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Abstract.

Sea surface temperature (SST) is one of the essential variables of the Earth climate system. Being at the air-sea interface,

SST modulates heat fluxes in and out of the ocean, provide insight into several upper/interior ocean dynamical processes, and it

is a fundamental indicator of climate variability potentially impacting the health of marine ecosystems. Its accurate estimation

and regular monitoring from space is therefore crucial. However, even if satellite infrared/microwave measurements provide5

much better coverage than what is achievable from in situ platforms, they cannot sense the sea surface under cloudy/rainy

conditions. Large gaps are present even in merged multi-sensor satellite products and different statistical strategies have thus

been proposed to obtain gap-free (L4) images, mostly based on Optimal Interpolation algorithms. These techniques, however,

filter out the signals below the space-time decorrelation scales considered, significantly smoothing most of the small mesoscale

and submesoscale features. Here, deep learning models, originally designed for single image Super Resolution (SR), are applied10

to enhance the effective resolution of SST products and the accuracy of SST gradients. SR schemes include a set of computer

vision techniques leveraging Convolutional Neural Networks to retrieve high-resolution data from low-resolution images. A

dilated convolutional multi-scale learning network, which includes an adaptive residual strategy and implements a channel

attention mechanism, is used to reconstruct features in SST data at 1/100◦ spatial resolution starting from 1/16◦ data over the

Mediterranean Sea. The application of this technique shows an improvement in the high resolution reconstruction, capturing15

small scale features and providing a root-mean-squared-difference improvement of 0.02◦C with respect to the L3 ground-truth

data.

1 Introduction

Investigating ocean dynamics and climate variability requires accurate, regular and systematic observations of the Sea Surface

Temperature (SST). SST plays indeed a key role in air-sea interaction and upper ocean circulation processes (Warner et al.,20

1990; Deser et al., 2010; Chang and Cornillon, 2015), it is used to track climate variability and change (Jha et al., 2014; Pisano

et al., 2020), and it is at the base of various chemical and biological processes (MacKenzie and Schiedek, 2007; Dong et al.,

2022a). SST and the estimate of its gradients have also been proven to be a powerful tool to assess and investigate mesoscale and

submesoscale variability (e.g., Bowen et al., 2002; Isern-Fontanet et al., 2006; González-Haro and Isern-Fontanet, 2014; Rio
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et al., 2016; Castro et al., 2017; Ciani et al., 2020). Therefore, the availability of high resolution SST fields is crucial, since they25

serve as the primary data source for many scientific and operational applications. However, their reliability is hindered by the

limitations of infrared (IR) and microwave-based (MW) measurements (Minnett et al., 2019). In fact, thermal IR instruments

are able to provide SST images at kilometer to sub-kilometer scale resolution, although their application is limited by cloud

cover, aerosols radiation emission/absorption and scattering. Conversely, SST retrieval in the microwave is hampered only due

to sunglint, rain, radio frequency interference or proximity to land, but the lower spatial resolution (≃ 25 km nominal resolution)30

achievable with present platforms represents a significant disadvantage. Higher resolution MW SSTs (≃ 15 km resolution) will

only be available after the launch of the Copernicus Imaging Microwave Radiometer (Pearson et al., 2019), expected during

2029. Consequently, SST fields at high resolution are generally affected by several data voids. For this reason, a few statistical

techniques have been developed to obtain gap-free SST images, mostly based on optimal interpolation (OI) (Bretherton et al.,

1976). However, as a result of the temporal and spatial averaging applied during the interpolation, the effective resolution of35

the interpolated products can be significantly coarser than the nominal grid resolution, rarely getting down to less than a few

tens of kilometres (Chin et al., 2017; Ciani et al., 2020; Yang et al., 2021). As such, providing interpolated data increases the

accessibility of sea surface temperature fields for a wide community of users, but this improvement comes with a trade-off, as

statistical interpolation leads to a strong smoothing of small scale ocean features.

In this context, we investigate here the potential of applying deep learning models to improve the effective resolution of a40

gap-free SST field, providing those small scale features even when direct measurements are missing. We exploit techniques

generally used in the field of computer vision, which have proven to be very successful especially for processing gridded data,

managing large-scale datasets while controlling the computational efficiency. In the field of oceanography, the research com-

munity started only recently to explore the applicability of machine learning (ML) methods to ocean remote sensing images

(Dong et al., 2022b). The applications range from oil spill (Singha et al., 2013) to eddy detection (Lguensat et al., 2018; Duo45

et al., 2019) and parametrization (Bolton and Zanna, 2019), to marine algae species discrimination (Balado et al., 2021; Cui

et al., 2022), to forecasting of ocean variables (Deo and Naidu, 1998; Ham et al., 2019) and estimation of meteorological

parameters (Krasnopolsky et al., 2013; Zanna et al., 2019). Moreover, good results have been achieved from applying Neu-

ral Networks (NNs) to space-time interpolation and short-term forecasting issues with satellite altimetry data (Fablet et al.,

2021), to high-performance description of turbulence processes (Mohan et al., 2020; Zanna and Bolton, 2020) and to SST50

reconstruction (Meng et al., 2021; Lloyd et al., 2021).

