer model and MAX-DOAS measurements. 102 

Finally, the potential sources of O3 and HONO at different altitudes were analyzed based on the 103 

MAX-DOAS retrievals. 104 

2 Method and methodology 105 

2.1 Site 106 

The Nam Co Monitoring and Research Station for Multisphere Interactions, CAS (NAMORS) 107 

(30.774oN, 90.988oE; 4730 m a.s.l.) is located at the southeast banks of Nam Co lake and the foothills 108 

of the northern Mt. Nyainqêntanglha (Fig. 1). The station land is covered by alpine meadows with soil 109 

type of sandy silt loam. The southwest monsoon can carry abundant moisture from Indian Ocean to this 110 

station in summer to increase humidity and precipitation there. Moreover, due to the summertime huge 111 

evaporation from Nam Co lake, the atmospheric H2O around CAS (NAMORS) is more abundant than 112 

in other areas of the TP, resulting in lush grass vegetation and making the area around this station an 113 

important summertime pasture. In addition, there are not large industries and cities within 100 km of 114 

the CAS (NAMORS). The closest town to CAS (NAMORS) is Dangxiong county which is about 60 115 

km away from this station and lower about 500 m than this station. Only a small number of vehicles 116 

pass through this area during summer tourism season. Therefore, no obvious anthropogenic sources of 117 

air pollutants exist near this station. Averaged spatial distributions of AOD, O3, NO2 and HCHO 118 

monitored by satellite from May to July 2019 are shown in Figure S1. Elevated AOD, NO2, and O3 are 119 

mainly distributed in South Asian subcontinent (e.g. India and Nepal), the southern foothills of the 120 

Himalayas, which is located in the upwind direction of the southwest monsoon potentially affecting the 121 

atmospheric composition over CAS (NAMORS).  122 
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 123 

Figure 1. Geographical location of CAS (NAMORS) on the Tibet plateau. 124 

2.2 Measurements 125 

2.2.1 Instrument setup and spectral analysis 126 

The MAX-DOAS instrument installed at CAS (NAMORS) was operated from 01 May to 09 July 2019. 127 

It consists of three major parts: telescope unit, spectrometer unit and control unit. The detailed 128 

description of this instrument can be found in Xing et al. (2021). In this study, the elevation angle 129 

sequence was set to 1, 2, 3, 4, 5, 6, 8, 10,15, 30, and 90o with an exposure time of 60 s to each 130 

individual spectrum. The azimuth angle was set to 56o pointing to Nagqu direction. Moreover, only 131 

spectra collected under solar zenith angle (SZA) less than 75o was used for spectral analysis to avoid 132 

the strong stratospheric absorption. 133 

The differential slant column densities (DSCDs) of O4, H2O, NO2, HONO and O3 were retrieved using 134 

QDOAS software (http://uvvis.aeronomie.be/software/QDOAS/) developed by Royal Belgian Institute 135 

for Space Aeronomy (BIRA-IASB). The zenith spectrum measured at every sequence were selected as 136 

scan Frauenhofer reference spectrum. The retrieval configurations of O4, H2O, NO2, HONO and O3 137 

followed Xing et al. (2017), Lin et al. (2020), Xing et al. (2021), Wang et al. (2020) and Wang et al. 138 

(2018), respectively. The detailed DOAS fit settings of above five species were listed in Table 1. 139 

Corrected I0 (Aliwell et al., 2002) was used in this study. Fig. 2 shows a typical DOAS retrieval 140 

example for above five species. DOAS fit results with root mean square (RMS) values larger than 5×141 

10-4, 5×10-4, 5×10-4, 1×10-3, and 6×10-4 for O4, H2O, NO2, HONO, and O3, respectively, were 142 

filtered out. In addition, we calculated color index (CI) to remove cloud effect (Wagner et al., 2016). 143 

The data filter criteria according to CI followed by Ryan et al. (2018) and Xing et al. (2020). 144 

Afterwards, the quantified DSCDs of O4, H2O, NO2, HONO, and O3 remained 91.33%, 91.97%, 145 

92.16%, 86.42% and 81.09%, respectively. 146 

2.2.2 Vertical profile retrieval 147 

The vertical profiles of aerosol and trace gases (i.e. H2O, NO2, HONO and O3) were retrieved using 148 

algorithm based on optimal estimation method (OEM). A linearized pseudo-spherical vector discrete 149 

ordinate radiative transfer model VLIDORT was used as forward model and a Gauss-Newton (GN) 150 

scheme was used as the inversion strategy (Wedderburn et al., 1974). The detailed description of this 151 

algorithm can be found in Liu et al. (2021), Xing et al. (2021) and Wang et al. (2018). The detailed 152 

retrieval processes were depicted in Sect. S1 of the supplement. In this study, the initial a priori profile 153 

shape of above five species was set to exponential decreasing shape, and the AOD and vertical column 154 

densities (VCDs) simulated by weather research and forecasting model coupled chemistry (WRF-Chem) 155 

were also used as initial input a priori information to constrain the retrieval process. For the O3 profile 156 

retrieval, the stratospheric O3 profile was deducted using TROPOMI O3 profile (Zhao et al., 2021). We 157 

set 20 vertical layers from 0.0 to 4.0 km with a vertical resolution of 0.2 km. The correlation height was 158 

set to 1.0 km. Moreover, the surface albedo, single scattering albedo and asymmetry parameter were set 159 

to fixed constant of 0.08, 0.85 and 0.65, respectively (Irie et al., 2008). The retrieved vertical profiles 160 
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were removed under the condition of degree of freedom (DOF) and relative error less than 1.0 and 161 