Among image processing techniques, impressive results have been obtained with Convolutional Neural Networks (CNNs)

due to their high ability to extract the most important information from two-dimensional spatial fields. Recently, the application

of CNN architectures in the process of reconstructing high-resolution images from low-resolution ones, the so-called single

image Super Resolution (SR) problem, has attracted much attention in a wide range of scientific challenges. The idea is to55

implement a network that directly learns the end-to-end mapping between low and high resolution images. One of the simplest

attempts made by Dong et al. (2015) was the construction of a network for image restoration composed of three 2D convolu-

tional layers with different kernel sizes. The three layers might be seen as the three conceptual phases of this NN algorithm:

a first extraction of overlapping tiles from the input images representing them into features maps; the non-linear mapping of
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these maps onto one high-dimensional vector of high-resolution feature maps; the final reconstruction aggregating the above60

representations to generate the final high-resolution image. This final image is expected to be similar to the ground truth one.

Despite the simplicity of the architecture, the SRCNN developed by Dong et al. (2015) achieved excellent results with respect

to more traditional methods and it has already been applied to reconstruct satellite-derived SST data, with promising results

(Ducournau and Fablet, 2016). Building on Dong’s work, several more complicated structures have been developed to tackle

the Super Resolution problem. In subsequent years, a few attempts to develop residual networks have shown the convergence65

improvement of deeper architectures, mainly given by the introduction of skip-connections and recursive convolutions (He

et al., 2016; Kim et al., 2016a, b). Similarly, a step forward has been made by Lim et al. (2017) with the development of an

Enhanced Deep Residual Network for Super Resolution (EDSR) which makes use of residual blocks with constant scaling

layers after the last convolutional layer, in order to stabilize the training even in presence of a large number of filters. This

modification led to significantly better accuracy using much deeper networks, while controlling the computational cost of the70

training phase. A further step has been proposed by Liu et al. (2019) with the Adaptive Residual Blocks (ARBs), which replace

the constant factor with adaptive residual factors, increasing the adaptability of the network. More specifically, in the ARB,

feature responses (i.e. the filter output channels) are re-calibrated on a channel-wise basis using a so-called Squeeze and Exci-

tation module, before being combined with the block input. This process is in fact able to enhance the network’s capability to

capture intricate relationships among the learned feature channels. Recently, to further push these networks to efficiently handle75

different spatial scales in a multichannel input (each channel including a different variable with characteristic feature scales),

Buongiorno Nardelli et al. (2022) introduced dilated convolutional multi-scale learning modules in the network developed by

Liu et al. (2019), expanding the network receptive fields while still controlling its computational cost. In that work, the deep

learning network was designed to super-resolve absolute dynamic topography (ADT) learning from both low resolution ADT

and high resolution SST data, through an observing system simulation experiment (namely simulating all observations through80

an ocean general circulation numerical model).

Our aim is to exploit the ability of the dilated SR network to increase gap-free SST effective resolution, directly training our

network on remote sensing SST data for both the input and target datasets. We make use of the data produced by the Italian

National Research Council - Institute of Marine Sciences (CNR-ISMAR), within the Copernicus Marine Service, consisting

of merged multi-sensor (L3S) and gap-free (L4) Sea Surface Temperature products over the Mediterranean Sea at high (HR,85

nominal 1/16◦ resolution) and ultra-high (UHR, nominal 1/100◦ resolution) spatial resolution (Buongiorno Nardelli et al.,

2013). Considering that our UHR interpolation accounts for space-time decorrelation scales of 5 km and 1 day, in presence

of valid UHR L3 observations the resulting L4 data can be considered as submesoscale resolving (Kurkin et al., 2020). UHR

OI processing makes use of upsized HR L4 fields as an initial guess. This guess is left unchanged in the absence of UHR L3

data and L4 effective resolution is thus by definition lower than 1/100◦ there. Therefore, our goal is to enhance the effective90

resolution of the gaps-free upsized 1/16◦ background field.
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2 Materials and Methods

2.1 Training and test datasets

When dealing with deep learning methods it is important to construct the training and the test datasets, to ensure a sufficient

generalization capability and, more specifically, to avoid under and over-fitting problems. Under-fitting occurs when the model95

fails to achieve a suitably low error on the training set, while over-fitting occurs when the gap between the training error and

test error becomes excessively wide (Goodfellow et al., 2016). Remote sensing data are a very suitable resource to prevent

the occurrence of these problems, due to the wide availability of large-scale gridded datasets which are complex enough to

encapsulate an extensive variety of features.

The suite of products considered for this project provides the foundation SST (i.e., the temperature free of diurnal variability)100

over the Mediterranean Sea from 2008 to present (https://doi.org/10.48670/moi-00172) at Near Real Time (NRT). These data

are built from level 2 (L2) infrared measurements (i.e., data in satellite native grid/swath coordinates) processed through a

series of steps divided into different modules as detailed by Buongiorno Nardelli et al. (2013) and sketched in Figure 1.

Figure 1. Sketch of the processing chains for the production of L3S and L4 SST fields at 1/16◦ and 1/100◦ spatial resolution over the

Mediterranean Sea. Green boxes represent shared modules, blue boxes contain the information and the data for the HR product, yellow boxes

refer to the UHR processing chain and red boxes highlight the application of the super-resolution technique.
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The L2 measurements are obtained from several instruments on board both geostationary and polar orbiting satellites (in-

cluding Sentinel-3A and Sentinel-3B, NOAA-20, SUOMI NPP, Metop-B, Metop-C, AQUA, TERRA and SEVIRI). After a105

first shared module for the upstream data collection (M1), two separated processing chains are used to obtain the SST products

at 1/16◦ and 1/100◦ spatial resolution. Both include a second module for the geographical and temporal extraction of the L2

data and the remapping onto the corresponding regular grid (M2), and a third module for the bias correction and quality control

which lead to the merging of all the data from the different sensors (M3). Therefore, the L3S products at both resolution are

created. The final gap-free fields are provided by applying a space-time Optimal Interpolation algorithm to the L3 data for both110

HR and UHR products (M4). However, the two OI schemes use different initial guess in absence of the observed data. While

the HR processing chain makes use of a climatological background field to produce the L4 SST image at 1/16◦ resolution, in

the case of the finer resolution product the initial guess used by the OI algorithm is the L4 HR SST field, preliminary upsized

onto a 1/100◦ regular grid (through a thin plate spline). As a consequence, due to the small decorrelation scales assumed in

the UHR interpolation, small scale features are correctly represented only when valid UHR L3 observations are present close115

to the interpolation point within a short temporal window. For this reason, in the absence of these observations, the final UHR

product will have an effective resolution equal to or coarser than 1/16◦.

Therefore, we train the network to improve the satellite SST effective resolution introducing realistic small scale features in

the interpolated and upsized gap-free L4 HR SST images (dADR input in Fig. 1). The target data are derived from a ground-

truth super-collated UHR SST dataset (L3S, namely merged multi-sensor data) specifically built for this purpose. The dataset120

is obtained by applying the first three modules of the UHR SST processing chain to acquisitions only from the Sea and Land

Surface Temperature Radiometer (SLSTR) on board of the Sentinel 3A and 3B satellites, due to their high radiometric accuracy

and km-scale resolving capabilities (Coppo et al., 2020).

Both input and target datasets are mapped on a regular grid at 1/100◦ spatial resolution over the Mediterranean Sea for the

year 2020. Since our goal is to retrieve small scale features, a first moving average high pass filter (with a kernel radius of125

200 km) is applied to remove the large scale dynamics in both input and target images (Kurkin et al., 2020). The data are

then selected considering overlapping patches of dimensions 100 × 100 km, chosen extracting all the tiles containing at least

95% of valid pixels. SST values are then transformed into anomalies to avoid seasonal variability and scaled between -1 and 1

through a classical min-max normalization technique, i.e.:

SSTnorm = (b− a)
SST −min(SST )

max(SST )−min(SST )
+ a, (1)130

where a=−1 and b= 1. The test dataset is finally selected setting aside the 15% of the tiles available after the preprocessing,

using all the tiles extracted from four individual days which are representative of the different seasons. These data are separated

in a fully independent dataset which is composed by 18576 tiles (374Mb). The training dataset finally consists of 94110 pairs

of tiles (6.4Gb), of which one part (properly separated from the original training dataset at the beginning of the training phase,

following a 85:15 ratio between the two) is used by the network in the validation phase. In Figure 2 an example of the images135

used to construct the two datasets is shown. The top left panel depicts the gap-free first guess map on 4 January 2020 and below
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the corresponding L3 image derived from merged Sentinel 3A and 3B data. On the right, we provide an example of the a pair

of tiles extracted from the related low and high resolution SST, fed as input and target to train the network, respectively.