100%, respectively. 162 

Table 1. Detailed DOAS retrieval settings for O4, H2O, NO2, HONO and O3. 163 
Parameter Data source Fitting intervals (nm) 

  O4 H2O NO2 HONO O3 

Wavelength range  338-370 433-455 338-370 340-373 320-340 

NO2 298K, I0-corrected, Vandaele et al. (1998) √ √ √ √ √ 

NO2 220K, I0-corrected, Vandaele et al. (1998) √ √ √ √ × 

O3 223K, I0-corrected, Serdyuchenko et al. (2014) √ √ √ √ √ 

O3 243K, I0-corrected, Serdyuchenko et al. (2014) √ × √ √ × 

O3 293K, I0-corrected, Serdyuchenko et al. (2014) × × × × √ 

O4 293K, Thalman and Volkamer (2013) √ √ √ √ √ 

HCHO 298K, Meller and Moortgat (2000) √ × √ √ √ 

Glyoxal 298K, Volkamer (2005) × √ × × × 

H2O HITEMP (Rothman et al. 2010) √ √ √ √ × 

BrO 223K, Fleischmann et al. (2004) √ × √ √ × 

HONO 296K, Stutz et al. (2000) × × × √ × 

Ring Calculated with QDOAS √ √ √ √ √ 

Polynomial degree  Order 3 Order 3 Order 3 Order 5 Order 3 

Intensity offset  Constant Constant Constant Constant No 

  164 
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Figure 2. DOAS fit examples of O4, H2O, NO2, HCHO, tropospheric O3 and stratospheric O3. The red 165 

line and black line represent the measured and fitted results, respectively. 166 

2.2.3 Error analysis 167 

The error sources can be divided into four different types: smoothing error, noise error, forward model 168 

error, and model parameter error (Rodgers, 2004). However, in terms of this classification, some errors 169 

are difficult to be calculated or estimated. For example, the forward model error, which is caused by an 170 

imperfect representation of the physics of the system, is hard to be quantified due to the difficulty of 171 

acquiring an improved forward model. Given calculation convenience and contributing ratios of 172 

different errors in total error budget, we mainly took into account following error sources, which were 173 

smoothing and noise errors, algorithm error, cross section error, and uncertainty related to the aerosol 174 

retrieval (only for trace gas). In this study, we estimated the contribution of different error sources to 175 

the AOD and VCDs of trace gases, and near-surface (0–200 m) trace gases’ concentrations and aerosol 176 

extinction coefficients (AECs), respectively. The detailed demonstrations and estimation methods are 177 

displayed below.  178 

a. Smoothing errors arise from the limited vertical resolution of profile retrieval. Noise errors denote 179 

the noise in the spectra (i.e., the error of DOAS fits). Considering the error of the retrieved state 180 

vector equaling the sum of these two independent errors, we calculated the sum of smoothing and 181 

noise errors on near-surface concentrations and column densities, which were 13 and 5 % for 182 

aerosols, 13 and 36 % for H2O, 12 and 14 % for NO2, 18 and 21 % for HONO, and 12 and 32 % for 183 

O3, respectively. 184 

b. Algorithm error is denoted by the differences between the measured and simulated DSCDs. This 185 

error contains forward model error from an imperfect approximation of forward function, parameter 186 

error of forward model, and other errors, such as detector noise (Rodgers, 2004). Algorithm error is 187 

a function of the viewing angle, and it is difficult to assign this error to each altitude. Thus, this 188 

error on the near-surface values and column densities is estimated through calculating the average 189 

relative differences between the measured and simulated DSCDs at the minimum and maximum 190 

elevation angle (except 90°), respectively (Wagner et al., 2004). In this study, we estimated these 191 

errors on the near-surface values and the column densities at 4 and 8 % for aerosols, 3 and 11 % for 192 

NO2, and 20 and 20 % for HONO referring to Wang et al. (2017, 2020), 1 and 8 % for H2O 193 

referring to Lin et al. (2020), and 6 and 10 % for O3 referring to Ji et al. (2023), respectively. 194 

c. Cross section error arises from the uncertainty in the cross section. According to Thalman and 195 

Volkamer, (2013), Lin et al. (2020), Vandaele et al. (1998), Stutz et al. (2000), and Serdyuchenko 196 

et al. (2014), we adopted 4, 3, 3, 5, and 2 % for O4 (aerosols), H2O, NO2, HONO and O3, 197 

respectively.  198 

d. The profile retrieval error for trace gases is sourced from the uncertainty of aerosol extinction 199 

profile retrieval and propagated to trace gas profile. This error could be roughly estimated based on 200 

a linear propagation of the total error budgets of the aerosol retrievals. The errors of the learned 201 

four trace gases were roughly estimated at 14 % for VCDs and 10 % for near-surface 202 

concentrations, respectively. 203 

The total uncertainty was the sum of all above errors in the Gaussian error propagation, and the error 204 

results were listed in Table 2. We found that the smoothing and noise errors played a dominant role in 205 

the total uncertainties of aerosol and trace gases. Moreover, improving the accuracy and temperature 206 

gradient of the absorption cross section is another important means to reduce the uncertainty of the 207 

vertical profiles in the future, especially for O3. 208 

Table 2. Error budget estimation (in %) of the retrieved near-surface (0–200 m) concentrations of trace 209 

gases and AECs, and AOD and VCDs.  210 
 Error sources Total 

Smoothing and 

noise errors 

Algorithm error Cross section 

error 

Related to the 

aerosol retrieval 

Near-surface aerosol 13 4 4 / 14 

H2O 13 1 3 14 19 

NO2 12 3 3 14 18 

HONO 18 20 5 14 29 
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O3 12 6 2 14 19 

VCD or AOD AOD 5 8 4 / 10 

H2O 36 8 3 10 38 

NO2 14 11 3 10 20 

HONO 21 20 5 10 31 

O3 32 10 2 10 35 

 211 

2.3 TUV model 212 

The calculation of photolysis rates of HONO and O3 used TUV radiation model 213 

(https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model) 214 

based on a full FORTRAN code. In order to ensure the accuracy of model running, we only selected 215 

data in sunny and cloudless days. Moreover, we developed a cloud classification method based on the 216 

diurnal variations of Color Index (CI=I330/I360) in Figure S2. The initial input parameters were as 217 

follows: the AOD at 361 nm was derived from aerosol extinction profiles measured by MAX-DOAS; 218 

the daily total ozone column density was measured by TROPOMI with a value range of 260-280 DU; 219 

the single scattering albedo (SSA) was calculated based on the regression analysis of multi-wavelength 220 

(361 and 477 nm) O4 absorptions measured by MAX-DOAS (Xing et al., 2019); fixed Ångström 221 

exponents of 0.508, 0.581 and 0.713 were used in May, June and July, respectively, referring to Xia et 222 

al. (2011). 223 

2.4 Backward trajectory, PSCF and CWT analysis 224 

The 48-h backward trajectories at five heights of 200, 600, 1000, 1400 and 1800 m were calculated 225 

using the Hybrid Single-particle Lagrangian Integrated Trajectory (HYSPLIT) model based on the 226 

Global Data Assimilation System (GDAS) to identify the major transport pathways of O3 (Draxler and 227 

Hess, 1998). Moreover, the calculated backward trajectories were clustered into three groups using 228 

Ward's variance method and Angle Distance algorithm (Ward 1963; Wang et al., 2006). 229 

In order to determine the potential source locations of O3 over CAS (NAMORS), the Potential Source 230 

Contribution Function (PSCF) model and Concentration Weighted Trajectory (CWT) model were used 231 

(Hong et al., 2019; Ou et al., 2021). The PSCF was calculated through the number of air trajectory 232 

endpoints being divided by the number of air trajectory endpoints. Moreover, a weighting function was 233 

introduced to reduce the increased uncertainties of PSCF with the increase of the distance between the 234 

grid and sampling point. In this study, the set of this weighting function referred to Yin et al. (2017). 235 

CWT can be used to calculate the weight concentration through averaging the concentrations 236 

associated with trajectories crossing the grid cell. Above weighting function was also introduced to 237 

calculate the WCWT (Hsu, et al., 2003). The detailed description of these two models can be found in 238 

Wang et al., 2006. 239 

2.5 Ancillary data 240 

The surface NO2, HONO and O3 concentrations used to validate the corresponding MAX-DOAS 241 

measurements were monitored by broadband cavity enhanced spectrometer (BBCES) (Fang et al., 242 

2017), long path absorption photometer (LOPAP) (Kleffmann et al., 2008) and Thermo Electron 49i 243 

(Shi et al., 2009), respectively. The PBL height was simulated using WRF with spatiotemporal 244 

resolutions of 20×20 km2 and 1.0 hour (detailed configurations in Sect. S3 of the supplement). 245 

Moreover, the large-scaled spatial distributions of AOD, O3 and NO2 over CAS (NAMORS) were 246 

monitored by Himawari-8 (Bessho et al., 2016), OMI (Veefkind et al., 2004) and TROPOMI (Griffin et 247 

al., 2018; Su et al., 2020), respectively. 248 

3 Results 249 

3.1 Overview of the measurements 250 

Figure 3 showed the averaged diurnal variation of AOD from 1st May to 9th July 2019, with an average 251 

value of 0.076 km-1 during 08:00-19:00. The AOD was 0.071 km-1 at 08:00, and then gradually 252 

decreased to a minimum value of 0.052 km-1 at 12:00. Subsequently, the AOD increased significantly, 253 

https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model
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reaching maximum values during 15:00-17:00 (average of 0.107km-1), which was about 1.408 times 254 

the diurnal average value. Considering the diurnal variation of wind speed (Figure S3), such an 255 

enhancement of AOD may be related to the long-range transport of aerosol from southern Asia (Yang 256 

et al., 2020; Bi et al., 2023). Moreover, 15:00-17:00 was the active time of tourists and local residents 257 

(i.e. cooking), and these kinds of anthropogenic sources contributed to the atmospheric AOD of 258 

NAMORS through short-distance transport (Yin et al., 2017; Zhang et al., 2017). After 17:00, the 259 

AODs decreased rapidly to 0.071 km-1 at 18:00 and 0.081 km-1 at 19:00, respectively. 260 

 261 

Figure 3. Averaged diurnal variation of AOD at CAS (NAMORS). The error bars represent the mean retrieved errors 262 
of AOD.  263 

As shown in Figure S4, the diurnal variation of PBL in Nam Co from May to July 2019 was lower in 264 

the early morning and late afternoon, but higher between 11:00 and 17:00, a relatively long period, 265 

with the maximum PBL larger than 2.0 km. Zhang et al. (2017) and Yang et al., (2017) also reported 266 

that the PBL in Nam Co was usually larger than 1.0 km during daytime in spring and summer. In order 267 

to investigate the height-dependent variations of aerosol, H2O, NO2, HONO and O3 within the PBL 268 

during the measurements, five height layers under the PBL (0.0-0.2 km, 0.4-0.6 km, 0.8-1.0 km, 269 