Figure 2. On the left the SST First Guess map used to extract the input tiles (top) and the SST L3C target image (bottom) on 4th January

2020. On the right an example of an extracted tile used for the training and test datasets.

2.2 Super Resolution Convolutional Neural Network

In deep learning, Super Resolution algorithms are example-based methods, which generate exemplar patches from the input140

image. As mentioned above, the application of Convolutional Neural Networks to the Super Resolution problem is based on

networks that directly learn an end-to-end mapping between low and high resolution images. These networks consist of a series

of interconnected layers, which make use of the convolution operator simulating the connectivity between neurons observed

in the organization of the animal visual cortex. Formally, the output Y of each layer i is a function of a transformation of the

previous layer output X , i.e.145

Y = F (Wi ∗X +Bi), (2)
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where F is the non-linear activation function (in this case the Rectified Linear Unit or ReLU), Wi the weights, Bi the biases and

∗ the convolution operator. The array of weights, generally called filters or kernels, is able to detect a specific type of feature

in the input (generating what is called a features map) and might include for instance Gaussian-like filters or edge detectors

along different directions, or any other kind of filter learned during the training. Having its own functionality, each layer will150

contain different structures. The main idea is that the network learns the weights of the filters and updates the parameters of

the system through an optimization process based on minimizing the error between the output and the data from the validation

set. This simple yet powerful idea can be augmented as much as desired, especially exploiting the potential of deep networks.

The CNN implemented here was originally developed by Buongiorno Nardelli et al. (2022) and called dilated Adaptive Deep

Residual Network for Super-Resolution (dADR-SR). In the dADR-SR network (schematized in Fig. 3) the low resolution155

input dataset is initially fed to three parallel dilated convolutional layers with the same number of filters (equal to 3 × 3)

but increasing dilation factor (1, 3 and 5, respectively), which allows to have a larger receptive field, extracting information

at different scales without increasing the number of parameters. After this first stage, the data pass through a sequence of

twelve Multiscale Adaptive Residual Blocks (M-ARB), each one including two sets of parallel dilated convolutional layers

(with 120 and 10 filters, respectively) and a Squeeze-and-Excitation (SE) module able to improve channel interdependencies160

at almost no computational cost (Hu et al., 2018), before being summed up to produce the final high resolution output. The

main characteristics of an adaptive strategy involves replacing the fixed scaling of learned features with an adaptive scaling

mechanism, carried out by the SE block (which is a kind of attention mechanism). It captures the global importance of each

channel by initially squeezing the feature maps to a single numeric value (therefore obtaining a vector of size equal to the

number of channels) and, finally, feeding this output to a two-layer "bottleneck" network which will produce new features165

maps, scaling each channel based on its importance. The detailed discussion of the architecture of the network may be found

in (Buongiorno Nardelli et al., 2022). The training algorithm follows an early stopping rule which terminates the iterations as

soon as the validation loss function increases for a previously chosen number of epochs (defined by the patience parameter

which is set here equal to 20). An adaptive learning rate (initialized at lr = 10−4) is given by the Adam optimizer (Kingma and

Ba, 2014), where the hyperparameters are set following the values found in most of the recent literature (Lim et al., 2017; Liu170

et al., 2019; Buongiorno Nardelli et al., 2022): the numerical stability constant is ε= 10−8, the exponential decay rates for the

first and the second moment estimates are set to β1 = 0.9 and β2 = 0.999, respectively. Instead of using the classical dropout

regularization technique, a DropBlock strategy is implemented where contiguous regions of a feature map are dropped together,

which has been shown to increase the accuracy of the network for convolutional layers (Ghiasi et al., 2018). To evaluate the

accuracy, the mean-squared error is used as reference in the loss function. The dADR-SR training model finally uses almost175

1.6 M trainable parameters. All codes are written in Python using the deep learning framework Keras and the training was

performed on a single NVIDIA T4 GPU in almost 4 days.

2.3 Evaluation of model performances

Three different error measures are calculated to evaluate the network reconstruction performance between the ground-truth

image x and the network output y.180
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Figure 3. Schematic of the dilated Adaptive Deep Residual Network for Super-Resolution developed by Buongiorno Nardelli et al. (2022)

. In the figure: i) Conv stands for convolutional; ii) M-ARB stands for Multiscale Adaptive Residual Block ; iii) SE stands for Squeeze and

Excitation module; iv) Add indicates aggregations of the outputs from the networks blocks.