1.2-1.4 km and 1.6-1.8 km) were thus selected. 270 

Figure 4 showed the time series of the daily averaged aerosol, H2O, NO2, HONO and O3 at above five 271 

layers from 1st May to 9th July 2019. Aerosol mainly distributed at 0.0-0.2 km with an average 272 

extinction coefficient of 0.138 km-1, and the ratios of aerosol extinction at 0.4-0.6 km, 0.8-1.0 km, 273 

1.2-1.4 km and 1.6-1.8 km to those at 0.0-0.2 km were 39.34%, 18.77%, 7.29% and 2.62%, 274 

respectively. That indicated that the aerosol was usually local-emitted at the surface, and the 275 

occasionally appearance of strong aerosol extinction at 0.4-0.6 km, such as 13th and 30th June, was 276 

associated with long-range transport from south Asia (Figure S5, Wan et al., 2015; Li et al., 2016). The 277 

average concentration of H2O at 0.0-0.2 km was 2.35×1017 molec cm-3, and the ratios of H2O at 278 

0.4-0.6 km, 0.8-1.0 km, 1.2-1.4 km and 1.6-1.8 km to those at 0.0-0.2 km were 83.40%, 68.08%, 279 

50.64% and 35.74%, respectively, which should attribute to the transport of H2O from southern Asia 280 

driven by the Indian ocean monsoon and the elevated evaporation from Nam Co lake to lead to its not 281 

obvious vertical gradient (Figure S6, Lei et al., 2014; Zhu et al., 2019). The average concentration of 282 

NO2 at 0.0-0.2 km was 0.193 ppb, and its high concentration mainly distributed at 0.4-0.6 km after 15th 283 

May. The ratios of NO2 at 0.4-0.6 km, 0.8-1.0 km, 1.2-1.4 km and 1.6-1.8 km to those at the bottom 284 

layer were 104.03%, 59.05%, 24.62% and 12.84%, respectively. The elevation of the distribution 285 

height of high concentration NO2 should be attributed to the transport process from the NOx produced 286 

by ice and snow on the top of Mt. Tanggula under strong ultraviolet radiation (Boxe et al., 2005; Fisher 287 

2005; Lin et al., 2021). As depicted in Figure S7, the WPSCF passing through Mt. Tanggula showed 288 

high values at 300-400 m layer, especially at 400 m (> 0.3). It also indirectly indicated that the 289 

important contribution to NOx from ice and snow on the top of mountains under strong ultraviolet 290 

radiation on the TP. HONO mainly distributed at 0.0-0.2 km with an average value of 0.087 ppb, and 291 

the ratios of HONO at 0.4-0.6 km, 0.8-1.0 km, 1.2-1.4 km and 1.6-1.8 km to those at 0.0-0.2 km were 292 

58.49%, 44.64%, 31.30% and 21.67%, respectively. That indicated that the primary and secondary 293 

sources of HONO were mainly at the surface (Section 4.2). The vertical gradient of daily averaged O3 294 

concentration was also not obvious, which was associated with its vertical mixing and photochemical 295 
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production (Yin et al., 2017). As shown in Figure S8, the corresponding TROPOMI O3 profiles in Nam 296 

Co and O3 profiles measured by lidar and ozonesonde around Nam Co reported in several previous 297 

studies also exhibited an exponential shape (Fang et al., 2019; Zhang et al., 2020; Yu et al., 2022). The 298 

O3 average concentration at 0.0-0.2 km was 63.030 ppb, and the ratios of O3 at 0.4-0.6 km, 0.8-1.0 km, 299 

1.2-1.4 km and 1.6-1.8 km to those at surface were 89.25%, 82.44%, 80.16% and 79.13%, respectively.  300 

 301 

Figure 4. Time series of daily averaged (a) aerosol extinction, (b) H2O, (c) NO2, (d) HONO, and (e) O3 302 

monitored by MAX-DOAS at 0-0.2, 0.4-0.6, 0.8-1.0, 1.2-1.4 and 1.6-1.8 km five height layers from 01 303 

May to 09 July 2019. 304 

3.2 Vertical distributions of aerosol, H2O, NO2, HONO and O3 305 

The first row in Figure 5 provided the averaged vertical profiles of aerosol, H2O, NO2, HONO and O3 306 

from May to July 2019. We found that the vertical profiles of aerosol, H2O, HONO and O3 all 307 

exhibited an exponential shape with maximum values near the surface, while NO2 exhibited a Gaussian 308 

shape with the maximum value of 0.321 ppb occurring at 0.3-0.4 km layer. In addition to the effect of 309 

NOx transport, Xu et al. (2018) also revealed that the long-range high-altitude transport process from 310 

the northern south Asian subcontinent can significantly enhance the Nam Co’s peroxyacetyl nitrate 311 

(PAN) level which is a reservoir of NOx. As shown in the second row of Figure 5, the monthly 312 

averaged aerosol vertical profiles from May to July 2019 all exhibited an exponential shape, and varied 313 

in the order of May (0.17 km-1) > July (0.14 km-1) > June (0.11 km-1). Xu et al. (2018) and Neupane et 314 

al. (2019) also reported a similar monthly variations of black carbon (BC) from May to July over the 315 

TP, and revealed that it was mainly associated with the anthropogenic emissions (i.e. biomass burning) 316 

and its transport from south Asia. The monthly averaged vertical profile of H2O in May and July 317 

exhibited an exponential shape, while its maximum concentration layer slightly elevated to 0.1-0.2 km 318 
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in June which was related to the strongest monsoon transport (Figure S9). It varied in the order of July 319 