Firstly, we consider the classical Root Mean Squared Error (RMSE) given by:

RMSE(x,y) =

√∑N
i (xi − yi)

N
, (3)

where xi and yi are the pixel i of the images x and y, respectively, and N is the total number of pixels. This measure can be

useful to evaluate the accuracy of a reconstructed value pixel by pixel, but it can be misleading in the assessment of the ocean

state reconstruction, depending on the objectives of the application considered. For instance, if the NN is able to reproduce an185

ocean structure in a position which is slightly misplaced with respect to the ground-truth measurement, the RMSE will be high

indicating a poor reconstruction, even worse than if it would have entirely missed the structure. This issue is often referred to

as the double penalty issue, since point-matching measures will penalize the misplacement twice (where the structure should

actually be and where it is incorrectly predicted). However, in some cases it is possible that capturing an ocean phenomenon,

even if in a slightly wrong position, is better than missing it completely. For this reason, we also consider two additional190

measures usually considered in image processing.

The most commonly used measure for reconstructed image quality is the Peak Signal to Noise Ratio (PSNR), representing

the ratio between the maximum possible pixel value of the image I and the power of distorting noise that affects the quality of

its representation, usually represented by the RMSE itself:

PSNR(x,y) = 20log10

(
max(I)

RMSE(x,y)

)
. (4)195

The PSNR can be seen as an approximation to human perception of reconstruction quality, where the higher the value the better

the quality of the image.
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The third error measure is the structural similarity index measure (SSIM) proposed by Wang et al. (2004), widely used

for measuring image quality and especially the similarity between two images. The concept is based on the idea that while

PSNR estimates perceived errors to quantify image degradation, SSIM captures changes in perceived structural information200

variation. That is, if a reconstructed image is altered with a different type of degradation (for instance, mean-shifted, blurred

or with a salt-pepper impulsive noise effect), while the MSE will come out nearly identical for all the cases, the SSIM will

capture the different perceptual quality, being a weighted combination of luminance, contrast and structure measurements. The

mathematical formulation of the SSIM between two images x and y is given by:

SSIM(x,y) =
(2µxµy + c1)(2σxy + c2)(

µ2
x +µ2

y + c1
)(

σ2
x +σ2

y + c2
) , (5)205

where µx and µy are the mean values of x and y, respectively, σxy is the cross-correlation of x and y, σ2
x and σ2

y are the variance

of x and y, respectively, and c1 and c2 are the regularization constants for the luminance, contrast, and structural terms.

All these errors are computed for the final reconstructed maps over the whole Mediterranean Sea. The combination of the

super-resolved tiles is made considering a linear combination of the values obtained for the same pixel, weighted according

to their position within the tile. That is, the coefficient of each value decreases as its distance becomes larger from the central210

pixel of the tile. Finally, the large scale field initially removed to isolate the small scale features is added back to obtain the

original SST field.

3 Results and discussion

Our aim is to verify whether the dADR-SR network, trained by means of satellite-derived observations, is able to improve

the effective resolution of the SST fields in the areas where our interpolation technique removes most of the spatial variability215

associated with mesoscale and submesoscale processes. Due to computational costs, a preliminary study based on a restricted

test dataset was performed. The performances of the dADR network in comparison with other deep learning algorithms and a

sensitivity analysis on the impact of different choices for the architecture is presented in Sec. 3.1. Finally, an additional test on

an independent dataset built on one year long series of SST fields was carried out (Sec. 3.2).

3.1 Preliminary validation study220

Figure 4 shows the comparison of the result obtained on one of the SST fields included in the test dataset which corresponds

to the SST daily map of 1 August 2020. The reconstruction of the dADR-SR network at 1/100◦ spatial resolution over the

Mediterranean Sea is shown in the top panel. In order to visually evaluate the reconstruction of the network, the corresponding

L3S SST merged field observed by Sentinel 3A and 3B (central panel) and the First Guess map used in the optimal interpolation

algorithm (bottom panel) are shown below the network output. Evident from this figure is that the SST features estimated by the225

CNN appear much sharper than the ones approximated by the low resolution map, showing promising capabilities to effectively

reconstruct dynamical features.
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Figure 4. Comparison of the SST fields of 1st August 2020 provided by the reconstruction of the dADR-SR-CNN (top panel), the collated

L3 data measured by Sentinel 3A and 3B (central panel) and the Optimal Interpolated First Guess (bottom panel).

To highlight the ability of the CNN to more accurately capture small scale features with respect to the statistical algorithm,

we show in Figure 5 three smaller panels corresponding to zoomed-in regions of the fields shown in Fig. 4 delimited by the
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coordinates [30, 40]◦N and [19, 36]◦E, with the correspondent SST spatial gradients (calculated using the Sobel operator)230

for the dADR-SR reconstruction, L3S ground-truth data and the first guess approximation (from top to bottom, respectively).