(3.68×1017 molec cm-3) > June (2.71×1017 molec cm-3) > May (2.26×1017 molec cm-3), and its 320 

maximum concentration occurring in July was strongly associated with the enhanced evaporation from 321 

the Nam Co lake (Xu et al., 2011). The monthly averaged vertical profiles of NO2 all exhibited a 322 

Gaussian shape from May to July, and its maximum values mainly distributed at 0.2-0.4 km layer 323 

varying in the order of June (0.39 ppb) > May (0.31 ppb) > July (0.28 ppb). It indicated that the 324 

regional transport from the NOx produced from ice and snow under strong shortwave radiation (Figure 325 

S7), NO2 emitted from vehicles due to the increased tourism, anthropogenic emissions from local 326 

residents (i.e. biomass burning and religious activities) played an important role in the vertical 327 

distribution characteristic of NO2 (Boxe et al., 2005; Chen et al., 2019). The monthly averaged vertical 328 

profiles of HONO from May to July all exhibited an exponential shape, with maximum values near the 329 

surface varying in the order of July (0.13 ppb) > May (0.07 ppb) > June (0.06 ppb). The local direct 330 

emissions from biomass burning, vehicles and soil should be main sources of the surface HONO (Xing 331 

et al., 2021). Moreover, the heterogeneous reaction of NO2 on wet surfaces should be another important 332 

source of HONO at different height layers (Section 4.2). For example, the aerosol extinction coefficient, 333 

and the concentrations of H2O and NO2 were all relatively large at the bottom layer in July, 334 

correspondingly, we observed the highest concentration of HONO near the surface in this month. The 335 

monthly averaged O3 vertical profiles all showed an exponential shape from May to July, and its 336 

surface concentration varied in the order of May (66.71 ppb) > July (61.45 ppb) > June (59.55 ppb). 337 

This kind of monthly variation trend of O3 was also reported by several previous studies (Yin et al., 338 

2017; Xu et al., 2018). The O3 in Nam Co was mainly sourced from stratospheric intrusion, 339 

photochemical reactions, long-range transport and local vertical mixing (Yin et al., 2017; Chen et al., 340 

2019). 341 

 342 

Figure 5. Vertical profiles of (a) aerosol extinction, (b) H2O, (c) NO2, (d) HONO, and (e) O3. The top 343 

row shows the averaged vertical profiles from 01 May to 09 July 2019. The middle row shows the 344 

monthly averaged vertical profiles. The bottom row shows the averaged diurnal vertical profiles from 345 

01 May to 09 July 2019. 346 

The third row in Figure 5 illustrated the averaged diurnal variations in vertical profiles of aerosol, H2O, 347 

NO2, HONO and O3 from May to July 2019. Aerosol mainly distributed under 1.0 km, especially 0.6 348 

km, and its mixing height was gradually increased with the rise of the PBL height after 12:00. 349 

Moreover, the diurnal variation of aerosol showed a bi-peak pattern, which was in line with the 350 

investigation reported by Pokharel et al. (2019). The first peak occurred between 08:00-10:00, and 351 
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another appeared after 15:00. The first peak should be attributed to the local emission of aerosol and 352 

the diurnal cycle of PBL (Zhang et al., 2017; Pokharel et al., 2019). The second peak was driven by 353 

regional transport and the interaction between local sandy silt loam surface and local meteorology. The 354 

high wind speed (> 4.5 m/s) at surface appeared after 15:00, which coincided with the appearance of 355 

the second aerosol peak (Figure S3). Moreover, the high extinction during the second peak was 356 

extended to 1.0 km associated with the wind speed larger than 8 m/s (Figure S10), which created a 357 

favorable condition for high-altitude aerosol transport. H2O mainly distributed under 1.0 km and above 358 

3.0 km, and its diurnal variation exhibited a multi-peak pattern. The first peak appeared between 359 

08:00-12:00, which was mainly affected by the monsoon drived long-range transport of H2O (Cong et 360 

al., 2009; Xu et al., 2020). The second and third peaks occurred at 15:00-16:00 and after 17:00, 361 

respectively. In addition to long-range transport, the enhanced evaporation from the Nam Co lake also 362 

significantly contributed to the appearance of these two peaks of H2O (Xu et al., 2011). NO2 mainly 363 

distributed at 0.2-0.4 km, and peaked before 10:00 and after 18:00 which were dominated by the effects 364 

of local emissions and regional transport from the NOx formed through ice and snow on the top of Mt. 365 

Tanggula under strong ultraviolet radiation (Figure S7) (Boxe et al., 2005; Fisher 2005; Chen et al., 366 

2019; Lin et al., 2021). Moreover, its diurnal mixing height was obviously correlated to the diurnal 367 

evolution of PBL height. HONO mainly distributed under 1.0 km, especially 0.4 km. Its diurnal 368 

variation showed a multi-peak pattern with three obvious peaks before 10:00, 15:00-16:00, and after 369 

19:00. In addition to local emissions (i.e. vehicle emission, biomass burning and soil emission), the 370 

heterogeneous reaction of NO2 on wet surfaces should be also an important HONO source (Xing et al., 371 

2021). We found that there were larger aerosol extinction (> 0.12 km-1) and higher concentrations of 372 

NO2 (> 0.20 ppb) and H2O (> 2.27×1017 molec cm-3) around three HONO peaks. O3 mainly 373 

distributed under 0.4 km, and its diurnal variation exhibited a multi-peak pattern with three peaks 374 

appearing before 09:00, 13:00-15:00 and after 19:00. The appearance of O3 peaks was mainly 375 

associated with the influence of the complex topography of the TP, long-range transport, local vertical 376 

mixing and stratospheric intrusion (Yin et al., 2017; Chen et al., 2019; Qian et al., 2022). The active 377 

photochemical reaction should be another important source of O3, especially for its second peak at 378 

13:00-15:00. 379 

3.3 Validation with independent data 380 

In order to validate the MAX-DOAS dataset, we extracted the concentrations of NO2, HONO and O3 at 381 

the bottom layer (0.0-0.1 km) from their corresponding vertical profiles to compare with in situ 382 

measurements. As shown in Figure 6(a-c), we found good agreements between MAX-DOAS and in 383 

situ observations with Pearson correlation coefficients (R) of 0.91, 0.62 and 0.82 (regression slope of 384 

0.89, 1.05 and 0.82) for NO2, HONO and O3, respectively. That indicated the good reliability of trace 385 

gases from MAX-DOAS retrievals. Moreover, we also compared the MAX-DOAS PBL and WRF PBL, 386 

and a similar variation trend was found. However, WRF PBL showed a significantly difference in 387 

height values with MAX-DOAS PBL before 12:00. That should be due to the simulation uncertainties 388 

for WRF model at Tibetan plateau with complex topography and meteorology (Yang et al., 2016; Xu et 389 

al., 2019). 390 
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 391 

Figure 6. Validations of (a) MAX-DOAS NO2 vs in situ NO2 (error bars represent the retrieved errors 392 

of NO2 from MAX-DOAS and BBCES), (b) MAX-DOAS HONO vs LOPAP HONO, (c) 393 

MAX-DOAS O3 vs in situ O3, and (d) MAX-DOAS PBL vs WRF PBL. 394 

4 Discussion 395 

4.1 OH production 396 

HONO and O3 are two important precursors of OH redical to enhance the AOC (Kleffmann et al., 2005; 397 

Ryan et al., 2018; Xing et al., 2021). In order to evaluate the AOC on the TP, we tried to analyze the 398 

OH production from HONO and O3 at different height layers through vertical observations and TUV 399 

calculations. The OH production rates from HONO and O3 were calculated using the following two 400 

equations: 401 

( ) ( ) [ ]
HONO

P OH J HONO HONO=   402 

( ) ( )( )
3

1

32 [ ]
O

P OH f J O D O=     403 

Where J(HONO) and J(O(1D)) were the photolysis rates of HONO and O(1D) calculated using TUV 404 

model. O(1D) was the product from O3 photolysis by UV radiation. f was the fraction of the process 405 

O(1D) + H2O → 2OH. 406 

Figure 7(a-b) showed the averaged diurnal vertical distributions of the photolysis rates J(HONO) and 407 

J(O(1D)) from May to July 2019. We found that the maximum J(HONO) and J(O(1D)) were all 408 

appeared at the bottom layer between 12:30 and 15:30 with values of 2.0×10-3 and 6.75×10-5 s-1, 409 

respectively. The maximum values were usually larger than that at low-altitude areas due to the 410 

stronger solar UV radiation on the TP (Su et al., 2008; Xing et al., 2021; Yang et al., 2021; Liu et al., 411 

2022), but being consistent with the values on the TP reported by Lin et al. (2008). Moreover, it should 412 

be noted that the values of J(HONO) and J(O(1D)) all decreased with the increase of altitude, which 413 

was significantly different with previous studies in low altitudes (Ryan et al., 2018; Xing et al., 2021; 414 

Xu et al., 2021). 415 
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 416 

Figure 7. Averaged diurnal vertical profiles of the (a) photolysis rate J(HONO), (b) photolysis rate 417 

J(O(1D)), (c) OH radical production rates from HONO photolysis, (d) OH radical production rates from 418 

O3 photolysis. (e) shows the averaged vertical profiles of OH radical production rates from HONO and 419 

O3 photolysis from 01 May to 09 July 2019.  420 

Figure 7(c-d) showed the averaged diurnal vertical profiles of OH production rates from HONO and O3 421 

photolysis from May to July 2019. P(OH)HONO exhibited a multi-peak pattern which mainly appeared 422 

before 10:00, 15:00-16:00, and after 19:00 at 0-0.4 km with a maximum value of 0.81 ppb/h. While 423 

P(OH)O3 showed a unimodal pattern occurring at 13:00-15:00 under 0.4 km with a maximum value of 424 

6.20 ppb/h. The averaged vertical profiles of P(OH)HONO and P(OH)O3 during the observation were 425 

depicted in Figure 7(e). We found that the maximum values of P(OH)HONO (0.49 ppb/h) and P(OH)O3 426 

(2.61 ppb/h) all appeared at the bottom layer, and decreased with height. That indicated O3 was an 427 

important contributor of OH production (> 80%) on the TP, which was about 5-6 times to HONO. 428 

Moreover, the OH production rates from HONO and O3 in other cities of China were depicted in Table 429 

3. The contribution percentage of O3 to P(OH) in Nam Co was significantly higher than that in other 430 

cities, which was due to the relatively high concentrations of O3 and H2O, and the strong radiation in 431 

Nam Co. In addition, P(OH)HONO in Nam Co was close to that in relatively dry areas (i.e. Beijing and 432 

Xianghe), but slightly lower than that in areas with relatively high humidity which can enhance the 433 

heterogeneous production of HONO (Ryan et al., 2018; Liu et al., 2019; Xing et al., 2021).  434 