This particularly structure-rich area is an excellent example to demonstrate the ability of the network to capture dynamical

processes which are quite clear in the high resolution SLSTR data (shown in the central panels). In fact, SST fronts are

strongly connected with the surface dynamics and they are generally associated with energetic motions at the mesoscale and

submesoscale. While the CNN is able to capture at least the most energetic structures (as shown in the top panels of Fig. 5),235

the optimal interpolation algorithm produces an extremely smooth field, where all the small scale features have been filtered

out even when high resolution data are present.

Figure 5. Comparison of the SST (on the left) and SST gradients (on the right) provided by the reconstruction of the dADR-SR-CNN (top

panels), the collated L3 data measured by Sentinel 3A and 3B (central panels) and the Optimal Interpolated First Guess (bottom panels) in

the selected region delimited by the coordinates [30, 40]◦N in latitude and [19, 36]◦E in longitude.

This visual analysis is quantitatively confirmed by the maps in Figure 6, displaying the difference between the error made

by the low resolution approximation and the dADR-SR model with respect to the original L3 image, averaged on 1◦ × 1◦

boxes. Here, red indicates an improvement of the CNN with respect to the low resolution image and blue a degradation. A240

clear predominance of red boxes is found both in the SST and the SST gradients error maps.

In Table 1, the comparison is summarized quantitatively, with the network reconstruction presenting a RMSE = 0.31◦C

(against the 0.33◦C obtained from the OI approximation), a mean PSNR equal to 37.9 and a SSIM equal to 0.54, both larger

than the low resolution result. To highlight the quality of the dADR reconstruction we performed the same test using other

deep learning super-resolution models: the Enhanced Deep Residual network for Super-Resolution (EDSR) proposed by (Lim245

et al., 2017), the Adaptive Deep Residual Network for Super-Resolution (ADR) developed by (Liu et al., 2019) and the dADR
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Figure 6. Comparison of the performance of the SST (top) and ∇SST (bottom) dADR-SR reconstruction and the L4 First Guess with

respect to the L3 data measured by Sentinel 3A and 3B satellites. Red positive values show an improvement of the network reconstruction

with respect to the optimal interpolated First Guess.

proposed by (Buongiorno Nardelli et al., 2022) setting the number of M-ARB equal to six instead of 12 (called dADRSR/2

hereinafter). We recall that while the RMSE should be low to ensure a good approximation, for the other two quantities high

values indicate an improvement. The dADR output achieves the best value for all the evaluation methods presented.
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Table 1. Error estimations of the SST given by the First Guess map, the EDSR network (Lim et al., 2017), the ADR reconstruction (Liu

et al., 2019), the dADRSR built with half of the M-ARB (called dADRSR/2) and the dADRSR output with respect to the L3S ground-truth:

the RMSE given by Equations (3) and the corresponding confidence interval calculated by the bootstrapping procedure, the Peak-Signal to

Noise Ratio obtained by (4) and the Structural Similarity Index Measure given by (5).

Model RMSE (◦C) PSNR SSIM

Low Resolution 0.33 ±7× 10−5 37.5 0.53

EDSR 0.32 ±6× 10−5 37.7 0.54

ADR 0.32 ±6× 10−5 37.9 0.54

dADRSR/2 0.32 ±8× 10−5 37.7 0.54

dADRSR 0.31 ±7× 10−5 37.9 0.54

To analyse the effectiveness of the high resolution reconstruction, we compare the Power Spectral Density (PSD) of the250

network output with the L3 product and the First Guess map over three selected zones. We compute the PSD via Fast Fourier

Transform (FFT) with a Blackman–Harris window over the three areas corresponding to the boxes with labels a, b and c in

Figure 7. The zones are chosen in order to have the maximum number of valid pixels available in the L3 observations and

represent different dynamical regimes:

a - A region over the Sea of Sardinia of low spatial variability.255

b - A region over the Ionian Sea with an important SST variability between the eastern and the western part of the area.

c - A region over the Levantine Sea characterized by small scale structures.

The three central panels of Figure 7 show the PSD, presented as a function of the wavenumber, of the SST reconstructed

by the dADR-SR (in yellow), the first guess map (in red) and the high resolution observations (in blue) over the three zones

delimited by the black rectangles over the L3 SST field on the top panel. In all the cases note that the PSD follows the same260

behavior for wavenumbers smaller than 1 deg−1; i.e., for scales larger than 100 km. This means that for such scales the SST

fields reconstructed by both the CNN and the OI algorithm characterize well large mesoscale features. Conversely, for regions

a and b, both the Low Resolution and the network reconstruction exhibit a significant PSD decrease for wavenumbers higher

than 1 deg−1, but starting from approximately 10 deg−1, the first guess spectrum separates from the CNN spectrum (and

consequently increases the distance from the HR one), indicating a poorer reconstruction of spatial features below 10 km. The265

CNN spectrum, on the other hand, shows that the machine learning algorithm is able to capture those small scale features in

all the cases. An analogous behaviour is found for the spectra of the SST gradients over the same three regions (three bottom

panels). The abrupt decreases are probably due to artifacts introduced by the re-gridding, as already discussed by Liberti et al.

(2023), leading to the lack of physical meaning for the spectra from the "bumps" onwards (i.e. for the highest wavenumbers).

Overall, we can conclude that the CNN spectra tracks the observed spectra from 1 deg−1 to 10 deg−1 quite well while the OI270
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spectra are more energetic in this region. On the other hand, for wave numbers greater that 10 deg−1 the CNN spectra are more

energetic than the observed spectra but still more representative of the spectra on this portion of the curve than the OI spectra.

To quantify the differences between the effective resolution of the products, we calculated the ratio between the spectral

content of the mapping error and the spectral content of the L3S observation of the SST for the dADR-SR reconstructed fields

and the first guess map (see 8) over the three zones delimited by black rectangles on the L3 SST field on 1 August 2020275

presented in the bottom panel of Figure 7. , The effective resolution of the products, based on the intersection between this

PSD ratio and the ratio equal to 0.5 as defined by (Ballarotta et al., 2019), shows the ability of the dADR network to resolve

smaller scales.

In order to demonstrate the effective spatial resolution enhancement of the super-resolved images under cloudy conditions,

we performed a power spectral density analysis on different SST products available over the Mediterranean Sea (Figure 9).280

The products used are the L4 NRT HR at nominal 1/16◦ and the L4 NRT UHR at nominal 1/100◦ spatial resolution provided

by CNR for the Copernicus Marine Service (https://doi.org/10.48670/moi-00172), the GLOBAL OCEAN OSTIA product

developed by the UK MET OFFICE at 0.05◦ (https://doi.org/10.48670/moi-00165), the Multi-scale Ultra-high Resolution

(MUR) product provided by the NASA-JPL at 0.01◦ (Chin et al., 2017) and the super-resolved SST field obtained by the

application of the dADR-SR network developed in this work at 0.01◦. The PSD are computed along the three transects (a, b285

and c in the bottom panel of Figure 9), chosen in three areas affected (at different levels) by cloud coverage. In all the cases

the slope of the spectra is very similar for the three products at higher resolution (namely the UHR, the MUR and the dADR

approximations), while we can observe lower values for the HR and OSTIA products (which also do not reach wavenumbers

larger than 0.1 deg−1 by construction). The PSD analysis for section (a) shows how the dADR approximation is not affected by

excessive noise as the other products, presenting PDS values higher than the MUR spectrum and the UHR product (especially290

at small scales). For sections (b) and (c), the green line representing the dADR spectrum stands above all the other lines for

almost the whole wavenumber range.

14

https://doi.org/10.48670/moi-00172
https://doi.org/10.48670/moi-00165


Figure 7. The PSD of the SST (central panels) and SST gradients (bottom panels) reconstructed by the dADR-SR (in yellow), the first guess

map (in red) and the high resolution observations (in blue) over the three zones delimited by black rectangles on the L3 SST field on 1 August

2020 in the top panel.
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Figure 8. The ratio between the spectral content of the mapping error and the spectral content of the L3S observation of the SST for the

dADR-SR reconstructed fields (in yellow) and the first guess map (in red) over the three zones delimited by black rectangles on the L3 SST

field on 1 August 2020 presented in the bottom panel of Figure 7. The black line represents the ratio equal to 0.5, the dashed black line

and the dotted black line represent the intersection between PSD ratio of the first guess and the dADR, respectively, showing the effective

resolution of the products.

Figure 9. The Power Spectral Density profiles (bottom panels) of different SST products under cloudy conditions calculated along the three

transects (black lines) on the L3 SST field on 20 December 2020 in the top panel: in blue the MED L4 NRT HR product at 1/16◦ (Copernicus),

in red the MED L4 NRT UHR at 1/100◦ (Copernicus), in yellow the GLOBAL OCEAN OSTIA product at 0.05◦ (Copernicus), in purple the

Multi-scale Ultra-high Resolution (MUR) product at 0.01◦ (NASA-JPL) and in green the dADR reconstruction developed in this work.
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3.2 An extensive test dataset