Table 3. The maximum OH production rates contributed from HONO and O3 at different locations. 435 
Location Date P(OH)HONO (ppb/h) P(OH)O3 (ppb/h) References 

Xianghe (China) Jul. 2008-Apr. 2009 
~0.80 in Spring 

~0.70 in Summer 

~0.20 in Spring, 

~0.45 in Summer 
Hendrick et al. (2014) 

Beijing (China) Mar. 2010-Dec. 2012 
~1.25 in Spring,  

~0.70 in Summer 

~0.10 in Spring, 

~0.55 in Summer 
Hendrick et al. (2014) 

East China Sea (China) Jun. 2017 ~1.75 ~1.20 Cui et al. (2019) 

Chengdu (China) Aug.-Sep. 2019 ~3.25 - Yang et al. (2021) 

Qingdao (China) Jul.-Aug. 2019 ~1.30 ~1.00 Yang et al. (2021) 

Nam Co (China) May-Jul. 2019 0.81 6.20 This study 

4.2 Possible daytime HONO sources 436 

Atmospheric HONO mainly sourced from direct emission, homogeneous reaction and heterogeneous 437 

reaction (Fu et al., 2019; Ren et al., 2020; Chai et al., 2021; Crilley et al., 2021; Li et al., 2021). There 438 

were less anthropogenic emissions for HONO around NAMORS, however, the open burning of crop 439 

residues and soil emissions should be important HONO sources considering the pasture environment 440 

and large amounts of animal manure (Cui et al., 2021a; 2021b). Moreover, the background of low-level 441 

NO on the TP leaded to the homogeneous reaction not to be the main source of HONO at NAMORS 442 

(Lin et al., 2019; Xing et al., 2021; Li et al., 2022). Heterogeneous reaction of NO2 on wet surfaces 443 

became an important potential source of HONO around NAMORS, which affected by the humidity, 444 



 

14                            

temperature, solar radiation, aerosol concentration and corresponding specific surface area. In order to 445 

remove the effect of diurnal PBL evolution, we used HONO/NO2 to indicate the extent of the 446 

heterogeneous reaction process. As shown in Figure 8, scatter plots between HONO/NO2 and H2O 447 

were illustrated. We found that the maximum value of HONO/NO2 appeared around water vapor being 448 

around 1.0×1017 molec cm-3 under 1.0 km, and being around 0.5-1.0×1017 molec cm-3 at 1.0-2.0 km 449 

height layer. This phenomenon of HONO/NO2 firstly increasing and then decreasing with the 450 

increasing of H2O (or relative humidity) was usually found in low-altitude areas in previous studies 451 

(Wang et al., 2013; Liu et al., 2019; Xing et al., 2021; Xu et al., 2021). When the H2O was greater than 452 

above mentioned critical values at different heights, HONO/NO2 gradually decreased, which was 453 

related to the efficient uptake of HONO and the decrease of NO2 reactivity with the increase of H2O 454 

(Liu et al., 2019; Xu et al., 2021). That indicated H2O has significant enhancement for the conversion 455 

rate of NO2 to HONO. Moreover, we found that the high value areas of HONO/NO2 at above five 456 

height layers were all accompanied by high aerosol extinction (> 0.15 km-1 under 1.0 km, and > 0.02 457 

km-1 at 1.0-2.0 km). It indicated that aerosol surface has contribution to the heterogeneous reaction 458 

process of NO2. The scatter plots between HONO and NO2 at above five layers (Figure S11) also 459 

confirmed the possibility of the NO2 heterogeneous reaction to generate HONO on the TP, and the 460 

contribution of atmospheric H2O and aerosol extinction to this process. 461 

 462 

Figure 8. Scatter plots between HONO/NO2 and H2O colored by aerosol extinction at (a) 0.0-0.2 km, (b) 463 

0.4-0.6 km, (c) 0.8-1.0 km, (d) 1.2-1.4 km, (and e) 1.6-1.8 km from 1st May to 9th July 2019. 464 

In Figure 9, the vertical profile of HONO/NO2 from May to July 2019 was depicted. We found that 465 

HONO/NO2 firstly decreased and then increased with the increasing of height, which was opposite to 466 

previous studies in low-altitude areas (Meng et al., 2020; Zhang et al., 2020; Xing et al., 2021; Xu et al., 467 

2021). The minimum average HONO/NO2 occurred at 0.3-0.4 km height layer with a value of 0.37. 468 

The relatively high values of HONO/NO2 at the bottom layer should be related to the non-deducted 469 

HONO direct emissions. 470 
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 471 

Figure 9. Statistics for the vertical profile of HONO/NO2 from 1st May to 9th July 2019. The left and 472 

right of the blue box represent the 25th and 75th percentiles, respectively; the dot within the box 473 

represents the mean. 474 

4.3 Possible daytime O3 sources 475 

In addition to local photochemistry process, long-range transport was the main source of O3 on the TP 476 

(Yin et al., 2017; Xu et al., 2018). To further understand the transport pathway and potential source of 477 

O3, cluster analysis, WPSCF and WCWT models were used to assess the regional representativity of 478 

O3 at five typical heights (200 m, 600 m, 1000 m, 1400 m and 1800 m). As shown in Figure S12 and 479 

Table 4, the backward trajectories arriving at NAMORS during the observation were classified into 480 

three clusters at 200 m, 600 m, 1400 m, 1800 m, and four clusters at 1000 m. We found that cluster 3 481 

was associated with the highest O3 concentration at 200 m (65.48±17.41 ppb) and 1800 m (49.69±482 