Once established the potential ability of the network, we performed an additional validation test with the aim to strengthen the

robustness of the statistics. Therefore, we built a new totally independent dataset exploiting the L4 SST fields used as initial295

guess for the OI algorithm which produces gap-free SST maps over the Mediterranean Sea for the year 2021 at 0.01◦ × 0.01◦

spatial resolution. Before to be fed to the dADR network in order to obtain the super resolved SST fields, this dataset was

preprocessed following the same steps described in Sec. 2.1. The comparison of the evolution of the daily, basin-scale RMSE

for the input L4 SSTs and the dADR reconstruction along the whole year confirms the improvement of the network output with

respect to the interpolated fields (Fig. 10). The mean values of the RMSE for the 2021 are in line with the ones found for the300

previous test (i.e., 0.31°C for the dADR output against the 0.33°C of the low resolution approximation).
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Figure 10. Comparison of the daily RMSE time series of the SST obtained via dADR-SR reconstruction (red) and the L4 First Guess (blue)

with respect to the L3 data measured by Sentinel 3A and 3B satellites during the year 2021. The jump at Julian day 134 is due to the absence

of L3 observation for that day which made impossible the comparison with the input and the output of the network.

The analogous of Fig. 6, showing the differences (averaged on 1◦ × 1◦ boxes) between the errors of the two methods

approximating the L3 observed data, presents an overall improvement of the output of the dADR network with respect to the

interpolated maps. The red positive values are found almost everywhere for both SST and SST gradients fields.

4 Conclusions305

The advance obtained by the application of machine learning-based techniques for the improvement of the effective resolution

of remote sensing observations have recently opened a new way to approach satellite-derived data processing. The great ad-

vantages provided by making high resolution gap-free images available for a wide range of scientific users are severely limited

by the number of valid L3 observations. In the case of sea surface temperature measurements, infrared data are commonly con-

taminated by cloud cover, reducing the quality of the L4 data that can be obtained via statistical interpolation techniques. The310
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Figure 11. Comparison of the performance of the SST (top) and ∇SST (bottom) dADR-SR reconstruction and the L4 First Guess with

respect to the L3 data measured by Sentinel 3A and 3B satellites during the year 2021. Red positive values show an improvement of the

network reconstruction with respect to the optimal interpolated First Guess.

machine learning approach used here exploits progress made in the field of computer vision for extrapolating high resolution

features even when a direct measurement is missing. Learning directly from ground-truth data, and taking advantage of both

dilated convolution and attention mechanisms, the deep neural network employed here proved able to reproduce small scale

signals generally smoothed out by Optimal Interpolation algorithms. The strong variability of the SST in the Mediterranean

Sea allowed us to obtain excellent results even considering just one year of data during the training phase. However, it would315

be important to investigate whether using longer time series may help to improve the network ability to reconstruct SST fields,

as well as to rely on more robust statistics. Moreover, given the inhomogeneity of the spatial error distribution related to the
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interpolation technique, it would be interesting to expand the present investigation in order to take into account the OI error

field as an additional predictor and to consider the contribution of the error of the SST gradients in the loss function. Another

aspect that would deserve further investigation concerns the applicability of the dADR-SR network to different sea/ocean areas,320

even though a fine-tuning of the model would probably be needed.

In the future, we also plan to study other super-resolution techniques recently became very popular in the field of computer

vision. Firstly, we are currently investigating the possibility to improve the reconstruction of small scale features in SST fields

via other successful generative AI, such as GANs or diffusion models. The former exploits the outcomes of a minmax game

between a generator of reconstructed images and a discriminator which tries to distinguish the real image from the output325

of the other network; the latter builds super-resolved fields initially introducing noise into the initial signal to then reverses

this process until convergences to the desired distribution. However, this kind of networks applied to remote sensing data,

while have been proven to be able to reconstruct very realistic small scale structures, seems to fail to optimize a point-match

evaluation of a reconstructed remote-sensed SST. Secondly, we would like to explore the usage of Vision Tranformers (ViT)

for understanding and reproducing high-level structures by understanding contextual relationships between the patches of an330

image.

The results achieved here, however, may already benefit a wide range of applications. Super-resolved SST fields would facil-

itate the challenging task of 2D/3D ocean dynamics reconstruction in synergy with other variables (e.g., Buongiorno Nardelli

et al., 2022; Fablet et al., 2023) or the monitoring of ocean fronts in areas of particular interest (e.g., areas affected by verti-

cal exchange and upwelling regions). To enhance the effective resolution of SST data and especially SST gradients may also335

benefit data assimilation in forecast modelling, given their proven sensibility to small structures of sea surface temperature

(Woollings et al., 2010; Maloney and Chelton, 2006). We also plan to validate our results exploiting the high resolution SST

data derived by the CNN reconstruction within the operational SST chain in the framework of the Copernicus Marine Service.
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