2.21 ppb), and cluster 1 were related to the highest O3 concentration at 600 m (54.67±6.94 ppb), 1000 483 

m (51.61±3.84 ppb) and 1400 m (50.51±2.89 ppb). These two clusters were all originating from 484 

northwestern of south Asian subcontinent passing through Himalayas, which was also reported by Yin 485 

et al. (2017) during springtime from 2011 to 2015. In Figure S13 and 10, WPSCF and WCWT analysis 486 

told us that the high O3 concentration at above heights potentially sourced from northern India, central 487 

Pakistan, Nepal, western Bhutan and northern Bangladesh through long-range transport. It should be 488 

noted that the potential contribution to O3 at NAMORS at 200 m from above potential source areas 489 

were all over 40 ppb. These contributions from the mentioned potential source areas at other four 490 

heights were also over 20-30 ppb. The massive fire emissions during springtime were an important 491 

source of O3 in south Asia (Jena et al., 2015), and the obvious burning during the observation was 492 

observed in Figure S14. Moreover, the abundant precursors and high photochemical activity were 493 

another significant sources of O3 in south Asia (Kumar et al., 2012; Sharma et al., 2017). 494 

In addition, Figure 10 showed that the contribution of O3 transported from Himalayas can even up to 495 

50 ppb, especially under 600 m. Several previous studies have revealed that the stratospheric O3 496 

intrusion events were frequent in the Himalayas during spring and summer (Cristofanelli et al., 2010; 497 

Chen et al., 2011; Škerlak et al., 2014; Putero et al., 2016). Therefore, the O3 from stratospheric 498 

intrusions in the Himalayas can affect the O3 at NAMORS through long-range transport.  499 

Table 4. Trajectory ratios and averaged O3 concentration for all trajectory clusters arriving in Nam Co 500 

at 200 m, 600 m, 1000 m, 1400 m and 1800 m from May to July 2019. 501 

 Cluster Traj_ratio 
O3 concentration (ppb) 

Mean±SD 
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200 m 

1 55.86% 61.50±18.15 

2 11.85% 54.57±14.67 

3 32.28% 65.48±17.41 

All 100.00% 61.14±17.74 

600 m 

1 62.55% 54.67±6.94 

2 14.32% 50.43±6.64 

3 23.13% 53.27±7.63 

All 100.00% 53.39±7.26 

1000 m 

1 49.16% 51.61±3.84 

2 8.81% 49.60±3.99 

3 22.73% 50.72±4.21 

4 19.30% 51.39±4.49 

All 100.00% 50.98±4.30 

1400 m 

1 80.14% 50.51±2.89 

2 4.95% 49.12±2.73 

3 14.92% 49.44±3.85 

All 100.00% 50.07±3.15 

1800 m 

1 83.75% 49.68±2.55 

2 0.00% 49.07±2.23 

3 16.25% 49.69±2.21 

All 100.00% 49.59±2.49 

 502 

 503 

Figure 10. Spatial distributions of WCWT values for O3 at (a) 200 m, (b) 600 m, (c) 1000 m, (d) 1400 504 

m, and (e) 1800 m height layers from 01st May to 09th July 2019 over CAS (NAMORS). 505 

5 Summary and conclusions 506 

MAX-DOAS measurements were performed to clarify the vertical distributions of several atmospheric 507 

components (aerosol, H2O, NO2, HONO and O3), and to explore the AOC in vertical space in Nam Co 508 

from May to July 2019. The MAX-DOAS NO2, HONO and O3 agreed well with in situ measurements, 509 

with correlation coefficients of 0.91, 0.62 and 0.82, respectively. We found that the averaged vertical 510 
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profiles of aerosol, H2O, HONO and O3 all exhibited an exponential shape, while NO2 showed a 511 

Gaussian shape with a maximum value of 0.32 ppb appearing at 300-400 m. The maximum 512 

concentrations of monthly averaged aerosol (0.17 km-1) and O3 (66.71 ppb) appeared on May, H2O 513 

(3.68×1017 molec cm-3) and HONO (0.13 ppb) appeared on July, and NO2 (0.39 ppb) occurred on 514 

June. For the diurnal variation, above five species all mainly distributed under 1.0 km, and mostly 515 

exhibited a multi-peak pattern considering the effect of regional transport and local chemical reaction. 516 

O3 and HONO were important source of OH on the TP. The diurnal averaged OH production rate from 517 

HONO during the observation exhibited a multi-peak pattern appearing before 10:00, 15:00-16:00 and 518 

after 19:00 under 0.4 km with the maximum value of 0.81 ppb/h. The OH production rate from O3 519 

shown a unimodal pattern occurring at 13:00-15:00 under 0.4 km with the maximum value of 6.20 520 

ppb/h which was obviously higher than that at low-altitude areas. In addition to direct emission, the 521 

heterogeneous reaction of NO2 on wet surfaces was also an important source of HONO in Nam Co. We 522 

found that HONO/NO2 first increasing and then decreasing with the increasing of H2O. The maximum 523 

value of HONO/NO2 appeared around H2O being around 1.0×1017 molec cm-3 under 1.0 km, and 524 

being around 1.0-2.0×1017 molec cm-3 at 1.0-2.0 km height layer. Moreover, high values of 525 

HONO/NO2 usually accompanied by high aerosol extinction. O3 under 2.0 km were potentially sourced 526 

from Himalayas, northern India, central Pakistan, Nepal, western Bhutan and northern Bangladesh 527 

through long-range transport. Our results draw a picture of further understanding the spatial and 528 

temporal variations in oxidation chemistry under PBL and provided a new perspective for source 529 

analysis of major atmospheric components through vertical observation on the TP. 530 
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